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Abstract: Molecular assessment of colorectal cancer (CRC) is receiving growing attention, beyond
RAS and BRAF, because of its influence on prognosis and prediction in cancer treatment. PTEN
(phosphatase and tensin homologue), a tumor suppressor, regulating cell division and apoptosis, has
been explored, and significant evidence suggests a role in cetuximab and panitumumab resistance
linked to the epidermal growth factor receptor (EGFR) signal transduction pathway. Factors
influencing PTEN activity should be analyzed to develop strategies to maximize the tumor suppressor
role and to improve tumor response to cancer treatment. Therefore, an in-depth knowledge of the
PI3K-Akt pathway—one of the major cancer survival pathways—and the role of PTEN—a major
brake of this pathway—is essential in the era of precision medicine. The purpose of this literature
review is to summarize the role of PTEN as a predictive factor and possible therapeutic target in CRC,
focusing on ongoing studies and the possible implications in clinical practice.
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1. Introduction

PTEN (phosphatase and tensin homolog deleted on chromosome ten), first described in the late
90s, is a tumor suppressor gene located at 10q23 [1,2]. This gene encodes for a protein with five main
functional domains: an N-terminal phosphatidyl-inositol-4,5-diphosphate (PIP2)-binding domain, a
phosphatase domain, a membrane-targeting C2 domain, a C-terminal tail, and a PDZ binding motif
(Figure 1A). PTEN is a multifunctional protein exerting biological activities, both dependently and
independently of its catalytic phosphatase domain (Figure 1B). First of all, PTEN dephosphorylates
phosphatidyl-inositol-3,4,5-triphosphate (PIP3), a lipidic product of phosphatidylinositol 3-kinase
(PI3K). By removing one phosphate from PIP3, PTEN counteracts the PI3K/Akt signaling cascade,
controls cell proliferation/invasiveness [3,4], and promotes apoptosis [5]. PTEN regulates cell migration,
cell adhesion to surrounding tissues, and new blood vessel formation via dephosphorylation of protein
substrates (FAK, SHC) [6]. Additionally, PTEN maintains the stability of cells’ genetic information
through direct interaction with the tumor suppressor TP53 and centromeres [6].
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This review aimed at defining an identikit of CRC-harboring PTEN alterations, assessing how 
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Figure 1. PTEN protein structure and functions. (A) PTEN structure. (B) PTEN functions. B1) Lipid
phosphatase: PTEN dephosphorylates PIP3 to PIP2, inhibiting the PI3K/Akt signaling cascade. B2)
Protein phosphatase: PTEN dephosphorylates protein substrates (including FAK and SHC), regulating
cell migration and adhesion. B3) Interaction with TP53: via direct interaction with TP53, PTEN
enhances TP53 stability and transcriptional activity, resulting in cell cycle arrest. B4) Centromere
stability: via direct interaction with the centromere, PTEN preserves the chromosome stability. AKT:
protein kinase B; FAK: focal adhesion kinase; GF: growth factor; GFR: growth factor receptor; mTOR:
mammalian target of rapamycin; PBD: PIP2 binding domain; PI3K: phosphatidylinositol 3-kinase;
PIP2: phosphatidyl-inositol-4,5-diphosphate; PIP3: phosphatidyl-inositol-3,4,5-triphosphate; PTEN:
phosphatase and tensin homolog; SHC: Src homology 2 domain-containing protein; TP53: tumor
protein p53.

All of these functions help to prevent uncontrolled cell growth, which can lead to tumor formation.
Loss of PTEN expression or function leads to persistent activation of the PI3K/Akt intracellular

signaling cascade, which represents an oncogenic mechanism involved in colorectal carcinogenesis.
During colorectal tumorigenesis, PTEN expression or function can be impaired at different levels:
genomic, transcriptional, post-transcriptional, and post-translational [7]. In colorectal cancer (CRC),
the loss of PTEN expression is estimated to occur in 34.5% of cases [8] and can result from both genetic
and epigenetic mechanisms [9]. Genetic aberrations are rare events and include genomic mutations
(2.02–13% in CRC with high microsatellite instability) [8,10,11] and decreased gene copy numbers
(18.2–38.7%) [8,12].

Mechanisms silencing PTEN transcription are more frequent and are mainly represented by
epigenetic promoter hypermethylation (27.3%) [8]. In addition, an even higher rate of protein loss of
function due to post-translational modifications and altered protein–protein interaction or intracellular
localization has been postulated [13].

