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Abstract

Background: The United States Environmental Protection Agency’s Toxic Release Inventory (TRI) data are
frequently used to estimate a community’s exposure to pollution. However, this estimation process often uses
underdeveloped geographic theory. Spatial interaction modeling provides a more realistic approach to this
estimation process. This paper uses four sets of data: lung cancer age-adjusted mortality rates from the years 1990
through 2006 inclusive from the National Cancer Institute’s Surveillance Epidemiology and End Results (SEER)
database, TRI releases of carcinogens from 1987 to 1996, covariates associated with lung cancer, and the EPA’s Risk-
Screening Environmental Indicators (RSEI) model.

Results: The impact of the volume of carcinogenic TRI releases on each county’s lung cancer mortality rates was
calculated using six spatial interaction functions (containment, buffer, power decay, exponential decay, quadratic
decay, and RSEI estimates) and evaluated with four multivariate regression methods (linear, generalized linear,
spatial lag, and spatial error). Akaike Information Criterion values and P values of spatial interaction terms were
computed. The impacts calculated from the interaction models were also mapped. Buffer and quadratic interaction
functions had the lowest AIC values (22298 and 22525 respectively), although the gains from including the spatial
interaction terms were diminished with spatial error and spatial lag regression.

Conclusions: The use of different methods for estimating the spatial risk posed by pollution from TRI sites can
give different results about the impact of those sites on health outcomes. The most reliable estimates did not
always come from the most complex methods.

Background
Environmental pollution data such as that collected by
the United States Environmental Protection Agency’s
Toxic Release Inventory (TRI) have been used exten-
sively for studies in environmental justice and medical
geography [1]. These studies involved estimating an
individual’s or a community’s exposure to pollution
using the spatial information contained in the TRI data-
base. Despite the use of this spatial information, the
geographical theory used to guide the estimation of
location-based exposure to pollution has frequently been
limited to basic containment and buffer analysis, espe-
cially at the national scale. The aim of this research is to
improve the spatial analysis of TRI data by incorporat-
ing distance decay effects derived from spatial interac-
tion modeling in order to provide a more realistic

approach to the estimation of location-based exposure
to pollution, particularly airborne pollution. This is
achieved by using several different functions for calcu-
lating this exposure and comparing the results when
they are used in multivariate regression analyses with
lung cancer mortality rates.
The different methods for estimating the risk at a

location are evaluated because, while many studies have
explored and demonstrated a link between environmen-
tal pollution and a variety of adverse societal and medi-
cal effects [1], understanding the nature of this
relationship is equally important. As the variety of meth-
ods used to estimate these impacts attests, the nature of
this relationship is not as well understood as the exis-
tence of the relationship. The form of this relationship
greatly impacts the answers to questions that may arise
from the discovery of a relationship, such as the extent
to which rural counties experience adverse impacts from
urban polluters. A visual cartographic comparison of
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some approaches has been explored by McMaster et al
[2], although they do not make the statistical compari-
son carried out here.

Prior work
Spatial analyses of toxic pollution data, whether for
environmental justice or for medical geography, have
typically used a simple spatial estimate of exposure. The
exposure has been recorded as a binary variable
(exposed or not exposed) either through spatial contain-
ment such that a person is exposed if they live in the
same census tract or county as an industrial site [1,3-8],
or a spatial buffer such that a person is exposed if they
live within a threshold distance (e.g., 1 mile) of an
industrial site [5,9-12]. Variations on the latter use mul-
tiple buffers to approximate decreasing risk with
increased distance, or select a small number of neigh-
borhoods at increasing distances which can be treated
as samples from multiple buffers. This enables the study
to reflect decreased exposure as the distance increases
[1,9,13-15]. To provide a better measure of the impact
of sites on a census tract, four studies [16-19] use a ras-
ter grid that can account for whether a site is in the
center of the tract, or near an edge, and whether any
sites are just over the border in neighboring tracts.
These raster grids reflect the density of TRI sites around
each raster cell, although the density is calculated using
a small buffer, such as the density of sites within a one
mile radius of the cell. A gradual decay of impact as dis-
tance increases is still lacking.

Accounting for the volume of the release is another
important factor missed by some TRI studies [6,10,16,18].
A binary approach that considers all TRI sites equally does
not allow for gradients of risk, treats exposure to one site
as equivalent to exposure to many sites, and does not
account for the volume and toxicity of releases at each
site. The release volumes vary by orders of magnitude
(figure 1). Recognizing this, many researchers do account
for varying release volumes from each site [7,9,12,20-27].
They often use variations of the spatial containment and
buffer models described above which can incorporate the
release volume (equations 1 and 2 respectively). Here, kij is
the impact of site i on county j, ti is the volume of releases
at site i, dij is the distance between site i and county j, and
T is the threshold distance. As a result of this, most studies
that use these techniques to account for the release
volume still reflect a simple treatment of geography by not
including distance decay effects. The toxic impacts of the
different chemicals on human health vary as well
[3,9,12,22-25,27], although this variation is not addressed
in the current study.

kij =
{

ti : i ⊂ j
0 : o.w.

