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Abstract: Understanding the impacts of air pollution on public health and individual behavior is
crucial for optimal environmental policy design. Using 2015 census microdata in China, this paper
examined the causal effect of air pollution on working place choice. The research design relies on a
regression discontinuity design based on China’s Huai River Policy. The discontinuity in air pollution
caused by the Huai River Policy provides a natural experiment to estimate the impact of air pollution.
The results show that air pollution significantly increases the possibility of individuals working near
home. The positive effect of air pollution on working near home is more significant for women,
the elderly, urban individuals and those individuals working in secondary and tertiary industries.
This study improves our understanding of the health effects and avoidance behavior associated
with environmental hazards, discusses the negative impact of air pollution on labor mobility and
mismatch by making individuals work nearby, and emphasizes that strengthening air pollution
control should be a long-term policy.

Keywords: air pollution; workplace; avoidance behavior; public health; regression discontinuity
design; China

1. Introduction

Air pollution is considered as a major issue for the community in China. In recent
years, the problem of air pollution caused by China’s rapid, extensive, and low-quality
economic development has attracted great attention from the government and society.
According to the 2019 China Ecological Environment Status Bulletin, a total of 218 days of
severe and serious pollution have occurred in 337 prefecture-level and above cities across
the country, of which the number of days of haze with PM2.5 as the primary pollutant
accounted for 78.8%. In 2019, the World Health Organization (WHO) has announced
ten major threats to human health, among which air pollution ranks first. Epidemiological
studies show that inhaling polluted air will lead to pathological changes in the lung and
respiratory system, chronic damage to organs such as the heart and brain, resulting in
cancer, stroke, heart and brain diseases [1].

Theoretically, there has been a growing body of economic literature on the impact
of air pollution on human capital, including physical health [2–4], mental health [5,6],
cognitive performance [7,8], and productivity [9–11]. Chen et al. [2] and Ebenstein et al. [12]
provided the first quasi-experimental evidence of the impacts of sustained exposure to air
pollution focused on China. They examined the impact of sustained pollution exposure
on life expectancy, based on China’s central winter heating system, and found that the
winter heating policy raised PM10 levels by 46 percent in the region north of the Huai River
between 2004 and 2012, causing a reduction in life expectancy of 3.4 years. Chang et al. [11]
studied workers in the service sector, where jobs may be more cognitively demanding than
those in the manufacturing sector. Using daily performance data for workers in two call
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centers in China, the authors estimated that a 10-unit increase in the Air Pollution Index
(API) decreases the number of daily calls handled by a worker by 0.35 percent. These
studies have reached the consensus that there exist negative effects of air pollution on
human capital and productivity.

Facing high levels of pollution, individuals can take preventive measures to reduce
exposure and mitigate the impact, such as defensive spending (e.g., face masks and air
purifiers) [13,14] and migration [15,16]. Using sales indices for face masks and air purifiers
from China’s largest ecommerce platform, Taobao, Sun et al. [13] showed that people buy
more face masks and air purifiers when ambient pollution levels exceed key alert thresholds.
However, risk-compensating and avoidance behaviors in mitigation and adaptation are
not adequately considered due to data limitations and identification problems. Increasing
defense spending is not the only, nor is it a major preventive measure [17]. Due to the
household registration system and high housing prices, it is difficult to migrate to cleaner
cities in China [17]. Therefore, it is of theoretical and practical significance to explore how
to avoid the impact of air pollution when air pollution is difficult to be controlled in the
short term.

On the other hand, workplace choice is not only an important individual behavior, but
also an important economic concept in labor economics. Choosing where to live and work
will affect the welfare of individuals [18,19]. Whether the labor force can freely choose
the place of work not only affects labor mobility, but also has an important impact on
economic development [20]. Existing studies have studied the determinants of workplace
choice from various aspects, such as income, education, and preference [21–23]. Using data
of 833 knowledge-workers in high-technology and financial services, Frenkel et al. [23]
investigated the residential location and workplace choice of knowledge-workers at the
intra-metropolitan level by applying discrete choice models. They found that the most
important factors are municipal socioeconomic level, housing affordability, and commut-
ing time, while substantial secondary factors are cultural and educational land-use and
culture-oriented lifestyle. However, there is little literature on the relationship between
environment and workplace choice. Especially, when the environmental quality is deterio-
rating, workplace selection may become a way to avoid pollution risks. To reduce exposure,
does air pollution affect people’s workplace choice? We provide an answer to this question
in the context of China.