This review aimed at defining an identikit of CRC-harboring PTEN alterations, assessing how
these alterations predict a CRC-targeted treatment response that may be exploited in the future as
effective target of innovative treatments.
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2. PTEN in CRC

Several studies have demonstrated that PTEN alterations are associated with a specific
clinicopathologic and molecular profile in CRC.

Day et al. screened 1093 patients with stage I–IV CRC for PIK3CA (exons 9 and 20), KRAS (codons
12–13), and BRAF (codon 600) mutations and microsatellite instability (MSI) [14]. PTEN (exons 3–8)
and cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP) status were evaluated in
744 and 489 patients, respectively. Regarding PTEN, mutations were detected in 43 out of 744 (5.8%)
patients: 33 (76.7%) cases harbored 1 somatic mutation and 10 (23.3%) tumors presented 2 or more
mutations. Nine (1.2%) patients harbored both PIK3CA and PTEN mutations. The presence of a PTEN
mutation was significantly associated with a right-sided tumor, mucinous histology, high MSI status,
BRAF mutation, and high CIMP status. Considering cancers with a high MSI status, the association
between PTEN and BRAF mutations remained significant (p = 0.019). No significant correlations were
found with age, gender, tumor stage, grading, and KRAS mutations.

Based on these findings, Day et al. showed an association between the sessile-serrated pathway of
CRC development (characterized by high MSI and CIMP statuses, the proximal site of primary tumor,
BRAF mutation, and KRAS wild-type (wt) status) with PIK3CA exon 20 and/or PTEN mutation [14].

Colakoglu et al. analyzed PTEN expression in 76 primary CRCs showing a negative correlation
with young age, female sex, and left-sided tumors [15].

Zhou et al. aimed to determine the association between PTEN mutations and MSI status in
CRCs by analyzing 11 hereditary nonpolyposis colon cancers (HNPCCs), 32 microsatellite instable
sporadic cancers, and 39 microsatellite stable tumors. PTEN somatic mutations were found in 18% of
HNPCCs and in 13% of microsatellite instable sporadic tumors, whereas no mutations were detected
in microsatellite stable CRCs. PTEN expression loss was found in 31% of HNPCCs and 41% of
microsatellite instable sporadic CRCs, respectively. Among microsatellite stable CRCs, 17% presented
a decreased PTEN expression, but none had a complete expression loss. These findings suggest
that PTEN alterations are associated with HNPCC and sporadic microsatellite instable tumors are a
consequence of a mismatch repair deficiency [10].

Furthermore, a retrospective analysis investigated the correlation between PTEN expression and
clinicopathological factors pairing 69 primary CRCs of patients with corresponding liver metastases
with 70 primary CRCs of patients without liver metastases. PTEN expression loss was more frequent
in CRCs with liver metastases and showed a significant association with the advanced TNM stage
(p < 0.01) and lymph node metastasis (p < 0.05) [16]. A positive correlation of PTEN expression with
histological grade (p = 0.006) and distant metastasis (p = 0.015) was demonstrated by Lin et al. in 139
CRC patients [17]. Similar results were found by Li et al. showing a positive association between low
PTEN expression and tumor size, invasion depth, lymphatic invasion, lymph node metastasis, and
higher Dukes staging (p < 0.05) in a sample of 327 CRCs [18].

In conclusion, PTEN alterations seem to be more frequently correlated with right-sided tumors,
microsatellite instability, BRAF mutations, lymph node metastases, and a higher tumor stage.

3. PTEN as a Predictive Factor

Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) clearly
revolutionized metastatic CRC (mCRC) treatment, improving clinical response and survival rate, as
well as disease control, in addition to tailoring CRC therapy based on tumor molecular characterization.

Adoption of RAS and BRAF status determination as a crucial decision-making step for mCRC
treatment was mainly based on their negative predictive impact toward anti-EGFRs. Those findings
deeply affected subsequent research efforts, which were then focused on the identification of additional
determinants of benefit.

PTEN loss was explored within putative mechanisms of resistance to EGFR inhibition among
RAS wt mCRCs. Different mechanisms (i.e., mono- or bi-allelic inactivation, epigenetic silencing),
and tumor types (i.e., breast [19], CRC [10], and lung [20] cancers) are known for PTEN loss. PTEN
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loss assessed using immunohistochemistry (IHC) was suggested to predict trastuzumab resistance in
patients with Her2 positive breast cancer [21] and gefitinib in in vitro models [22]. Preclinical data
showed the importance of a PTEN/PI3K/AKT pathway determining the CRC cell line sensitivity to
cetuximab, and in particular, PTEN loss presents a resistance to cetuximab-induced apoptosis [23].
A first small clinical experience suggested that PTEN loss on primary CRCs could be responsible for
cetuximab resistance [24].