(1)

kij =
{

ti : dij � T
0 : o.w.

(2)

To address these simplifying assumptions, Dent et al
[26] have proposed using a GIS to combine atmospheric

Figure 1 Histogram of the volume of TRI releases for 1987. Histogram of the TRI release volumes measured in pounds for 1987. Note the
log scale on the horizontal axis.
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modeling with the release data and health outcomes and
provide a detailed analysis of the potential effects and
risks associated with TRI releases. Morello-Frosch et al
[23,24] and Fisher et al [21] similarly incorporate atmo-
spheric modeling in their analysis. These models are
typically used for local, rather than national-scale analy-
sis. The United States Environmental Protection
Agency’s Risk-Screening Environmental Indicators
(RSEI) Model uses principles of atmospheric modeling
to derive a level of risk across the entire United States
[28]. This has been used by Abel [9] and Downey and
Hawkins [27], and is used in this resesarch.
This background discussion is summarized by table 1,

which shows that while distance decay approaches have
been used, e.g. [20], containment and buffers are the
most common with atmospheric modeling becoming
more prevalent in local studies. Exponential and power-
based distance decay approaches as found in spatial

interaction modeling have, to the author’s knowledge,
not been used at all.

Spatial interaction modeling
In this research, I use a spatial interaction modeling
approach that is more flexible than the binary
approaches commonly used in spatial analysis of TRI
data, yet is fast enough and generic enough to apply to
the thousands or millions of release sites involved in a
national scale study. Spatial interaction modeling was
developed in economic geography to estimate the level
of economic interaction between two towns [29-32].
The underlying assumptions are analogous to the phy-
sics theory of gravity. Just as two objects in space exert
a stronger gravitational pull on each other as they
increase in size and move closer to each other, two
towns are expected to have a stronger level of eco-
nomic interaction as the towns increase in size and as

Table 1 Prior work summary

Reference Volume? Toxicity? Function

[1] N Y1 Containment & multiple buffers

[3] Y Y Containment

[4] Y Y1 Containment

[5] N Y1 Containment & buffer

[6] Y2 N Containment

[7] Y N Containment

[8] N Y1 Containment & plume modeling ("census tract containing the site and its plume”, p. 148)

[9] Y Y Multiple buffers, RSEI

[10] N N Multiple buffers

[11] N N Containment & buffer (both distance boundary and areal apportionment)

[12] Y Y Multiple buffers

[13] n/a3 n/a Neighborhoods of increasing distance

[14] N N Multiple buffers

[16] N N Distance-based raster

[17] N N Multiple distance-based rasters & distance to nearest TRI facility

[18] N N Multiple distance-based rasters

[19] N N Distance-based raster

[20] Y Y Cutter

[21] Y Y1 Atmospheric modeling

[22] Y Y Containment

[23] Y Y Atmospheric modeling

[24] Y Y Atmospheric modeling

[25] Y Y Atmospheric modeling

[26] Y N Atmospheric modeling

[28] Y Y RSEI

Papers summarized by the type of spatial interaction method applied and whether toxicity and the release volume are accounted for in the analysis.
1Analyzes one or more classes of chemicals separately.
2Incorporates number of releases, but not volume.
3Analyzes a single landfill rather than emission sites.
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the distance between them decreases. These broad
trends are applicable in many fields within geography,
even though the specific functional form from physics
(equation 3), may not be as useful as other functional
forms.
These models are used to estimate the effect of each

TRI site on each county. As the toxic release volume
increases, the impact of that site on the county
increases. Likewise, the impact of nearby sites is
assumed to be greater than the impact of more distant
sites, as from Tobler’s First Law of Geography [33].
There are two common distance decay functions used

to model spatial interaction, which control the rate at
which the impact of a site decreases with distance. The
first, taken from the physics model of gravity, is the
power equation, in which the impact of a site is propor-
tional to the size of the release and inversely propor-
tional to the distance raised to a parameterized
exponent (equation 3). Here, a and θ are positive con-
stant parameters. The location of a county is given by
its centroid. Because other functional forms may be
more applicable than the gravitational form, exponential
decay functions (equation 4) have also been developed
and used.

kij = tiαd−θ
ij (3)

kij = tiα exp
(−θ dij

)
(4)

