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The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem
cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and
differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and
neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network
exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis.
Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we
discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors
and regulatory signalling during intestinal stem cell homeostasis.

1. Introduction

The intestinal epithelium is a monolayer of cells covering
the entire lumen of the gut that constitutes an important
barrier against the external environment. Both small and
large intestine share similar glandular crypt structure
where intestinal stem cells (ISCs) reside. Crypts are
formed by epithelial invaginations into the extracellular
matrix (ECM), cushioned by supportive stromal cells.
The ISCs, marked by the leucine-rich repeat-containing
G protein-coupled receptor 5 (Lgr5), reside at the crypt
base alongside their neighbouring Paneth cells [1]. The
ISCs divide and give rise to daughter cells entering the
transit-amplifying (TA) zone. The TA cells will then pro-
liferate and migrate upwards towards the crypt-villus junc-
tion, where they terminally differentiate into all different
cell types, including enterocytes, goblet cells, enteroendo-
crine cells, and tuft cells, before reaching the villus tip
and being exfoliated into the lumen, with the exception
of Paneth cells that will migrate downwards back to the
stem cell zone. The whole ISC proliferation-differentiation
journey from the base of the crypt to the villus tip lasts
approximately 3–5 days [1–3].

ISCs in the crypt base are maintained by their sur-
rounding niche for precise regulation of self-renewal and
differentiation under homeostasis. The ISC niche can be
categorised fundamentally into two major components:
the “physical” niche and the “cellular” niche. The physical
niche refers to the ECM, which comprises an intricate
network of fibrous structural proteins (proteoglycans and
glycoproteins) that act as scaffolding to maintain the
three-dimensional architecture of the intestine. Examples
of ECM components surrounding the intestinal crypts
include fibronectins, laminin isoforms, collagens, and gly-
cosaminoglycans (GAGs) [4–11]. The cellular niche refers
to the stromal microenvironment that comprises all the
resident cells embedded within the ECM. These include
pericryptal myofibroblasts, fibroblasts, endothelial cells,
pericytes, immune cells, neural cells, and smooth muscle
cells, which secrete a wide range of matrix components
and growth factors for the control of ISC proliferation
and differentiation [12, 13]. In addition, Paneth cells con-
stitute another important cellular niche intrinsically within
the intestinal crypt. Paneth cells are direct neighbours of
LGR5+ stem cells that provide crucial niche factors and
signals to support ISC homeostasis [3].
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Communication between the ISCs and their niche is
regulated by multiple signalling pathways such as the Wnt/
β-catenin cascade, Notch signalling, Transforming growth
factor (TGF-β)/bone morphogenic protein (BMP) pathways,
and Hedgehog pathways. Perturbations of these pathways or
ECM homeostasis due to inflammation, toxins, chemother-
apy, and nutritional deprivation can substantially affect the
ISC niche, leading to increased susceptibility to intestinal dis-
eases. The ECM is also suggested to act as a reservoir for
growth factors via heparin sulfate proteoglycan binding,
which may assist in establishing morphogen gradients [14].
These growth factors may also be released upon ECM degra-
dation. In this review, we discuss the contributions of the
ECM and cellular microenvironment to the ISC niche and
highlight the signalling pathways involved in ISC regulation.

2. The Cellular Niche

The mesenchymal compartment of the intestinal lamina pro-
pria contains multiple stromal cell populations with distinct
phenotypes and function. These include fibroblasts, myofi-
broblasts, endothelial cells, pericytes, neural cells, smooth
muscle cells, and immune cells (Figure 1). The role of
intestinal stromal cells in mucosal immunity and homeo-
stasis has been extensively summarised and discussed in
several comprehensive reviews, therefore will not be
addressed in this review [13, 15, 16]. We will focus on
the role of other mesenchymal cells as well as the Paneth
cells in ISC homeostasis.