In a retrospective study, Loupakis et al. [25] analyzed, by means of IHC, 96 primary tumors
and 59 metastases from CRC patients treated with anti-EGFR. The study supported the concept that
PTEN expressions may differ in metastases (compared with primary tumors), and that the predictive
role for PTEN expression toward anti-EGFRs was only evident when testing the available metastatic
samples. Responding patients had significantly more PTEN-positive metastases (36%) compared with
those who had PTEN-negative metastases (p = 0.007); this translated into a significant difference in
progression-free survival (PFS) favoring PTEN positive tumors (hazard ratio (HR) = 0.49; p = 0.005).
The authors concluded that PTEN loss in metastases deserves further investigation to understand
whether it predicts resistance to cetuximab plus irinotecan. Amongst the limitations affecting the
significance of this research is that metastatic samples were mostly retrieved from distant lesions
resected after a previous conversion therapy. This may have caused a significant selection bias since
systemic treatment effects on PTEN expression were not explored.

Laurent-Puig et al. conducted a similar study in advanced mCRC subjects treated with anti-EGFRs,
reporting multivariate analyses of shorter overall survival (OS) for KRAS wt patients affected by tumors
with PTEN loss and BRAF mutations [26]. Nevertheless, those results were not further confirmed even
if the concept of PTEN expression modulation over time and its difference between primary tumors
and metastases has never been prospectively explored.

The most recent and comprehensive studies did not confirm the hypothesis that PTEN alterations
are of benefit to predicting anti-EGFRs in CRC [27,28] compared with an initial large meta-analysis [26].
Current research efforts are focused on more refined molecular selection criteria coupled with
newly established clinical determinants, such as primary tumor location. Whether a new role for
post-trascriptional regulators of PTEN is useful as a predictive marker will be a matter of future
exploratory analyses [29].

In addition to the potential role of PTEN status as a biomarker of resistance to anti-EGFR therapies
in patients with mCRC, several researches evaluated the impact of PTEN status on the responsiveness
to other targeted treatments, including anti-VEGF (vascular endothelial growth factor), drugs targeting
the PI3K/AKT/mTOR or the RAS/RAF/MAPK signaling pathways, and poly(ADP-ribose) polymerase
(PARP) inhibitors. Concerning anti-angiogenics, contradictory evidence is available on the role of
PTEN expression as a response predictor for bevacizumab-based treatments. The rationale supporting
the evaluation of PTEN status as a biomarker for bevacizumab-containing regimens is based on the
interaction between the PI3K/AKT/mTOR signaling pathway and VEGF expression [30–32]. Indeed,
mTORC1 (mammalian target of rapamycin complex 1) modulates hypoxia-inducible factor 1 alpha
(HIF1α) transcription, which in turn increases VEGF expression [33,34]. Price et al. hypothesized that
in the absence of PTEN, which usually counteracts PI3K, aberrant PI3K activity upregulates HIF1α,
resulting in increased VEGF expression [12]. Therefore, bevacizumab-based regimens might be more
active in patients affected by mCRC with a loss of PTEN expression.

In 2012, a retrospective analysis compared the PTEN expression (assessed by means of IHC) of
34 tumor samples from patients affected by mCRC treated with bevacizumab-based regimens with
treatment activity [35]. No statistically significant differences were found between the response rate
and different expression levels of PTEN (p = 0.832).

In 2013, Price et al. performed a post hoc analysis on tumor samples of patients treated within
the AGITG MAX trial [12]. The AGITG MAX trial was a randomized phase III trial, which compared
capecitabine +/− bevacizumab (+/− mitomycin C) in the first-line treatment of patients affected by
mCRC. The post hoc analysis involved 302 (64.1%) patients and assessed PTEN expression by means
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of a copy number assay, aiming to evaluate the predictive impact of PTEN loss in patients receiving
bevacizumab. PTEN loss was reported in 38.7% of patients. The addition of bevacizumab did not
significantly increase the response rate (RR), PFS, and OS among patients with a loss of PTEN expression
compared with those without (p-value for the interaction between PTEN expression and treatment
= 0.36, 0.26, and 0.35, respectively). Thus, the authors concluded that the PTEN loss assessed using
a copy number assay was not predictive for bevacizumab combined with capecitabine in a first-line
mCRC treatment.

More recently, another retrospective analysis conducted on 42 patients with mCRC receiving
bevacizumab-containing combinations in a first- or second-line treatment showed that a loss of PTEN
protein expression in secondary tumor tissue samples was significantly associated with the treatment
response (p = 0.02; p-value adjusted for prognostic factors = 0.006) [36]. However, this correlation was
not confirmed in the survival analysis.