The models in economic geography, such as those in
Sen and Smith [31], give equations with a third term
which in this work corresponds to the population of the
county and a related positive constant b, such that the

power model becomes kij = tiαpi
βd−θ

ij and the exponen-

tial model becomes kij = ti
a pbi exp(-θ dij). Because I use

age-adjusted rates of lung cancer rather than unadjusted
counts for the dependent variable, these population
terms are set to 1 and effectively removed from the
equations.
The only application of a distance decay function to

TRI data is a comparison of toxic releases and federally
assisted housing which uses a quadratic distance decay
function [20] (equation 5). This is referred to here as
the Cutter function after the lead author of the publica-
tion in which it was first proposed. It uses a constant
parameter, θ, controlling the rate of decrease, and a
threshold distance beyond which the impact is zero.
The equation given here modifies equation 1 from Cut-
ter et al [18] to incorporate the volume of the release.
As in the other equations, kij is the impact of site i on
county j, ti is the volume of releases at site i, dij is the
distance between site i and county j, and T is the
threshold distance.

kij = tiα
(

1.0 − dij
θ

Tθ

)
(5)

Figure 2 shows the effect of increasing distance on all
the models except the containment model. The para-
meters of the models shown are 1.0 for a, 2.0 for θ, and
100 for T, with a release volume of 10,000. More com-
plex atmospheric models, which can incorporate dis-
tance decay concepts, have been used predominantly in
studies at a local scale [21,23,24,26], with only the RSEI
dataset used at the national scale [27].

Methods
Data used
Four sets of data are used in this paper. The first are
lung cancer age-adjusted mortality rates from the
National Cancer Institute’s Surveillance Epidemiology
and End Results (SEER) database [34]. These rates are
from the years 1990 through 2006 inclusive. The sec-
ond are TRI releases from 1987 to 1996. The years
chosen for the TRI databases reflect a lag time
between chronic exposure to toxic chemicals and the
development of lung cancer. All data are temporally
aggregated to the entire time series, rather than evalu-
ating year-by-year temporal lags. The third are risk
estimates computed by the EPA’s RSEI program to be
used as a basis for comparison against the spatial
interaction estimates The RSEI data are the risk-
related results calculated from airborne releases of che-
micals that are flagged as carcinogenic and have a non-
zero Inhalation Unit Risk.
The final dataset, the covariates, come from multiple

sources. One source is the United States Census Area
Resource File [35]. Thun et al [36] show variable risks
for age, sex, and racial categories, so census data for the
proportion of the population which is male and the pro-
portion of the population which is non-white are
included. Hendryx et al [37] note that lung cancer mor-
tality is impacted by socioeconomic factors and access
to health care, so additional covariates include the per-
cent of the population with a less than high school edu-
cation, the percent of the population with a college
education, the percent of families below the poverty
level, the unemployment rate, and the number of physi-
cians per 1000 residents. Because smoking is the most
significant risk factor for lung cancer [36], I also include
the smoking rate of the county based on the BRFSS sur-
vey data from 2003 to 2006. Different regions of the
United States have different rates of lung cancer [38], so
the covariate data also includes spatial indicator vari-
ables recording whether a county is in the American
south, northeast, Midwest, or western region, and
whether a county is part of Appalachia, a regional
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designation from the Appalachian Regional commission
which overlaps parts of the northeast, Midwest and
southern regions. Due to a lack of data, information
regarding personal movements is not included, although
analysis comparing place of birth with place of death
may partially account for this [39].
The Modifiable Areal Unit Problem [40] introduces

difficulties into the interpretation at the county scale,
especially in the larger counties in the western United
States where the county centroid may be tens of miles
away from the county’s population center. Additionally,
in these larger counties, the risk may vary within the
county, and this variance is masked by calculating the
risk at the county scale. However, some of the covariate
data (e.g., the BRFSS-derived smoking rate) is not avail-
able at a finer scale, necessitating a county-level analysis.
In the research presented here, the impacts of the Modi-
fiable Areal Unit Problem and large county sizes are
expected to have a similar impact across all models
because all tests use the same spatial scale.
An examination using a synthetic dataset was consid-

ered, but the results of such a test would minimize the
AIC in the situation reflecting the way the dataset is
constructed (e.g., the impact falls off according to an
exponential distance decay function), which may or may
not correspond to a real world situation. Therefore,

actual, rather than synthetic, data are used in this
research.