2.1. Mesenchymal Cells. Fibroblasts and myofibroblasts con-
stitute the major cell components in the lamina propria.
Fibroblasts drive wound healing but also have pathological
implications in a range of diseases, including carcinogenesis,
in various organs. Intestinal subepithelial myofibroblasts
(ISEMFs), a member of the fibroblast family, are located in
pericryptal regions throughout the lamina propria [17].
TGF-β is thought to be a key factor inducing myofibroblast
differentiation [18]. ISEMFs play a pivotal role in the ISC
niche by secreting crucial factors such as Wnt ligands and
BMP antagonists for stem cell maintenance [13, 19, 20].
ISEMFs exhibit characteristics of both fibroblasts and
smooth muscle cells with contractile ability. Upon wound
healing, an inflammatory response triggers ISEMFs to secrete
the matrix metalloproteinases (MMPs) for matrix remodel-
ling [21]. Once the healing process resolves, ISEMFs will
undergo apoptosis mediated in part by IL-1β [18, 22]. Exces-
sive ECM deposition, on the other hand, is associated with a
pathological persistence of activated ISEMFs such as in
inflammatory bowel disease [22, 23].

Smooth muscle cells, present in close association with
ISEMFs, form a thin layer of muscle (muscularis mucosa)
to separate the lamina propria from the submucosa. The
smooth muscle cells contract and relax to keep the muscu-
laris mucosal layer under constant agitation [13]. This func-
tion serves to expel potentially toxic luminal contents out of
the crypts and away from the ISC niche. Similar to ISEMFs,
smooth muscle cells also express BMP antagonists to repress

the differentiative BMP signal and maintain the Wnt activity
in the crypt base [20].

Endothelial cells present in the lamina propria appear to
be important in maintaining epithelial homeostasis. Previous
data showed that radiation-induced injury triggered rapid
endothelial apoptosis prior to epithelial death in vivo [24].
Importantly, loss of epithelial stem cells did not occur when
endothelial apoptosis was blocked by basic fibroblast growth
factor (bFGF) treatment or by genetic deletion of the acid
sphingomyelinase (ASMase)—a gene that is required for
radiation-induced endothelial apoptosis. Endothelial cells
are also implicated in the induction of intramucosal immune
responses [16, 25]. Further investigation is required to fully
understand their niche role in ISC homeostasis.

Pericytes are periendothelial myofibroblast-like contrac-
tile cells wrapping around the capillaries, which regulate
angiogenesis and capillary wall permeability via paracrine
signalling [26]. However, the identity of the pericytes
remains controversial regarding their ontogeny and prog-
eny. Distinction between populations of pericytes and
myofibroblasts is challenging since they express similar
molecular markers [27]. Subsets of pericytes have been
reported to be multipotent progenitors that may participate
in tissue regeneration [28]. The specific role of pericytes in
the ISC niche remains unclear. It is believed that pericytes
may function similarly as ISEMFs based on their close
developmental origin and identity [26, 27].

Neural cells are important for the intestinal epithelial
growth. Bjerknes and Cheng showed that enteric neurons
participate in the feedback loop that regulates epithelial
growth and repair by expressing the glucagon-like peptide 2
(GLP-2) receptor [29]. The enteric nervous system consists
of a large number of neurons and enteric glia cells (EGCs)
that are interconnected to form the two ganglionated plexu-
ses—the myenteric and the submucosal plexuses. EGCs are
located both within the ganglia and in the extraganglionic
regions, such as the lamina propria with close proximity to
the intestinal crypts [30, 31]. In addition to their neuropro-
tective function, these mucosal EGCs are thought to play
crucial roles in maintaining the intestinal epithelial barrier.
Recent data show that EGC homeostasis postnatally is
dependent on functional host-microbe interactions, indi-
cating their role in regulating immune responses in the
gut [32]. The EGCs also exert protective functions on
the intestine by secreting factors such as epidermal growth
factor (EGF) and TGF-β isoforms following inflammation
or injury [33, 34].

2.2. Paneth Cells as ISC Niche. The sole importance of the
stromal microenvironment as the ISC niche was challenged
when ISC-derived epithelial culture was first established in
2009 in the absence of the mesenchymal niche [35]. The
study showed that a single Lgr5-expressing ISC was able to
grow three dimensionally into crypt-villus budding orga-
noids with full proliferation and differentiation potential in
a Matrigel-based culture. The specialised cells intermingled
with ISCs at the crypt base—the Paneth cells, are later
revealed to provide essential niche signals to their neigh-
bouring stem cells [3]. Paneth cells are regarded as
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multifunctional guardians of the stem cell niche. They secrete
antibacterial peptides such as lysozyme and defensins to ster-
ilise the niche and are crucial for the mucosal defence mech-
anisms [36, 37]. In addition, they express signalling factors
such as EGF, TGF-α, Wnt3, and the Notch ligand Dll4, which
provide essential trophic support to ISCs [3]. Paneth cell
depletion in vivo resulted in simultaneous loss of Lgr5+ stem
cells, indicating its essential niche role in the gut.

