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ABSTRACT Complete genome sequences of eight isolates of Salmonella enterica
subsp. enterica from Canadian wild birds were determined by MinION and Illumina
MiSeq sequencing. Assembled chromosomes had an average size of 4,833,662 bp.
Salmonella enterica serovar Worthington obtained from partridge and quail carried
267-kb plasmids, which contained multiple antimicrobial resistance genes.

Multidrug antimicrobial resistance (AMR) in Salmonella species is considered a
global public health threat (1–3), and there is a need to develop microbial

sequence resources to evaluate possible contributions by Salmonella strains of wild bird
origin. We sequenced eight Salmonella organisms isolated from Canadian wild birds
from the provinces of British Columbia, Ontario, Saskatchewan, and Newfoundland and
Labrador. The organisms were isolated using a combination of primary enrichment
culture in peptone broth at 37°C overnight, followed by inoculation in Rappaport-
Vassiliadis selective enrichment broth at 42°C overnight, and plating onto XLT-4
selective agar to grow the bacterial colonies (Table 1). High-quality DNA was extracted
from an overnight culture (1 ml of brain heart infusion medium at 37°C) using the
Wizard genomic DNA purification kit (Promega, Madison, WI) and assessed with a
spectrophotometer (DU 730; Beckman Coulter, Mississauga, ON, Canada) and a Qubit
2.0 fluorometer (Life Technologies, Carlsbad, CA). Library construction for Illumina
MiSeq sequencing was carried out with the Nextera XT DNA kit (Illumina, San Diego,
CA), and sequencing and read trimming were performed as described (4). Libraries for
MinION sequencing were prepared without shearing using the 1D ligation sequencing
kit (SQK-LSK108), and DNA was barcoded with the native barcoding expansion kit
(EXP-NBD103) according to the manufacturer’s instructions (Oxford Nanopore Technol-
ogies, Inc., Oxford, UK). The final library was analyzed by MinION sequencing on a
FLO-MIN106 (R9.4.1) flow cell for 48 h. Fast5 reads were basecalled using the high-
accuracy basecalling algorithm in Guppy (v3.1.5), and the resulting fastq reads were
trimmed with Porechop v0.2.3 (default settings) and filtered with Filtlong v0.2.0,
keeping the top 90% quality reads or reads with 100� coverage. Hybrid assembly of
Illumina paired-end reads and MinION reads was achieved with SPAdes v3.11.1 (5) and
polished with Pilon v1.23 (6) using Unicycler v0.4.4 (7). Overlapping regions were
trimmed and the genomes were rotated using the fixstart program in Circlator (8). The
genomes were quality checked with QUAST v5.0.2 (9), and the depth of sequencing
coverage was determined by mapping individual reads against the assembled ge-
nomes using minimap2 v2-2.17, with visualization using Qualimap v2.2.1. The presence
of AMR genes was determined with ResFinder v3.0 (10). Default parameters were used
for all analyses except where otherwise noted. Assembled genomes and raw reads were
submitted to GenBank (Table 1). Each polished genome contained a single chromo-
some and frequently multiple contigs representing plasmid and/or phage sequences.
Six isolates (ST-13, ST-29, ST-32, ST-33, ST-35, and ST-87) were identified as Salmonella
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enterica subsp. enterica serovar Typhimurium, while the remaining two isolates (SW-37
and SW-70, obtained from a partridge and a quail, respectively) were identified as
Salmonella enterica subsp. enterica serovar Worthington. The average chromosome size
was 4,833,662 bp. The large virulence plasmid of S. Typhimurium was found in isolates
ST-29, ST-33, ST-35, and ST-87. Apart from the large plasmid, isolate ST-35 contained an
additional 6,050-bp Salmonella-specific plasmid and a 95,814-bp sequence, identified
as plasmid pEC006 from Escherichia coli by BLAST searching of the nucleotide database.
Both S. Worthington isolates (SW-37 and SW-70) contained a very large 267-kb plasmid
with AMR genes for aminoglycosides [aph(3=)-Ia and aadA7], tetracycline [tet(B)], and
sulfonamides (sul1).

Data availability. Raw reads and assembled genomes were submitted to GenBank

under BioProject number PRJNA605433 and the accession numbers are provided in
Table 1.
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