Methods Applied
Three sets of releases from 1987 to 1996 in the TRI
database are used. The first is all releases flagged as car-
cinogenic. The second is all releases of chemicals identi-
fied as inducing lung cancer. These chemicals are those
from a parallel study [41] plus beryllium and lead,
which were identified as related to lung cancer by the
lead author of [41] in a private communication. The
total list of chemicals is arsenic, beryllium, 1,3-buta-
diene, cadmium, chromium, formaldehyde, lead and
nickel. The third set of releases adds to the second set
those releases identified as generic compound categories
of elements in the first set. An example of this is a
release of “arsenic compounds” in addition to releases of
plain arsenic. The impacts of these three sets of releases
on all counties in the contiguous United States were cal-
culated using the containment, buffer, power, exponen-
tial and Cutter models given above. These release
impacts are summed to create the cumulative impact on
a county (equation 6), where kij is the impact of site i
on county j and Kj is the cumulative impact on county
j. Because the release amounts vary by several orders of
magnitude and have an approximately lognormal

Figure 2 Example graph of the distance decay functions. Example graph of the four distance decay functions examined in this study: a
buffer, Cutter’s quadratic decay function, a power-based decay function, and an exponential decay function. All functions use 1.0 for a, 2.0 for θ,
and 100 for T, with a release volume of 10,000.
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distribution, as shown in figure 1, both the log10-trans-
formed and the untransformed release volumes were
tested.

Kj =
∑

i

kij (6)

The calculated impacts and covariates are then used in
multivariate regression models calculated with the R
software package [42]: ordinary least squares (OLS) lin-
ear regression, general linear model regression (GLM),
spatial lag regression, and spatial error regression. The
latter two incorporate spatial dependence in the regres-
sion model and are detailed below. There is spatial auto-
correlation in the response variable (Moran’s I = 0.69, p
< 0.01), demonstrating the existence of spatial depen-
dence and suggesting the applicability of the spatial
regression techniques. Geographically Weighted Regres-
sion [40], which can vary the regression coefficients
across the study area was not applied because it is unli-
kely that the nature of the relationship between toxic
releases and mortality changes across the country.
This situation is not strictly one of evaluating a single

function against a null hypothesis of zero impact from
toxic emissions, but is rather evaluating many different
functions against both each other and the null hypoth-
esis. This makes the task more akin to model parameter
optimization than traditional statistical hypothesis test-
ing. It is considered here that, of the different functions
and their parameterizations, the most appropriate repre-
sentation is the one that minimizes the Akaike Informa-
tion Criterion (AIC) of a regression test in which the
modeled risk is one of the independent variables. In all
the regression tests used in this comparison, the remain-
der of the independent variables are the demographic,
behavioral and regional covariates, and the dependent
variable is lung cancer mortality.
Experiments testing many parameterizations of the

buffer, Cutter, power, and exponential functions were
used to guide the results given here. These parameteri-
zations are for the contiguous United States, and were
evaluated on which parameterizations gave the lowest
AIC values when combined with the covariate data in
an OLS regression using the lung cancer mortality rate
as the dependent variable. The same tests are conducted
for the containment and RSEI approaches to risk esti-
mation for comparison. AIC values were also computed
for generalized linear model regressions, although none
of the generalized linear model regressions produced
lower AIC values than linear regression. As a result, the
generalized linear model regressions are not further dis-
cussed. Preliminary experiments (not presented) demon-
strated that the parameterizations that perform well for
OLS regression also typically perform well for the spatial

lag and spatial error regressions. The tests presented
here evaluate a and θ values of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0, 4.5, and 5.0, and distance thresholds of 5, 10, 15, ...
500 miles (8, 16, 24, ... 805 km) for the buffer and Cut-
ter functions. After the parameterizations were found,
spatial lag regression and spatial error regression models
were computed. Also, linear regression models for each
of the rural-urban continuum codes from the United
States Department of Agriculture. Lastly, maps of pro-
portion of the TRI impact for each county that origi-
nated in release sites located in urban areas were
produced. This allows an examination of whether the
impact of sites in urban areas is limited to those cities,
or whether it extends far into the surrounding rural
areas, and demonstrates that some environmental justice
questions are not robust to the choice of risk model.

Spatial Regression Methods
The two spatial regression methods, spatial lag and spa-
tial error regression, both account for the spatial auto-
correlation that is almost always present in geographic
data by adding a term to the regression equation. This
spatial autocorrelation can be the result of diffusion
effects of the dependent variable, which is unlikely in
this situation, or the result of risk factors which have
not been accounted for elsewhere in the regression
model inducing spatial autocorrelation of the dependent
variable [43]. The standard OLS regression (equation 7)
estimates the dependent variable, which is the lung can-
cer mortality rate, as a linear combination of the inde-
pendent variables, here the TRI interaction term and the
demographic covariates. The county is j, the dependent
variable at county j is Yj, the independent variables at
county j are Xj,a, εj is the error term, and b0 ... bn are
the regression coefficients.