PIK3CA mutations and PTEN loss of function have been suggested to be strong predictors
for serine-threonine kinase mammalian target of rapamycin (mTOR) inhibitor sensitivity [37,38].
Two phase I trials assessing the selective mTOR inhibitor everolimus, administered as a monotherapy
in advanced solid tumors, documented two partial responses against mCRC [39,40]. However, such
preliminary evidence of activity was not subsequently confirmed, as two phase II trials evaluating
everolimus in refractory mCRC did not report any objective responses [41]. Interestingly, the
PI3K/AKT/mTOR signaling pathway has a potential role in modulating the effect of bevacizumab.
Besides inhibiting cell cycles, mTOR inhibition may interfere with angiogenesis suppressing the
expression of hypoxia-inducible factors (HIFs) [42]. Moreover, hypoxia caused by anti-angiogenics may
cause treatment resistance and tumor progression due to a HIFs increase, which activates the genes
involved in cell survival, metastasis, and drug resistance [43,44]. Therefore, it has been hypothesized
that adding mTOR inhibitors to antiangiogenics might preserve the benefits of impairing angiogenesis,
at the same time avoiding negative impacts of increased hypoxia on the tumor biology, which leads
to acquired aggressiveness [45]. Given the postulated PI3K/AKT/mTOR pathway role modulating
anti-VEGF activity, mTOR inhibitors were tested in combination with bevacizumab-containing
regimens in mCRC. A phase I/II trial evaluated the safety and efficacy of everolimus in combination
with mFOLFOX6 plus bevacizumab as a first-line treatment in mCRC patients. In a post hoc analysis,
the response rate was assessed according to PTEN expression [46]. The overall response rate was 53%
in the whole population, 40% in patients with PTEN above the threshold, and 86% in patients with
PTEN below the threshold (p = 0.03).

Based on preclinical data suggesting that the combination of temsirolimus and bevacizumab
may increase antitumor activity and re-sensitize cells to anthracyclines [47], a phase I study assessing
the activity of bevacizumab and temsirolimus plus liposomal doxorubicin in patients with advanced
malignancies was conducted [48]. The trial enrolled 136 patients, including 17 patients affected by
mCRCs. The response rate was significantly higher in patients with a PIK3CA mutation and/or a PTEN
mutation or loss of expression (p = 0.018).

Beyond anti-EGFRs, PTEN was tested as a response predictor to other drugs targeting the
RAS/RAF/MAPK signaling pathway. In an open-label phase I/II study, assessing the safety and activity
of the combination of BRAF and MEK inhibitors (dabrafenib plus trametinib) in patients affected
by BRAF V600-mutant mCRCs, archival tissue samples were analyzed for PTEN status [49]. PTEN
(assessed using IHC) was evaluated in 20 out of 43 enrolled patients, and a loss of expression was
identified in 4 patients. All patients with a PTEN loss of expression achieved a shrinkage of the target
lesions; however, no difference in PFS was observed according to PTEN status.

Recently, Pishvaian et al. published the results of a single-arm, open-label, phase II study
that investigated the activity of veliparib plus temozolomide in patients with refractory mCRC [50].
The combination was well tolerated and active, with a disease control rate of 24%, a PFS of 1.8 months,
and an OS of 6.6 months. IHC for PTEN was performed on archival tumor samples and PTEN
expression levels were compared with the treatment activity based on pre-clinical evidence of altered
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homologous recombination displayed by tumors without PTEN expression [51,52] and on the predictive
role of PTEN loss for PARP inhibitors in endometrial cancers [53,54]. The absence of PTEN expression
was not associated with the disease control rate; thus, the study failed to demonstrate a correlation
between PTEN loss and a response to PARP inhibitors.

Data concerning the role of PTEN deficiency as a predictive marker in mCRC receiving target
treatment (Table 1) are contradictory and should be considered exploratory. The main limit of studies
assessing PTEN predictive values is found in the determination of tumor PTEN status. As previously
described, PTEN expression may be lost by both genomic and non-genomic mechanisms; moreover,
PTEN-positive tumors may display an impaired PTEN function. In order to assess the predictive role
of PTEN, the tumor PTEN status should be evaluated using both protein quantification and DNA
sequencing, and PTEN phosphatase activity should also be quantified.

Table 1. Clinical evidence for PTEN as a predictor of the response to target treatments.