3. The Physical Niche: Extracellular Matrix

Separating the mesenchymal compartment from the epithe-
lial compartment is the basement membrane, which consists
of two layers: the basal lamina positioned directly beneath
epithelial cells and the underlying reticular sheet of matrix
that anchors the epithelium to the lamina propria [38]. The

basement membrane is a specialised ECM that is jointly pro-
duced by both epithelial and stromal cells and is mainly com-
posed of laminins, collagen IV, and fibronectin. The presence
of the basement membrane at the epithelial-mesenchymal
interface is believed to play a crucial role in regulating
epithelial cell homeostasis (comprehensively discussed in
previous reviews [17, 39]). In the underlying connective
tissue (lamina propria), several specific isoforms of the
ECM components such as fibronectins, laminins, collagens,
GAGs (e.g., heparan sulfate proteoglycans—also known as
perlecan), and integrins are reported to be enriched at the
intestinal crypt base, suggesting their potential role in ISC
regulation [4–11, 38, 40–42]. A very recent study on matrix
reconstitution of the matrix for intestinal organoid culture
using minimal essential components provides direct and sig-
nificant insight into the biochemical and biophysical roles of
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Figure 1: The intestinal stem cell niche. The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the
crypt-villus axis. Intestinal stem cells reside at the base of the crypts and continuously generate transit-amplifying (TA) daughter cells that
differentiate into various mature cells in the villi (enterocytes, goblet cells, enteroendocrine cells, tuft cells, or Paneth cells). The crypt
surrounding microenvironment is made up of both physical/structural and cellular niche to regulate ISC homeostasis. The physical niche
includes collagen fibres, integrins, fibronectin filaments, laminins, and glycosaminoglycan, which form a highly structured network named
as the extracellular matrix (ECM). The cellular niche includes pericryptal myofibroblasts, fibroblasts, endothelial cells, neural cells, and
smooth muscle cells. The ECM and cellular niche interact and communicate with each other via different signalling pathways such as the
Wnt, Notch, TGF-β/BMP, Eph/ephrin, and Hedgehog pathways for stem cell maintenance.
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the ECM in ISC homeostasis [43]. Here, we discuss the role
of ECM in the ISC niche through various biological and
mechanical parameters (Figure 1).

3.1. Biochemical ECM Roles in the ISC Niche. Collagen is the
main structural protein in the ECM and is the most abundant
protein in our body. The collagen superfamily contains at
least 19 different subtypes, with types I, III, IV, and
VI uniformly distributed in the healthy intestinal ECM
[11, 44, 45]. However, increasing evidence suggests that type
VI collagen (which interacts closely with type IV collagen of
the basement membrane) is the key regulator for the
mechanical microenvironment of the intestinal crypt cells
via fibronectin and RGD (Arg-Gly-Asp)-dependent crypt cell
interactions [4, 7]. Indeed, intestinal epithelial crypt cells
have been demonstrated to secrete type VI collagen into the
basal lamina of the intestinal basement membrane [7].
Increases in ECM collagen deposition augment tissue stiff-
ness which alters integrin focal adhesions, growth factor
receptor signalling, and acto-myosin and cytoskeletal-
dependent cell contractility [46].

Laminin is one of the major glycoprotein constituents of
the intestinal crypt basement membrane and is recognised to
be particularly important in the establishment of epithelial
cell polarity [10, 47]. Laminin subtypes are key components
of small intestine and colon basement membranes. Laminin
α1 and laminin α2 were shown to be enriched at the crypt
regions, while laminin α5 was expressed strongly at the villus
basement membrane [39, 47, 48]. Laminin α5 is believed to
play a crucial role in establishing the mucosal pattern of
the small intestine by maintaining the villus architecture
[48, 49]. The recent study on the designer matrices for intes-
tinal organoid culture has further demonstrated that
laminin-111 (α1β1γ1) is important to enhance ISC survival
and proliferation [43].