Yj = β0 +
n∑

a=1

βaXj,a + εj (7)

Spatial lag regression incorporates the autocorrelation
directly into the model by including a term where the
dependent variable at county j is dependent not only on
the independent variables at county j, but also on the
dependent variable values of county j’s neighbors [44].
The neighbors are defined by a weights matrix typically
using one of the following three options: (1) all counties
which share a border with county j as its neighbors, (2)
all counties within a threshold distance of county j as its
neighbors, or (3) the nearest neighbors of county j.
Here, option (2) is used a distance threshold of 92 miles
(148 km), which is the minimum distance that ensures
all counties have at least one neighbor. Option (1) is
also used considering shared corners (eg, the Four Cor-
ners meeting between Arizona, New Mexico, Colorado
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and Utah) as neighbors, which is called “queen contigu-
ity” to assess the sensitivity of the results to the choice
of weights matrix. Thus spatial lag regression uses the
dependent variable values of the neighbor counties to
calculate a new independent variable for county j, giving
equation 8, where r is a coefficient describing the
strength of the spatial autocorrelation, wj,k is the spatial
weight between counties j and k (typically 1 for neigh-
bors and 0 for non-neighbors, but a distance decay form
for the weights is possible), and Nj is the neighborhood
of counties around county j. The r coefficient can be
estimated in the same way that the b coefficients are
estimated. A computationally efficient approach is given
in Smirnov and Anselin [45].

Yj = β0 +
n∑

a=1

βaXj,a + ρ
∑
k∈Nj

wj,kYk + εj (8)

Spatial error regression (equation 9) works similarly to
spatial lag regression, except the autocorrelation term
applies to the error terms of the neighboring counties
rather than their dependent variable values [46]. Because
of the circular dependence of the error terms (ie, if
county j is in county k’s neighborhood and vice versa,
the value of εj is affected by the value of εk while the
value of εk is affected by the value of εj), standard esti-
mation techniques will not work. An estimation proce-
dure for this is also given by Smirnov and Anselin [45].

Yj = β0 +
n∑

a=1

βaXj,a + λ
∑
k∈Nj

wj,kεk + εj (9)

Results
Table 2 presents the parameterizations that gave the
lowest AIC values and thus are used for further analysis.
The results shown use the lung carcinogens with com-
pounds dataset. All three TRI release sets described
above (all carcinogens, lung carcinogens, lung carcino-
gens with compounds) were evaluated as were the log10
transformed release values, and the lung carcinogens
and related compounds gave the lowest overall AIC
values. While the containment approach was best fit
with the log-transformed releases of lung carcinogens
and related compounds, and the exponential and power

functions had the best fits with releases of all carcino-
gens, the improvements were minimal; the differences in
AIC are less than 2.0 for containment and the exponen-
tial function and approximately 10.0 for the power func-
tion. Therefore, to ensure consistency in the later tables,
the untransformed releases of lung compounds with car-
cinogens are used.
Table 3 shows the R-squared values, the Akaike Infor-

mation Criterion, and the probabilities that the spatial
interaction terms are non-zero. For each regression
model (OLS, spatial lag, or spatial error), the best-per-
forming distance decay function is highlighted in bold.
In all cases, this was the buffer model. Table S1 in Addi-
tional file 1 shows the equivalent table for the queen
contiguity weights matrix. The choice of weights matrix
did not alter the results for most decay functions, only
substantially increasing the AIC of the buffer model, but
not enough to make another decay function better. As
such, the change in weights matrix did not alter conclu-
sions about which decay function performed best.
Table 4 gives the full regression results for the overall
best parameterization: the buffer model at 500 miles
(804 km). This table also gives values of each indepen-
dent variable’s variance inflation factor (VIF). Since all
the VIFs are less than 10, collinearity is not problematic
in this model. As some of the covariates did not have
significant coefficients in the best-performing model, the
least significant covariate was iteratively removed from
the model until all independent variables were signifi-
cant, producing the model in the right side of table 4.
Similarly, non-linear functions of each of the indepen-
dent variables were also applied to each of the six para-
meterizations in Table 3, following [47]. While the fits
are improved (minimized AIC = 22126.54 with the buf-
fer function), the more complex regression models do
not alter the conclusions about which spatial interaction
models perform well and which perform poorly. Table
S2 in Additional file 2 gives the best performing model
results. Table 5 gives the R-squared values of the OLS
regressions by urban-rural code. The values of these
codes are in table 6.
Maps of the percent of TRI impact in each county that
is due to source locations in urban counties according
to each of the distance decay functions are given in
figure 3. The buffer, Cutter, exponential and power
functions using the parameterizations in table 2 are
shown. The darker counties have a greater percent of
their impact from releases in urban counties, whether
the total impact is high or low.