This paper examined the causal effect of air pollution on working place choice. The
data link the 2015 census microdata at the individual level with air pollution at the county
level. We estimated the effect of air pollution on working near home using a regression
discontinuity design (RD) based on China’s Huai River Policy [2,12,14]. The policy dictates
that areas to the north of the Huai River receive free or highly subsidized coal for indoor
heating. This has led to the construction of a coal-powered centralized heating infrastruc-
ture only in cities north of the Huai River, with no equivalent system in cities to the south.
The central heating system generates considerable air pollutants during coal combustion.
The Huai River Policy provides a compelling natural experiment to estimate the causal
effects of air pollution on working near home.

We obtained several findings. First, there is strong evidence that the air quality is
deteriorating north of the Huai River. On average, the Huai River Policy increases PM10
concentrations in the north by 13.2 percent. Second, we found that the Huai River Policy
has a large and statistically significant positive impact on working near home. The Huai
River Policy increases the probability of working near home in the north by 5.6 percent on
average. Third, we found that an additional 10 µg/m3 of PM10 significantly increases the
probability of working near home by 13.6 percent. Fourth, the positive effect of air pollution
on working near home is more significant for women, the elderly, urban respondents, and
those individuals who work in secondary industries. These findings are consistent with
the existing literature that higher air pollution is associated with poorer health, higher
mortality, and better self-protection [5,6,14].
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We make two contributions to the literature. First, we contribute to a new but growing
body of literature that identifies the coping strategies for environmental shocks. Relevant
work in this body of literature has detected the role of risk-compensating behaviors, such
as pollution information, household location choices, avoidance actions, and defensive
spending (e.g., face masks and air purifiers), in helping households and individuals to cope
with environmental shocks and reduce pollution exposure [13,14,24]. To our knowledge,
our paper is the first to provide evidence on how changes in pollution levels affect work
site selection. Individuals facing high levels of pollution may choose to work near home
to reduce exposure and mitigate the impact. Although some empirical evidence confirms
that households choose locations to seek a better environmental quality (i.e., sorting,
migration) [15,25–31], migration is a long-term choice of a family and limited by many
socio-economic factors (e.g., housing prices and health care). We argue that working near
home may be a more common choice to avoid pollution than migration, especially due
to China’s generally high house prices and hukou restrictions. Our study extends the
literature on pollution avoidance behavior.

Second, we contribute to the literature on labor mobility. This directly connects to the
existing studies on the factors that drive labor mobility and cause labor spatial mismatch.
Many scholars have studied this problem from many aspects (e.g., human capital and
migration cost) [32–35]. We try to answer this question from a new perspective. We argue
that outdoor air pollution reduces the cross-city mobility of labor and the possibility of
cross-regional work. Our empirical results also verify this. In areas with more serious
pollution, the labor force tends to work in local cities rather than across regions, which
means that in areas with more serious air pollution, there is lower labor mobility. This may
be an important reason for labor spatial mismatch [36,37] and market segmentation [38,39],
as well as further widening of the income gap and unbalanced development among
regions [20,40].

The rest of this paper is organized as follows. Section 2 provides background on the
Huai River Policy and its recent reform. Section 3 introduces the data sources and variable
design. Section 4 introduces the empirical strategy. Section 5 discusses the causal impact of
air pollution on working near home. Section 6 presents the heterogeneity analysis. Section 7
discusses our results. Section 8 concludes this paper.

2. Institutional Background: Huai River Policy

As northern China is very cold in winter, respondents use various forms of heating.
The traditional heating method in China is to burn loose coal in a stove. China’s central
heating system began in the 1950s. Referring to the heating mode of the Soviet Union,
China initially established a central heating system mainly using coal as fuel.