Fibronectin is a high molecular weight adhesive glycopro-
tein found in a wide range of tissues and plays important
roles in cell adhesion, migration, growth, and differentiation.
Fibronectin contains binding sites for many ECM proteins
such as collagens, GAGs, and RGD peptides for cell surface
receptors of the integrin superfamily, suggesting its multi-
functional role in the ECM [5]. Intestinal fibronectin is
secreted by fibroblasts as well as being expressed by epithelial
cells and is located throughout the lamina propria [9, 40, 50].
Altered fibronectin deposition patterns are correlated with
several intestinal disease states. For instance, upregulation
of FN throughout epithelial cells is associated with intestinal
fibrosis such as inflammatory bowel disease [5]. Strain forces
exerted in the ECM in vitro have been shown to induce
fibronectin-mediated epithelial cell migration by activating
the extracellular signal-regulated kinase (ERK) and myosin
light chain (MLC) signalling pathways, indicating the impor-
tance of fibronectin in wound closure and epithelial migra-
tion [51]. Fibronectin is also postulated to be an activator of
the nuclear factor-κB (NF-κB) signalling pathway in the con-
text of intestinal inflammation [5].

Integrins are heterodimeric receptors, consisting of α
and β subunits that link the ECM with the intracellular
cytoskeleton as part of the RGD-adhesion system, mediating

cell anchorage, intracellular signalling, and mechanotrans-
duction [4, 52]. Several integrin subunits and signalling com-
ponents were previously shown to be expressed at high levels
in the ISCs of the Drosophila midgut [53]. The study further
demonstrated that integrin signalling is required for the
maintenance and proliferation of intestinal stem cells but dis-
pensable for multiple lineage differentiation. β1 integrins
have also been identified as key regulators for ISC prolifera-
tion and homeostasis by mediating Hedgehog signalling in
a mouse genetic study [54]. The transmembrane α5β1 integ-
rin receptor has been shown to regulate many fibronectin-
dependent biological effects in human tissues [55]. Integrin
α8β1 is another crucial mediator of intestinal crypt cell-
matrix interaction via the focal adhesion kinase (FAK) sig-
nalling pathway [56–58]. Intestinal epithelial cells have also
been shown to be regulated by integrin-linked kinase (ILK)
through a fibronectin-dependent mechanism [59]. Overall,
these studies suggest an essential role for integrins, in partic-
ular β1 integrins in promoting ISC homeostasis.

Glycosaminoglycan molecules are thought to provide
lubrication and structural integrity to cells in the intestinal
ECM owing to their high viscosity and low compressibility,
thereby providing a passageway between cells to facilitate cell
migration [60, 61]. GAGs can function to organise collagen
fibre deposition, stimulate angiogenesis, and inhibit coagula-
tion [62]. The specific GAGs of physiological interest in the
intestine are heparan sulfate, hyaluronic acid, heparin, and
chondroitin sulfate [63]. Heparan sulfate proteoglycan
(HSPG) is one of the most well-studied GAGs in the intes-
tine. HSPGs are present in the ECM as linear polysaccha-
rides, which are able to bind Wnt, Hedgehog, TGF-β, and
FGF proteins in Drosophila and Xenopus studies [8, 64–66].
Intestine-specific HSPGs are found on the basolateral surface
of intestinal epithelial cells and have been shown to promote
intestinal regeneration by modulating Wnt/β-catenin signal-
ling pathway, suggesting their role in ISC homeostasis [8, 67].
Hyaluronic acid is another chemically simple, high molecular
weight, and nonbranching polymer of N-acetyl-glucosamine
repeats that exists abundantly throughout the matrix. During
disease processes such as in excessive inflammation, these
polymers are cleaved to fragments of lower molecular weight
that take on signalling roles [68, 69]. Hyaluronic acid binds to
CD44, which is expressed on the plasma membrane of many
cell types including ISCs [69]. It also binds to the Toll-like
receptors TLR2 and TLR4, which are widely distributed in
the gastrointestinal tract to mediate the host response to
both commensal and pathogenic bacteria [70]. It has been
shown that hyaluronic acid administration enhanced intes-
tinal crypt survival of radiation-induced enteritis mediated
through TLR4 and cyclooxygenase-2 (COX-2) [70, 71].
Together, the data suggest that GAGs constitute an impor-
tant niche for ISC homeostasis.