Discussion
The buffer and Cutter functions outperform the con-
tainment, power and exponential functions (Table 3).
This improvement is notable both for the R-squared

Table 2 Model parameterizations

buffer power exponential Cutter

a 1 1 1

θ 1 1 5

T 500 miles (804 km) 500 miles (804 km)

Parameterizations of the models which are the best performing for each
distance decay function, and are thus used in the analysis.
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values of the OLS regressions and the Akaike Infor-
mation Criterion (AIC) for all regressions. Because the
AIC penalizes regression models with more para-
meters, lower values are preferred. These functions
also outperformed the RSEI risk-related results values,
which was not the expected outcome. Other RSEI pro-
ducts, the hazard, modeled hazard, and modeled
hazard*population product were also tested, but all
performed worse than the buffer and Cutter functions.
However, the power and exponential functions from
the spatial interaction literature did not perform much
better than leaving out the toxicity term, and occa-
sionally even increased the AIC value, which may
result from the coarse resolution of the county-level
dataset. These two functions may yet be useful at a
finer scale.

The improvement of the buffer and Cutter functions
over the RSEI data demonstrates that despite the diffi-
culties posed by the Modifiable Areal Unit Problem and
the size of large western counties obscuring variation
of risk within the county, these spatial interaction
approaches may still be an accurate reflection of the
risks posed by TRI facilities. It should be cautioned that
while this work demonstrates a relationship between
TRI facilities and lung cancer, it does not yet indicate a
causal link, nor does it indicate that the best-fitting risk
estimation method, a large buffer around the TRI site,
has the strongest causal relationship with lung cancer
mortality.
Additionally, AIC values are better for the spatial

regression techniques compared to the OLS regression
values. However, including the TRI term in the spatial

Table 4 OLS Regression results

VIF Coeff. Std. Error t value Pr(>|t|) Coeff. Std. Error t value Pr(>|t|)

Intercept 33.53 5.823 5.758 9.39E-09 *** 35.96 1.393 25.808 < 2E -16 ***

% no high sch. 6.165 -0.007 0.0416 -0.171 0.8646

% in poverty 4.306 -0.295 0.0517 -5.706 1.27E-08 *** -0.308 0.038 -8.054 1.13E-15 ***

% unemployed 2.082 1.386 0.0818 16.948 < 2E -16 *** 1.365 0.079 17.315 < 2E -16 ***

% non-white 1.867 -0.022 0.0157 -1.384 0.1665

Appalachian 1.613 -6.539 0.6447 -10.14 < 2E -16 *** -6.318 0.591 -10.684 < 2E -16 ***

College educ. 3.401 -0.396 0.0494 -8.012 1.59E-15 *** -0.396 0.039 -10.089 < 2E -16 ***

Smoking rate 1.708 0.526 0.052 10.116 < 2E -16 *** 0.540 0.051 10.578 < 2E -16 ***

South 5.119 0.822 0.7923 1.037 0.2996

Midwest 3.821 -6.51 0.7893 -8.247 2.39E-16 *** -6.894 0.484 -14.234 < 2E -16 ***

West 4.197 -1.824 0.8067 -2.261 0.0238 * -2.219 0.613 -3.621 0.0003 ***

Physicians/1000 1.675 1.518 0.2203 6.891 6.71E-12 *** 1.461 0.217 6.727 2.06E-11 ***

% male 1.115 0.0451 0.1122 0.402 0.6877

Risk estimate 3.772 2.9E-07 1.5E-08 20.208 < 2E -16 *** 2.9E-07 1.3E-08 22.525 < 2E -16 ***

Results for the multivariate ordinary least squares regression of age-adjusted lung cancer mortality versus covariates and risk estimates from lung carcinogens
and related compounds calculated with the buffer model. This is shown as it minimizes the AIC across all decay functions (Table 3).

Significance codes: 0.0001 ‘***’ 0.001 ‘**’ 0.01 ‘*’.

n = 3057.

Table 3 Regression results

OLS no term contain. buffer power exp. Cutter RSEI

R-squared 0.4596 0.46 0.5224 0.4623 0.4596 0.5178 0.4599

Akaike Info. Criterion 22873.61 22873.22 22498.13 22860.47 22875.59 22527.45 22874.03

probability of TRI term n/a 0.122677 <.000001 0.000104 0.877151 <.000001 0.209438

Spatial Lag

Akaike Info. Criterion 22875.6 22875.21 22350.12 22852.86 22876.37 22529.4 22876.02

probability of TRI term n/a 0.91113 <.000001 0.96198 0.91903 0.83221 0.9158

Spatial Error

Akaike Info. Criterion 22873.95 22873.51 22298.14 22850.64 22874.72 22525.14 22874.57