Due to resource and budget constraints, central heating gives priority to the cold northern
region, which is limited to cities in north, northeast and northwest China. Specifically, the
Qinling Mountains and Huai River are the dividing line (the average temperature of this line
in January is about 0 ◦C). Cities north of the Huai River have central heating, while cities
south of the Huai River do not have heating. This is also known as the Huai River Policy.

Before 1978, subject to the level of economic development, the development speed
of urban central heating was quite slow. Since the reform and opening up in 1978, China
has gradually transitioned from a planned economy to a market economy. Many private
sectors began to be born on a large scale, and the central heating system also entered a
period of great development. By 2003, most northern cities in China had built central
heating systems.

With the rapid growth of the urban central heating area, the financial burden of
northern cities is increasing. The commercialization reform of heating implemented by the
government in 2003 also changed the original free heating system [41]. The government
abolished the welfare policy of free heating and began to charge for heating. In terms of
charge management, the government still provides heating subsidies for employees of state-
owned enterprises and institutions, but employees of non-state-owned enterprises do not
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enjoy the benefits. The commercialization of heating increases the heat cost of respondents.
However, with the growth of urban construction and personal income, China’s urban
central heating area still maintains a stable and rapid growth. Due to the reform of the
heating policy, coal consumption in northern China continues to grow [12,14]. Since 2003,
although the central heating system has increased the household heating cost, it has not
significantly reduced the household heating demand. Central heating in the northern
regions in winter is still dominated by coal-fired heating.

However, with the rapid growth of the urban heating area, the heating mode with
coal as the main fuel means that the air pollutants (soot, sulfur dioxide, etc.) produced by
coal combustion also increase synchronously. Based on the quasi-natural experiment of the
central heating policy in northern China, some scholars have found, through an RD design,
that central heating leads to more serious air pollution in northern China [2,12,14,42]. This
seems to be a contradiction and trade-off between heating and air quality. Figure 1 shows
the locations of the Huai River (red line) and the air quality. It is clear that counties in
northern China are much more polluted than those in southern China.
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In order to protect the environment and reduce the impact of pollution on respondents’
health, the government has implemented many projects and policies to reduce the emission
of pollutants. One of the biggest is the replacement of coal with natural gas or electricity as
primary fuels for heating [43]. In 2013, Beijing first proposed and implemented the coal-to-
gas policy, replacing coal with natural gas or electricity for central heating in urban areas,
and providing subsidies to encourage families to replace coal-fired heating in rural areas.
Later, other regions such as Tianjin and Hebei also launched the coal-to-gas policy in 2015
and 2016. It should be noted that despite the policy of changing coal to gas, the northern
region still mainly depends on coal combustion to realize central heating in winter [43].

3. Data
3.1. Population Sample Survey Data

We mainly used the sampling survey data of 1% of China’s population in 2015. These
are nationwide data. China’s National Bureau of Statistics conducted a national 1% popula-
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tion sampling survey at 0:00 on 1 November 2015. The survey takes the whole country as
the whole and prefecture-level cities (regions, leagues, and prefectures) as the subpopula-
tion. The stratification, two-stage, probability proportion and cluster sampling methods
were adopted. The final sample size was 21.31 million, accounting for 1.55% of the total
population of the country. The census takes the individual as the unit, and counts a number
of indicators (e.g., gender and education). Additionally, it also counts a number of indica-
tors of the family characteristics (e.g., hukou and family registration). The individual work
information and characteristic data used in this paper are from this population sample survey.

3.2. Air Pollution

We collected the historical data of 1482 air monitoring stations in China from the air
quality online monitoring and analysis platform (The real-time data are published on the
following website: http://www.aqistudy.cn/ (accessed on 1 May 2021)). The platform is
the largest real-time air quality monitoring network ever built in China, implementing the
full coverage of municipalities, provincial capitals, cities with independent planning, all
prefecture-level cities, key environmental protection cities, and environmental protection
model cities. The data include the PM10 concentration per hour from 1 November 2014
to 30 October 2015. We calculated the pollution data of each county according to the
monitoring information of each monitoring station. First, we averaged the hourly data of
each monitoring station to obtain the daily monitoring results of each monitoring station.
Then, taking the county as the center, we calculated the weighted average of air quality
variable at each air monitoring station within 100 km to obtain the pollution index of each
county every day. Among them, the reciprocal of the distance from each monitoring station
to the county center was taken as the weight. Finally, we calculated the mean value of air
quality indicators in each county during the sample period and finally obtained the PM10
concentration of 2501 counties in China.