3.2. Biomechanical ECM Roles in the ISC Niche. The biome-
chanical influence of the microenvironment is believed to
play important roles in developmental processes, stem cell
fate, and lineage determination [72]. Biophysical factors such
as cell shape, ECM stiffness, and topography can all contrib-
ute to stem cell regulation. Cells perceive physical stimuli via
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direct contact to the cell adhesion molecules, which allow the
cytoskeleton to communicate with the adjacent ECM struc-
tures. This enables microenvironmental forces to be sensed
and translated into intracellular messages, in a process
termed mechanotransduction, to regulate a wide array of
physiological processes [73]. The development of in vitro
technology for the study of the matrix in the past decade
has significantly advanced our understanding of the
mechanical regulation of stem cell homeostasis. For exam-
ple, a recent study using intestinal organoid cultures in cus-
tomized matrices demonstrated that high matrix stiffness
enhanced ISC expansion through yes-associated protein 1
(YAP)/Hippo pathway-dependent mechanism, whereas soft
matrices promoted differentiation [43]. The Hippo signal-
ling pathway is a key player of the ECM mechanotransduc-
tion that controls organ size by sensing the external
mechanical forces (discussed in detail in the next section).
The downstream key regulator YAP displays nuclear trans-
location and activation in response to mechanical tension,
indicating its importance in cellular mechanosensing and
mechanotransduction [74, 75].

In many organs, ECM topography undergoes constant
dynamic remodelling whereby components are deposited,
degraded, or modified by cues conveyed to the matrix by
the surrounding cells [62]. The process of intestinal ECM
remodelling is strongly associated with angiogenesis, cell
migration, and differentiation as well as tumourigenesis,
while ECM deposition and destruction occur via matrix
metalloproteinases (MMPs) [76]. MMPs comprise a large
family of at least 25 zinc-dependent endopeptidases capa-
ble of degrading all components of the ECM. They are
classified according to substrate specificity and are associ-
ated with human diseases such as rheumatoid arthritis
and cancer [77]. Intestinal organoids cultured in RGD-
based hydrogels that were susceptible to MMP-mediated
degradation demonstrated a proinflammatory phenotype
with reduced stem cell maintenance [43]. The findings
provide direct evidence that the ECM comprises an essen-
tial niche role for the regulation of ISCs.

4. Signalling Pathway Regulation in the ISC
Niche

The cellular and mechanical niche components in the
intestinal crypt communicate with each other via different
signalling regulatory pathways to maintain the optimal
microenvironment for ISC homeostasis. Here, we discuss
the major signalling pathways that are essential for stem
cell maintenance and repair (Figure 1).

4.1. Wnt. Wnt signalling is an evolutionary conserved path-
way that plays a crucial role for the maintenance and prolif-
eration of intestinal stem cells [78, 79]. Wnt ligands are
secreted by various ISC niche cells, including the Paneth cells
and the stromal cells surrounding the crypt [3, 80, 81].
Expression analysis in the intestine showed that Wnts 3, 6,
and 9b are secreted predominantly by epithelial cells,
whereas Wnts 2b, 4, 5a, and 5b are secreted by the mesen-
chyme [82]. Paneth cell-secreting Wnt3 constitutes the

essential ISC niche factor for the stromal-free intestinal orga-
noid culture in vitro [3, 83]. Interestingly, Wnt3 deletion or
Paneth cell depletion in vivo in the gut did not affect intesti-
nal homeostasis, suggesting a redundant role of Wnt ligands
from the stromal microenvironment [80, 83].