Study No. of
Patients Treatment PTEN

Assessment RR PFS OS

Frattini et al. 2007
[24] Prospective 27 Cet-based IHC

PTEN+ vs. PTEN−
62.5% vs. 0%

(p > 0.001)
- -

Loupakis et al. 2009
[25] Retrospective 59 Iri + Cet IHC

PTEN+ vs. PTEN−
Higher RR
(p = 0.007)

PTEN+ vs. PTEN-
4.7 vs. 3.3 m

(HR = 0.49; p =
0.005)

-

Laurent-Puig et al.
2009 [26] Retrospective 162 Cet-based IHC - -

PTEN- associated
with shorter OS

(p = 0.013)

Therkildsen et al.
2014 [55] Meta-analysis 100

(9 studies) Anti-EGFR based

Protein
expression
(7 studies)
Mutational

status
(2 studies)

PTEN-
Odds Ratio = 0.41

(95%CI = 0.20–0.85)

PTEN- associated
with shorter PFS

(HR 1.88, 95%CI =
1.35–2.61)

PTEN- associated
with shorter OS

(HR = 2.09,
95%CI = 1.36–3.19)

Karapetis et al. 2014
[28]

CO.17 trial
Prespecified

subgroup
analysis

205 Cet IHC PTEN+ vs. PTEN−
21% vs. 15% -

No association
between

PTEN status
and OS

Among PTEN+
OS 9.9 vs. 5.4 months

for Cet vs. BSC
(HR = 0.66; p = 0.32)

Agoston et al. 2016
[27] Retrospective 55 Anti-EGFR based IHC - -

No association
between

PTEN status
and OS

Kara et al. 2012 [35] Retrospective 34 Bev based IHC PTEN+ vs. PTEN−
p = 0.832 - PTEN+ vs. PTEN−

p = 0.6

Price et al. 2013 [12]
AGITG MAX
trial, post hoc

analysis
302 Bev based CNV PTEN+ vs. PTEN−

p = 0.36
PTEN+ vs. PTEN−

p = 0.26
PTEN+ vs. PTEN−

p = 0.35

Sclafani et al. 2015
[36] Retrospective 42 Bev based IHC

PTEN− vs. PTEN+
71.4% vs. 32.1%

p = 0.02

PTEN− vs. PTEN+
9.2 vs. 8.7 months

p = 0.968

PTEN− vs. PTEN+
21.1 vs. 17.3 months

p = 0.628

Weldone Gilcrease
et al. 2019 [46]

Post hoc
analysis

(phase I/II)
24 Eve+mFOLFOX6-Bev IHC

PTEN+ vs. PTEN−
40% vs. 86%

p = 0.03
- -

Moroney J et al. 2012
[48]

Prospective
(phase I)

136
(including

17 with
mCRC)

Tem+Bev+liposomial
doxo

PCR and
IHC

PIK3CA MT and/or
PTEN loss/MT vs. WT
39% vs. 16%, p = 0.018

Corcoran RB et al.
2015 [49]

Prospective
(phase I/II) 19 Dabrafenib+

Trametinib IHC PTEN− vs. PTEN+
21% vs. 0%

PTEN− vs. PTEN+
3.48 vs. 3.61 months

p = 0.35
-

Pishvaian et al. 2018
[50]

Prospective
(phase II) 49 Veli+Temo IHC PTEN− vs. PTEN+

13.3% vs. 21.1%
PTEN− vs. PTEN+
1.7 vs. 1.8 months

PTEN- vs. PTEN+
6.2 vs. 6.3 months

Table 1 summarizes clinical evidences on PTEN as a predictive factor. Bev: bevacizumab; BSC: best supportive care;
Cet: cetuximab; Doxo: doxorubicin; Eve: everolimus; IHC: immunohistochemistry; Iri: irinotecan; m: months; MT:
mutation; N: number; OS: overall survival; PFS: progression free survival; RR: response rate; Temo: temozolomide;
Tems: temsirolimus; Veli: veliparib; WT: wild type.