3.3. Heating City

The list of heating cities is mainly from the statistical yearbook of China’s urban
construction. In order to be consistent with the statistical range of household mortality,
we mainly used the list of heating cities in 2014. Among 295 prefecture-level and above
cities in China, 130 northern cities had central heating, and the other 165 southern cities
had no central heating system. Although the list of heating cities will change every year,
the change is very small, only increasing or decreasing by one or two cities. Overall, the list
of urban heating in China remains basically unchanged.

3.4. Control Variable

We controlled some individual characteristics, including gender, age, marriage, ethnic-
ity, and type of hukou. We also controlled the meteorological conditions. The meteorological
data come from the China meteorological data network (see http://data.cma.cn (accessed
on 10 May 2021)). The original data are the observation data of 840 meteorological stations
in China, including rainfall, average wind speed, air pressure, and minimum and maximum
temperatures. We mainly used temperature, precipitation, relative humidity, and wind
speed for control since they are the main meteorological factors affecting air pollutants. In
order to calculate the above four variables of each county, we first interpolated the meteo-
rological station data according to the inverse distance weighting (IDW) method to obtain
a 1km×1km grid layer across the country. Then, we extracted the above four variables
of each county center based on this layer. Finally, we obtained the average temperature,
precipitation, relative humidity, and wind speed of each county. The descriptive statistics
of the variables are shown in Appendix A Table A1.

http://www.aqistudy.cn/
http://data.cma.cn
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4. Empirical Strategy

Formally, a linear regression equation for the impact of air pollution on working near
home was estimated as shown below:

Workci = β0 + β1Pollutionc + ϕXci + εci (1)

where subscripts c and i represent counties and respondents, respectively; the dependent
variable Work is an indicator variable that equals one if respondent i works and lives on the
same street, and zero otherwise; Pollution is the PM10 concentration of county c; X is the
vector of observable features that may affect working place selection; ε is the disturbance
term; and the coefficient β1 measures the effect of PM10 exposure on working place selection
after controlling for the available covariates.

The key challenge in estimating the causal impact of air pollution on working place
choice is that variations in air pollution could be endogenous. Consistent estimation of β1
requires that the unobserved determinants of working place selection do not covary with
Pollution after adjustment for the observed covariates, but the validity of this assumption
has been questioned by previous research. For example, air pollution levels are often
associated with complex meteorological processes that can directly affect human health,
and it is difficult to control for all these factors [12,17]. Other unobserved socio-economic
factors (e.g., income) could also confound the impact of air pollution on working near
home. Furthermore, pollution concentrations are prone to measurement error, which will
attenuate the coefficient associated with PM10. Therefore, the OLS estimate of β1 is likely to
be biased.

We addressed the potential endogeneity issue by constructing a regression discon-
tinuity (RD) design based on the Huai River Policy (akin to existing studies such as
Chen et al. [2], Ito and Zhang [14], and Ebenstein et al. [12]). As shown in Section 2, this
policy provides free or heavily subsidized coal for heating north of the river but no subsi-
dies to the south. This has led to the construction of a coal-powered centralized heating
infrastructure only in cities north of the Huai River, with no equivalent system in cities to
the south. Therefore, northern cities face more serious air pollution [12]. Near the Huai
River boundary, the counties in the south become the opposite of the counties in the north.
By comparing the difference in local air pollution caused by the Huai River Policy, we can
estimate the local average treatment effect (LATE) of air pollution on individual workplace
selection [2]. RD design is a quasi-experimental research design which could address the
previous literature’s limitations and provide a clear identification. Following Chen et al. [2]
and Ebenstein et al. [12], we examined whether the Huai River Policy causes discontinuous
changes in PM10 concentrations and the probability of working near home north of the
river using the following specifications:

Pollutionc = α0 + α1Dc + α2 f (Distc) + κXci + νci (2)