R-spondin is a potent Wnt agonist that potentiates Wnt
signalling in the presence of Wnt ligands via LGR-
dependent mechanism [84]. A more recent study further
demonstrates distinct, nonequivalent roles of Wnt and R-
spondin ligands in ISC homeostasis using lineage tracing
mouse models. While Wnt proteins confer a basal compe-
tency by maintaining R-spondin receptor expression
(LGR4-6, RNF43, and ZNRF3 receptors), they are unable to
induce ISC self-renewal and expansion alone in vivo without
the presence of R-spondin ligands. The data suggest that
R-spondin, rather than Wnt, plays the dominant role in
controlling the size of the Lgr5+ ISC pool [85]. R-spondin
proteins are secreted by the intestinal stromal niche to pro-
mote crypt proliferation and ISC maintenance [81, 84, 86].
Indeed, ex vivo stromal cell-free intestinal organoid culture
is also dependent on the presence of R-spondin [35]. Deple-
tion of Foxl1-expressing pericryptal mesenchymal cells
in vivo led to suppression of Wnt activity and ISC prolifera-
tion due to the loss of Wnt ligands and R-spondin [87], sup-
porting the important roles of Wnt and R-spondin in ISC
maintenance. Similarly, another recent study shows that the
CD34+ gp38+ pericryptal mesenchymal cells (also express
Foxl1) are the major intestinal source for the ISC niche fac-
tors such as Wnt2b, R-spondin, and Gremlin1 [88]. These
cells are in close proximity with Lgr5+ ISCs that constitute
the key ISC microenvironment by promoting Wnt signal-
ling and antagonising the BMP signalling (see below). On
the other hand, several secretory Wnt antagonists such as
SFRP-1 and Dkk-3 are also expressed in the stromal cells
[82], suggesting the crucial role of ISC stromal niche in
controlling the Wnt activity at the “just-right” level for
stem cell homeostasis.

4.2. BMP.Mesenchymal-derived BMPs belong to the TGF-β
family. TGF-β/BMP signalling inhibits intestinal epithelial
stem cell expansion and promotes epithelial differentiation
in the crypt [89, 90]. In contrast to Wnt signalling, BMP
signals are activated in the villus and are suppressed toward
the base of the crypt [89, 91]. Bmp4 is expressed throughout
the lamina propria, while the BMP receptor (Bmpr1a) is
expressed in the epithelial cells towards the villus [89].
BMP antagonists such as Gremlin1, Gremlin2, and Chordin
are secreted by the ISEMFs and smooth muscle cells at the
human colonic crypt bottom to repress BMP signalling, while
BMP ligands are expressed in the upper colonic crypt to drive
differentiation [20]. Similar to human colon, the BMP
antagonist Noggin is also expressed at the stromal niche
surrounding the crypt in the small intestine [89]. Trans-
genic expression of Noggin in the intestinal epithelia led
to de novo crypt formation [92]. Another secreted pro-
tein, angiopoietin-like protein 2 (ANGPTL2), is also
expressed by ISEMFs to inhibit Bmp2 and Bmp7 expres-
sion via integrin α5β1/NF-κB signalling and maintain
ISC homeostasis [93].

5Stem Cells International



Crosstalk betweenWnt and BMP signalling is believed to
play a key role in ISC homeostasis. Previous studies showed
that deletion of Bmpr1a in mouse intestine caused rapid
expansion of the stem cell compartment by enhancing Wnt
activity [89]. Recent data further demonstrate that epithelial
BMP signalling is crucial to restrict ISC expansion by direct
Smad4-mediated repression ofWnt/stem cell signature genes
[90]. Importantly, the stromal cells surrounding the intesti-
nal crypt base secrete both Wnt (Wnt and R-spondin
ligands) and BMP factors (Bmp antagonists such as Gremlin
and Noggin) together to drive ISC proliferation [20, 87, 88].
R-spondin and Noggin also constitute the key growth factors
for the stromal cell-free intestinal organoid culture, which
can be replaced by coculturing with mesenchymal cells
[35, 87, 88]. Together, these findings suggest that ISC stro-
mal cells play an indispensable role for ISC homeostasis by
modulating both Wnt and BMP signalling pathways.