probability of TRI term n/a 0.19085 <.000001 0.13587 0.19759 0.038097 0.22659

Results for the multivariate ordinary least squares, spatial lag, and spatial error regressions of age-adjusted lung cancer mortality versus covariates and risk
estimates from releases of lung carcinogens and related compounds calculated with each spatial interaction model. Bold entries indicate which spatial interaction
model performed best. Note that lower values for the Akaike Information Criterion are preferred.
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regression techniques does not lead to as much
improvement over the base case of no interaction term.
Even so, the improvement in the buffer model gives the
spatial error regression of the buffer model the lowest
AIC value. Both the Moran’s I spatial autocorrelation
statistic given above and the lower AIC values for the
spatial regression techniques indicate that there is spa-
tial dependence in lung cancer mortality. Moreover, this
spatial dependence is not accounted for by the

independent variables. This dependence is most likely
the result of one or more additional spatial processes
affecting lung cancer that are not accounted for in these
data, rather than a simple diffusion or contagion process
of lung cancer itself. The limited improvement from
adding the TRI impacts strengthens the suggestion that
there remain geographic processes affecting lung cancer
that are not accounted for in these datasets. While it is
not executed in this study, GWR may also reveal further
evidence of confounding processes by revealing interac-
tions with modeled covariates via non-stationary regres-
sion coefficients.
As with the different regression methods, the buffer

and Cutter functions have the best R-squared values
across the entire range of rural-urban continuum codes
(Table 5). Also, category 5, defined as counties contain-
ing a larger town (more than 20,000 residents) but
which are not adjacent to a metropolitan area, has
much higher R-squared values than the other rural-
urban codes across all models. It is not yet clear why
this would be the case.
These results suggest that changing the method used

to estimate risk will change the representation of the
spatial impacts of the TRI sites on public health. As
others have noted, the scope and scale of analysis can
substantially impact the results [48], so researchers
should be cautious when generalizing these findings at a
county scale and national scope to more local scales and
scopes. Nonetheless, researchers using the TRI dataset
to estimate the health risks from pollution should care-
fully consider the method used to estimate the risk, as
the most sophisticated model used here, the RSEI data,
did not provide the lowest AIC values.
The maps in figure 3 display the percent of the TRI

impact on each county from sources in urban areas cal-
culated using the functions that performed best in the
earlier results. As estimated by these models, the poten-
tial effects of pollution from urban TRI releases extend
far beyond the limits of the urban areas. However, the
extent varies depending on which function is used and
how it is parameterized, highlighting the importance of
using an appropriate function. In the power and expo-
nential maps (figure 3a and 3b), the impacts from urban
release sites are more limited to urban areas and the
nearby rural communities. In both the buffer and Cutter
maps (figure 3c and 3d), rural areas in the northeastern
and southwestern United States, have between 75 and
100% of their estimated TRI impact from release sites in
urban areas. These extended effects of urban areas are
related to the large radii used in the distance decay
functions. Additional work is needed to examine the
environmental toxicology to determine whether the che-
micals being released could travel such large distances
or whether these models are simply capturing spatial

Table 6 Definition of each rural-urban code

Code Description

Counties in metropolitan areas

0 Central counties of metropolitan areas of 1 million population or
more.

1 Fringe counties of metropolitan areas of 1 million population or
more.

2 Counties in metropolitan areas of 250,000 to 1 million
population.

3 Counties in metropolitan areas of fewer than 250,000
population.

Counties not in metropolitan areas

4 Urban population of 20,000 or more, adjacent to a metropolitan
area.

5 Urban population of 20,000 or more, not adjacent to a
metropolitan area.

6 Urban population of 2,500 to 19,999, adjacent to a metropolitan
area.

7 Urban population of 2,500 to 19,999, not adjacent to a
metropolitan area.

8 Completely rural or less than 2,500 urban population, adjacent
to a metropolitan area.

9 Completely rural or less than 2,500 urban population, not
adjacent to a metropolitan area.

The interpretation of each 1993 rural-urban continuum code used in Table 5.

Table 5 OLS regression R-squared values by rural-urban
code

Code no term contain. buffer Cutter exp. power

0 0.4971 0.4971 0.5682 0.5493 0.5100 0.4978

1 0.4113 0.4318 0.4795 0.4840 0.4119 0.4345

2 0.4654 0.4655 0.5143 0.5065 0.4655 0.4690

3 0.4618 0.4678 0.5216 0.5089 0.4621 0.4660

4 0.4815 0.4818 0.5514 0.5210 0.4828 0.4841

5 0.5886 0.5905 0.6753 0.6425 0.5899 0.5939

6 0.3990 0.3992 0.4562 0.4436 0.3997 0.3990

7 0.5231 0.5231 0.5882 0.5862 0.5234 0.5232

8 0.5555 0.5628 0.5829 0.5749 0.5560 0.5578

9 0.5741 0.5746 0.5892 0.5909 0.5748 0.5764

Results for multivariate ordinary least squares regression of age-adjusted lung
cancer mortality versus covariates and risk estimates from releases of lung
carcinogens and related compounds, separated by the county’s 1993 rural-
urban continuum code (see Table 6). Bold entries indicate which spatial
interaction model performed best.
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dependence of the outcome that is induced by a con-
founding spatial process.
Future work will investigate the parameterization