Up to now, a comprehensive assessment of PTEN status represents a challenge. Therefore, the
role of PTEN as a predictor of a response to target treatments cannot be established yet and further
studies are warranted.
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4. PTEN as a Target

Restoration of PTEN expression and function exerts direct antitumoral activity, which reduces
tumor cell proliferation, invasiveness, and at the same time, stimulates apoptosis sensitizing cells to
cytotoxicity, target agents, immunotherapies, and radiation [13]. Given diverse mechanisms that lead
to PTEN inhibition in CRC, several strategies aiming to restore oncosuppressor functions have been
hypothesized and are currently under evaluation in the early phases of preclinical research (Figure 2;
Table 2) [56].
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Figure 2. PTEN as a target. Strategies aiming at restoring PTEN onco-suppressor functions that
have been hypothesized and are currently under evaluation in early phases of research in preclinical
settings. (A) Transcriptional level: increase of PTEN transcription achieved by removing epigenetic
silencing via DNMT inhibitors, or by modifying (increasing or reducing) exposure to transcription
factors. (B) Post-transcriptional level: enhanced PTEN translation via the modulation of regulatory
miRNAs and RBP. (C) Post-translational level: modulation of PTEN modifications, which regulate
PTEN activity, conformation and subcellular compartmentalization, and protein–protein interactions.
EGR-1: early growth response protein 1. DNMT: DNA methyltransferase. miRNA: microRNA. NFAT:
nuclear factor of activated T-cells. NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells.
PPARγ: peroxisome proliferator-activated receptor gamma. PTEN: Phosphatase and tensin homolog.
RBP: RNA-binding protein.

Increased PTEN function can be pursued through potentiating PTEN transcription. PTEN transcription
can be achieved by removing an epigenetic block or by modifying (increasing/decreasing) the exposure
to activating or inhibiting transcription factors [56]. The epigenetic silencing of PTEN transcription
is due to gene promoter or histone methylation [57]. Epigenetic target treatments are emerging
as potential options for solid tumors. DNA methyltransferase inhibitors remove methyl groups
from DNA, causing the demethylation of DNA. Early studies reported the activity and safety of
decitabine in combination with panitumumab in KRAS wt mCRC patients previously treated with
cetuximab [58]. Decitabine proved to be safe when administered via hepatic arterial infusion in
CRC patients with unresectable predominant liver metastases [59]. Preliminary data indicate that
treatment with DNA demethylating drugs upregulates specific immune gene sets [60], displaying
an immune stimulatory role. The combination of epigenetic modulators with immunotherapy are
further investigated in microsatellite stable mCRC based on the postulated ability to enhance the
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response to immunotherapy. Hypomethylating agents (azacitidine, decitabine, guadecitidine) are
currently under evaluation in clinical settings for CRC treatment in combination with chemotherapy
(NCT01193517, NCT01896856) or with immunotherapic drugs: pembrolizumab (NCT02260440,
NCT0251217, NCT02959437), nivolumab (NCT03576963), durvalumab (NCT02811497), and the
allogeneic CRC cell vaccine (GVAX) (NCT01966289). None of the trials planned to evaluate treatment
effects on modulating PTEN expression. However, such an analysis would be of great interest.
As previously stated, PTEN transcription is regulated by transcription factors. Such molecules can
bind the PTEN promoter and activate or inhibit gene transcription. Some of these transcription
factors can be pharmacologically stimulated: peroxisome proliferator-activated receptor gamma,
PPARγ (via rosiglitazone); early growth response protein 1, EGR-1 (via irradiation); nuclear factor of
activated T-cells, NFAT (through butyrate, a fatty acid produced by colonic microbiota fermentation).
On the contrary, the inhibiting transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer
of activated B cells) can be repressed through statins or selective inhibitors [56].

At the post-transcriptional level, PTEN expression can be impaired by microRNAs (miRNAs)
or RNA-binding protein (RBP). miRNAs are short non-coding RNAs that bind mRNAs, causing
translation inhibition or transcript degradation, which ultimately results in a loss of PTEN expression
and activation of the PI3K/Akt signaling cascade. Several miRNAs [61,62] and a complex of RBP
known as Musashi-1/2 [63], targeting PTEN in CRC, have been identified. Therefore, modulation
of those regulatory RNAs and RNA-binding proteins represent a therapeutic strategy aiming at
restoring PTEN translation and expression, exploiting its antitumor activity and increasing cellular
drug sensitivity. Concerning such a strategy, some in vitro evidence found regarding human CRC cell
lines are available. Notably, an anti-miRNA-221 was shown to increase PTEN expression, sensitizing
CRC cells to radiation [64]. Butylcycloheptyl prodiginine (bPGN) is a prodiginine-type agent able
to suppress oncomir miR-21 and consequently cellular growth in CRC lines through the inhibition
of Dicer-mediated processing of pre-miR-21 [65]. The administration of a miR-543 inhibitor was
shown to reverse the chemoresistance of 5-fluorouracil (5-FU) obtained by this oncomir through a
reduction of PTEN expression, enhancing cellular sensitivity to 5-FU [66]. PD0325901 (a MEK inhibitor)
caused PTEN upregulation by suppressing the miR-17-92 cluster [67]. miRNAs can be saturated by
the PTENpg1 transcript, a long, noncoding RNA (lncRNA) transcripted by the PTEN pseudogene
(PTENpg1) [68]. Gossypol (a natural phenol extracted from cottonseed) showed inhibiting features
toward Musashi-1/2 proteins and demonstrated antitumoral activity in a xenograft model [63]. Phase
I/II clinical trials showed no activity in prostate cancer and non-small-cell lung cancer [69,70].