4.3. Notch. Notch signalling is crucial for ISC maintenance
and fate decision, where Notch inhibition resulted in reduced
stem cell proliferation [94, 95]. The Notch signalling pathway
is regulated through the presentation of the membrane-
bound Notch ligand to an adjacent cell expressing the Notch
receptor, suggesting the importance of close proximity
between ISCs and their niche [96]. Notch receptor and ligand
transcripts have been detected in both epithelial and mesen-
chymal cells of the developing and adult rodent intestine
[97–99]. Paneth cells express the Notch ligands delta-like 1
and 4 (Dll1 and Dll4) and present these ligands to their adja-
cent Notch receptor-expressing ISCs for Notch activation
[3]. Simultaneous deletion of Dll1 and Dll4 resulted in loss
of ISCs and crypt proliferation, suggesting that Notch activa-
tion is required for ISC homeostasis [100]. Activation of
Notch has also been shown to be crucial during intestinal
epithelial regeneration [101].

Notch signalling is also important in lineage specification
at the progenitor cells. Notch activation drives absorptive lin-
eage differentiation, while Notch inactivation drives atonal
homolog 1- (Atoh1-, also known asMath1) dependent secre-
tory lineage differentiation [100, 102–108]. Atoh1 depletion
in the intestine resulted in expansion of the crypt prolifera-
tive zone and promoted enterocyte over secretory cell differ-
entiation [109]. On the other hand, disruption of Notch
signalling caused rapid conversion of all proliferative crypt
cells into goblet cells [105, 110, 111]. The ISC-specific marker
Olfactomedin 4 (Olfm4) was shown to be a direct Notch tar-
get in the intestine [94]. Interestingly, murine Olfm4 has
been described as a secreted ECM glycoprotein that pro-
motes cell adhesion and binds to cell surface cadherins and
lectins, suggesting a potential link between Notch signalling
and the ECM niche [112].

4.4. Eph/ephrin. Cell positioning along the intestinal crypt-
villus axis is controlled by the Eph/ephrin-mediated interac-
tion and repulsion among the epithelial cells and is crucial for
ISC homeostasis [113, 114]. Eph tyrosine kinase receptors
and their ephrin ligands are expressed in most adult stem cell
niches, often in counter gradients to regulate tissue boundary
and stem cell proliferation [115]. In vivo studies and gene

expression profiling experiments have shown that EhpB2
and EphB3 are both Wnt target genes and are expressed in
the proliferative cells at the crypt bottom [113]. Deletion of
both EphB2 and EphB3 in mouse intestine altered the posi-
tioning of proliferative and differentiated cells and caused
mislocation of the Paneth cells scattering along the crypt-
villus axis. In contrast to the EphB receptors, ephrin-B1
ligand is expressed in the differentiated cells in an opposite
gradient [113]. Interaction of the receptor with its ligand pre-
vents proliferating cells from migrating into the differenti-
ated cell territory, thereby promoting compartmentalisation
of the epithelial cells along the crypt-villus axis [113, 116].
In addition to the EphB family, multiple EphA receptors
and their ligands are also expressed differentially in human
colonic crypts. EphA1, EphA4, and EphA7 are expressed at
the crypt bottom, while EphA2, EphA5, and the ephrin-A1
ligand are enriched at the upper colonic crypts [20]. The role
of EphA-ephrin-A signalling in ISC homeostasis is yet to be
determined. Together, Eph-ephrin signalling is believed to
maintain ISC homeostasis by restricting the ISCs and Paneth
cells at the crypt bottom for exposure to the key stem cell
niche factors.

4.5. Hippo.Hippo signalling pathway is highly conserved and
plays a central role in organ size control, stem cell renewal,
and regeneration via extracellular mechanical forces [117].
The transcriptional coactivators YAP and TAZ have been
shown to transduce mechanical cues to mediate biological
effects in response to ECM elasticity and cell shape. YAP
and TAZ are translocated to the nucleus for transcriptional
activation in stiff matrix, while the two effector proteins are
excluded from the nucleus in soft matrix [118]. Recent stud-
ies suggest an important role of Hippo signalling in regulat-
ing intestinal homeostasis and regeneration [119–121]. The
effector protein YAP is mainly expressed throughout the
intestinal crypt and promotes intestinal regeneration [119].
YAP and TAZ have been shown to induce both proliferation
of crypt progenitor cells and differentiation of ISCs into gob-
let cells via TEADs- and Klf4-mediated transcription regula-
tion, respectively [122]. YAP/TAZ-deletion was also found to
impair intestinal organoid formation and prevent Apc loss-
induced lethality by Wnt-mediated mechanism [123]. On
the other hand, an inhibitory role for YAP in intestinal regen-
eration has been proposed. Overexpression of a constitutively
active YAP-S127A mutant in mouse intestine led to the loss
of proliferative crypts and Wnt signal suppression, whereas
depletion of YAP in the gut caused hyperactive Wnt signal-
ling and expansion of ISCs and niche cells during regenera-
tion [120]. These paradoxical observations could possibly
be explained by the complexity of the Hippo pathway such
as cell-ECM interaction, nuclear-cytoplasmic shuttling of
YAP/TAZ, and its crosstalk with Wnt signalling cascade.
Further investigation on the effect of ECM dynamics to ISC
maintenance in the context of Hippo signalling regulation
will help understand the mechanical-cytoskeletal cues on
stem cell homeostasis and regeneration.