choices of the functions. This ad hoc approach to para-
meterization-examining different possibilities of the a, θ
and threshold parameters-is not the ideal approach. Sta-
tistical approaches to finding the optimal a and θ para-
meters can be incorporated to improve the spatial
interaction models that are generated [29,30,32]. A geos-
tatistical approach can be applied to determine the
decay function form and parameters. A correlogram
plot comparing the distance between two counties and
the difference between their mortality rates or their resi-
duals from a regression function could be used to para-
meterize the function. Additionally, subsets of the

correlogram could be examined separately to investigate
anisotropy and non-stationarity. However, with both the
ad hoc approach in this paper and a statistical model-fit-
ting approach, using the data to optimize the parameters
and then using those parameters to analyze the same
data introduces circularity into the model-fitting process
that would best be avoided.
A more theoretically sound approach would be to vary

the a and θ parameters based on the properties of the
toxic chemicals that are released. Varying a is similar to
methods used somewhat frequently to account for the dif-
ferent toxicity of the chemicals released [2,8,11,20-22],
although the studies cited here use multiplicative rather
than exponential modifiers (a ti instead of ti

a). In each
case, higher values of a correspond to more toxic

Figure 3 Percent of TRI impact from urban releases. Percent of TRI impact from urban releases using the different decay functions. Darker
counties have a higher percentage of their impact coming from release sites in urban counties, while lighter counties have a higher percentage
of their impact coming from release sites in suburban and rural counties.
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chemicals. Different studies have made this adjustment
using different references, including American Conference
of Governmental Industrial Hygienists Threshold Limit
Values [3,22], a chronic toxicity index [12], an inhalation
unit risk [23], a lifetime cancer risk [24], and the RSEI
model [9,27]. Similarly, θ and T can be varied to reflect
differences in airborne transport of the chemicals. If a che-
mical travels more easily and farther, lower values of θ and
higher values of T can be used. These parameters can also
be varied based on the direction from the release site to
the affected community, thus incorporating anisotropy.
Ongoing work includes the refinement of at-risk

population estimates using the LandScan USA popula-
tion dataset [49] which can explore variation missed by
county-level populations unable to capture fine-scale
risks. For example, if a chemical is only present in the
atmosphere within a mile of the release site, any
county-by-county analysis will be problematic because
the spatial resolution of county-level data are coarser
than a square mile. The LandScan dataset provides
population estimates at a 3 arc-second resolution
(roughly 90 meters). This can then provide improved
estimates of the number of people within one mile of
the release site instead of assigning the impact of a
release site on the county as if everybody lived at the
centroid of the county. This approach will have stronger
effects on the power and exponential models because
they have more rapid decreases in the impact as one
travels farther from the release site (figure 2). This
ongoing work also incorporates the adjustments given
above varying the parameters to account for properties
of the chemicals released and local climatic conditions
to account for prevailing wind directions.

Conclusions
The research in this paper demonstrates that the use of
simple containment techniques for estimating the spatial
risk posed by pollution from TRI sites as well as the
RSEI risk-related results can give misleading results
about the impact of those sites on health outcomes.
This is done through a comparison of multivariate
regression results using inputs of six different functions
for estimating the impact of a release site on a county:
containment, buffering, the quadratic distance decay
function proposed by Cutter et al [20], an inverse power
distance decay function, an exponential distance decay
function, and the RSEI risk-related results. The buffer
and Cutter approaches consistently performed the best
among these methods. The effects of this function
choice are also demonstrated through mapping the per-
cent of the overall impact that comes from urban TRI
sites for all models except containment. As refinements
to the parameterization process are made, the utility of

more theoretically sound spatial interaction models will
improve further.

Additional material

Additional file 1: Table S1 - Results for the multivariate ordinary
least squares, spatial lag, and spatial error regressions of age-
adjusted lung cancer mortality versus covariates and risk estimates
from releases of lung carcinogens and related compounds
calculated with each spatial interaction model. Spatial regressions
here use queen contiguity matrix to determine whether two counties
are neighbors. Bold entries indicate which spatial interaction model
performed best. Note that lower values for the Akaike Information
Criterion are preferred.

Additional file 2: Table S2 - Results for the multivariate ordinary
least squares regression of age-adjusted lung cancer mortality
versus nonlinear functions of both covariates and risk estimates
from lung carcinogens and related compounds calculated with the
buffer model. This is shown as it minimizes the AIC across all decay
functions (Table 3). This is equivalent to Table 4 in the main document,
but includes natural logarithms (e.g., log(pov)), squared values (e.g., pov2)
and cubed values (e.g., pov3).
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