Several PTEN isoforms originating from different start codon translations have been identified.
Of those, PTEN-L retains a secretion ability and exerts paracrine function interfering with intracellular
signaling and survival of the surrounding cells. PTEN-L was shown to counteract the PI3K/Akt
pathway, leading to cell death, both in vitro and in vivo (through intraperitoneal infusion in xenograft
models) [71]. Interestingly, this isoform has been engineered to increase cell-mediated delivery [72].

Post-translational modifications (including phosphorylation, oxidation, S-nitrosylation,
S-sulfydration, acetylation, methylation, ubiquitinylation, sumoylation, and ribosylation) at specific
aminoacidic residues can directly modulate PTEN catalytic or binding activity, or PTEN conformation
and subcellular compartmentalization, subsequently impacting PTEN function [13,56]. Reverting those
post-translational modifications or targeting enzymes that are involved could be effective at restoring
PTEN function in PTEN positive neoplasms [56]. For example, in vitro exposure of CRC lines to a
casein kinase 2 (a serine/threonine kinase that phosphorylates PTEN, causing repression of its catalytic
activity) inhibitor caused reduced cell growth and invasiveness [73]. The lncRNA Linc02023 was
shown to impair PTEN ubiquitination and subsequent degradation, positively correlating with PTEN
expression, inhibiting CRC cell proliferation and in vitro and in vivo survival [74]. This molecule could
represent a novel therapeutic agent that restores the PTEN tumor suppressor function.

Finally, PTEN exerts pleiotropic functions by being included in multiprotein complexes.
Several proteins interact with PTEN, regulating (both positively and negatively) tumor suppressing
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functions [75–77]. Therefore, an intriguing strategy to modulating PTEN activity is to target
protein–protein interactions. Curcumin, a phenolic agent derived from vegetables, showed in vitro
antitumor activity by inhibiting proliferation and promoting apoptosis in CRC cell lines via the
downregulation of DJ-1 (a PTEN negative modulator) and consequently promoting PTEN function [78].
A ribonuclease inhibitor is a cytosolic protein that inactivates ribonucleases via high affinity binding.
In CRCs, the cell line upregulation of ribonuclease inhibitors was shown to stimulate PTEN expression
leading to PI3K/Akt pathway suppression [79].

Table 2. PTEN as a target. Strategies aiming at restoring PTEN onco-suppressor functions that have
been hypothesized and are currently under evaluation in early phases of research in preclinical settings.

Level Strategy Agents Evidences Reference

Transcriptional
level

Removing epigenetic inhibition DNA methyltransferase
inhibitors

Decitabine proved to be safe and active in
combination with panitumumab in KRAS wt mCRC

patients previously treated with cetuximab.
Decitabine proved to be safe when administered by

hepatic arterial infusion in liver limited mCRC
patients.

[58]
[59]

Increasing exposure to
activating transcription factors

Rosiglitazone
Irradiation
Butyrate

Some transcription factors can be pharmacologically
stimulated: PPARγ (via rosiglitazone), EGR-1 (via

irradiation), NFAT (via butyrate).
[56]

Reducing exposure to
inhibiting transcription factors

Statins
NF-κB selective inhibitors

The inhibiting transcription factor NF-κB can be
repressed through statins or selective inhibitors. [56]

Post-transcriptional
level

Inhibiting miRNAs and
RNA binding proteins

Anti-miRNA-221 Anti-miRNA-221 showed to increase PTEN
expression, sensitizing CRC cells to radiation. [64]

Butylcycloheptyl
prodiginine

Butylcycloheptyl prodiginine showed to suppress
miR-21 and consequently cellular growth in CRC

lines.
[65]

miR-543 inhibitor

A miR-543 inhibitor proved to reverse
chemoresistance to 5-fluorouracil (5-FU), obtained by
this oncomir through reduction of PTEN expression,

enhancing cellular sensitivity to 5-FU.

[66]

PD0325901 PD0325901 (a MEK inhibitor) proved to upregulate
PTEN by suppressing miR-17-92 cluster. [67]

PTENpg1
PTENpg1, a long, non-coding RNA transcripted by

the PTEN pseudogene (PTENpg1) was shown to
saturate miRNAs.