4.6. Hedgehog. Hedgehog signalling is involved in stem cell
maintenance, organogenesis, and tissue repair/regeneration
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[124]. Paracrine Hedgehog signalling is crucial for intestinal
crypt-villus axis formation during development. Expression
of the two ligands Sonic Hedgehog (Shh) and Indian
Hedgehog (Ihh) is limited to the intervillus pockets of the
developing epithelium, while the expression of the receptors
patched 1 (Ptch1) and patched 2 (Ptch2) and the effectors
Gli1, Gli2, and Gli3 is restricted to the underlying mesen-
chyme [125]. Ihh is expressed in the differentiated epithe-
lial cells in the villi of the adult small intestine and is
crucial for epithelial integrity and wound healing [126].
Blockade of Hedgehog signalling inhibited villi formation
and maintained intestinal crypt proliferation by enhancing
Wnt/β-catenin activity [125]. Deletion of Shh or Ihh showed
multiple gastrointestinal defect and reduced smooth muscle
cells [127]. Intestinal-specific deletion of Ihh resulted in dis-
ruption of mesenchymal architecture and ECM deterioration
via the loss of Bmp signalling and increased MMP synthesis
[128]. In addition to regulating smooth muscle and myofi-
broblasts during development, Hedgehog signalling is also
required to induce Bmp4 expression in the stromal niche to
regulate enteric neural cell differentiation [129]. Together,
the data suggests that paracrine Hedgehog signalling from
epithelial to mesenchymal cells promotes stromal niche
formation, which in turn affects epithelial proliferation
and differentiation. Hedgehog signalling in the gut repre-
sents one of the best examples of the close regulation
between ISCs and their niche.

5. Conclusion and Future Perspectives

The cellular and ECM niches together constitute a dynamic
microenvironment that is critical for intestinal tissue homeo-
stasis. In this review, we provide an overview of the biochem-
ical and mechanical cues originating from the matrix, as well
as various vital signalling pathways derived from different
cellular niche components that are important for the regula-
tion of ISC maintenance and differentiation. Matrix proteins
function in the ISC niche to provide the structural scaffold
for maintaining the crypt-villus axis formation, transduce
intracellular signalling via integrin binding, and act as a
reservoir of growth factors that may be released upon pro-
teolysis. Integrin-mediated stem cell anchoring has been
recently shown to be crucial for the maintenance of the
stem cell compartment in the epidermis, where human
epidermal stem cells express high levels of β1 integrins
[130]. It will be interesting to further explore the role of
the integrin-mediated anchoring mechanism in compart-
mentalisation of the ISCs and Paneth cells in the intestine
apart from the Eph/ephrin signalling.

ECM remodelling can influence the accessibility and the
biological cues of the ISC niche. Given the growing evidence
of the pivotal role of the microenvironment in inflammatory
bowel disease and cancer, ECM components may represent
appealing therapeutic targets. Recent studies suggest that epi-
genetic modification such as histone methylation and acety-
lation may regulate ISC proliferation and differentiation
[131]. Further investigation on the potential link between
the microenvironment and epigenetic mechanisms may pro-
vide an additional level of stem cell regulation. Recent

advances on intestinal tissue engineering further highlight
the significance between ISCs and their niche (both physical
and biological). A greater understanding of the interplay
between different cell populations in the ISC niche and their
influence on ECM will shed light on both disease manage-
ment and regenerative medicine.
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