[68]

Gossypol
Gossypol showed to inhibit Musashi-1/2 proteins

and demonstrated antitumoral activity in a xenograft
model.

[63]

Post-translational
level

Targeting enzymes involved in
post-translational modification
or reverting post-translational

modification

Casein kinase 2 inhibitor

Inhibitor of casein kinase 2 (a serine/threonine
kinase, which phosphorylates PTEN, causing

repression of its catalytic activity) showed to reduce
cell growth and invasiveness in CRC lines.

[73]

Linc02023

Linc02023 (a long non coding RNA) was shown to
impair PTEN ubiquitination and subsequent

degradation, inhibiting CRC cell proliferation and
in vitro and in vivo survival.

[74]

Paracrine function PTEN-L

PTEN-L, an PTEN isoform with a paracrine function,
showed to counteract the PI3K/Akt pathway both

in vitro and in vivo (through intraperitoneal
infusion in xenograft models).

[71]

Target protein–protein
interaction

Curcumin
Curcumin was shown to inhibit proliferation and

promote apoptosis via the downregulation of DJ-1 (a
PTEN negative modulator) in CRC cell lines.

[78]

Ribonuclease inhibitor
Upregulation of a ribonuclease inhibitor was shown
to stimulate PTEN expression, leading to PI3K/Akt

pathway suppression in CRC cell lines.
[79]

In conclusion, restoring PTEN expression, and ultimately activity, could have therapeutic
implications for CRC patients. Targeting PTEN is an intriguing field of research to explore CRC
treatment strategies, although challenging to achieve.

5. Future Perspectives

In the future, two main settings should be discriminated to target PTEN according to their gene status.
First, PTEN mutated neoplasms—characterized by a loss of expression due to a genomic aberration,
such as mutations and copy number variation—and second, PTEN wt neoplasms—characterized by a
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loss of PTEN expression that could derive from epigenetic, transcriptional, or translational alterations,
or by a loss of PTEN function due to post-translational modulation.

In PTEN wt neoplasms, two main strategies could be hypothesized according to the level of
PTEN regulation impairment. First, in PTEN negative cells, due to transcriptional or translational
aberration that leads to protein loss, the therapeutic approach should aim at restoring PTEN expression;
whereas in PTEN positive cells, in which the protein is present, although not retaining functions
due to post-translational alterations, the strategy should aim at restoring PTEN function that was
aberrantly inhibited.

Concerning PTEN mutated neoplasms, due to a genomic aberration, such as mutations and copy
number variations, loss of PTEN expression could act as a response predictor for treatments targeting
the PI3K/Akt pathway. Evidence concerning such a role are contradictory. Moreover, since cells lacking
nuclear PTEN are hypersensitive to DNA damage because of impaired homologous recombination,
this defect could sensitize tumor cells to PARP inhibitors [52,53,80]. PTEN mutated neoplasms might
be responsive to PARP inhibitors and PTEN genomic status could be exploited as a predictor of the
response to these agents [13].

In the meantime, the National Cancer Institute (NCI) has developed the NCI-MATCH (Molecular
Analysis for Therapy Choice) trial (ClinicalTrials.gov Identifier: NCT02465060), an umbrella precision
medicine cancer treatment clinical trial. In this ongoing study, patients with advanced solid tumors
(including CRC), lymphomas, or myeloma, are assigned to receive treatment based on genetic tumor
changes identified by genomic sequencing and other tests. Patients whose tumors have genetic changes
that match one of the trial treatments may be enrolled if they meet other eligibility criteria. The trial
aims to determine whether cancer treatment based on specific genetic changes is effective, regardless
of cancer type. The primary end-point of NCI-MATCH trial is the response rate. Treatments will be
considered promising if at least 16% of patients in an arm reach a complete or partial response.

Among treatment arms that are open and enrolling patients, Z1G and Z1H allow for the enrolment
of patients with tumors harboring a PTEN mutation or those characterized by a PTEN loss to receive
copanlisib, a PI3K inhibitor.

6. Conclusions

This review presented available data regarding the role of PTEN as a predictive factor for standard
mCRC therapy, in particular for anti-EGFR, and as a possible target for future innovative treatments.
Although PTEN is well-known tumor suppressor gene, known since the 1990s, it has not yet entered into
full clinical practice. Its role as a target is certainly the most intriguing and innovative aspect. Although
targeting PTEN is a difficult challenge, it might represent an extra step toward the customization of
treatments in mCRC.
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