Workci = δ0 + δ1Dc + δ2 f (Distc) + γXci + µci (3)

where Dist is the running variable, representing the shortest distance (in km) from each
county to the Huai River, taking positive values for counties to the north of the Huai River
and negative values for counties to the south; D is an indicator variable equal to one for
counties with a positive value of Dist; f (Dist) is a local regression function in Dist that
allows the relationship between outcomes and the running variable (Dist) to vary on either
side of the cutoff; in all our specifications, we also controlled for a vector of covariates (X),
including demographic variables and meteorological conditions such as gender, ethnicity,
age, marriage, hukou type, temperature, precipitation, relative humidity, and wind speed;
µ and ν are the error terms.

The parameters of interest are α1 and δ1, which provide an estimate of whether there
exist discontinuities in PM10 and the probability of working near home north of the river,
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after flexible adjustment for the covariates. If the key assumptions of the RD are satisfied, the
estimated α1 and δ1 reveal the causal effect of the Huai River Policy on Pollution and Work.

The parameters α1 and δ1 can be identified by both non-parametric and parametric
methods. In this paper, we emphasize the results using the non-parametric approach, as the
parametric RD approach is found to have several undesirable statistical properties [43,44].
In practice, the key of the RD design is to select the optimal bandwidth to localize the
regression fit near the cutoff. The choice of bandwidth involves balancing the conflicting
goals of focusing comparisons close to the cutoff (for the “bias” concern) and having a large
enough sample for reliable estimation (for the “precision” concern). We used the mean
squared error (MSE) optimal and data-driven bandwidth selection methods (following
Calonico et al. [45]; Calonico et al. [46]) and different kernel functions (i.e., triangular,
epanech., and uniform) to calculate the optimal bandwidth. For all RD estimations, we
estimated local linear regressions using observations within an optimal bandwidth. All
standard errors were clustered at the county level.

There are two key assumptions for RD designs. One is that the treatment status is
determined by a random assignment or forcing variable and cannot be manipulated [47].
In our design, the forcing variable is the shortest distance (in km) from each county to the
Huai River, which cannot be manipulated, but we still give some evidence. Appendix A
Figure A6 shows the histogram of county distance with a kernel density estimate, and
Appendix A Figure A7 shows the McCrary test [48] (the McCrary test is an important test
used to check whether there is any jump in the density of the forcing variable). We found
that the density of Dist moves smoothly around the threshold. The second assumption is
that any unobserved determinants of PM10 or whether respondents work near home may
change smoothly as they cross the Huai River. In the Result section, we show that a variety
of work- and pollution-related local characteristics (i.e., covariates) (we include two main
sets of covariates that might be related to the outcome variables; the first set is a vector
of weather variables, and the second set is a vector of the demographic characteristics)
are smooth functions across the threshold. Additionally, we used non-parametric RD
estimation involving additional covariates to increase the efficiency of the estimator (if the
relevant assumption is not fully satisfied, adjustment for control variables could remove
potential sources of bias and allow for causal inference. In addition, including balanced
covariates in RD estimation could also increase the precision of the RD estimator) [49].

Next, we used a fuzzy RD approach [46,49,50] to estimate the impact of air pollution
on working near home. This approach is used to assess the impact of an imperfect binary
treatment where the probability of treatment rises at some threshold, but being above or
below the threshold does not fully determine treatment status (i.e., imperfect compliance).
In our context, exposure to PM10 increases significantly to the north of the Huai River, but
pollution exists both north and south of the river, making our context naturally analogous
to a fuzzy RD [51].

The fuzzy RD estimates can be estimated by taking the ratio of the estimated disconti-
nuity in the probability of working near home to the estimated discontinuity in PM10, by
local linear regression at the Huai River (see Calonico et al. [51]). Actually, this result is an
instrumental variable method, in which PM10 is instrumented by the Huai River Policy.
The fuzzy RD estimates of the impact of PM10 on working near home are analogous to the
2SLS estimates [46,49,50]. Specifically, if the Huai River Policy only influences respondents
working near home through its impact on PM10, an important appeal of the results is
that they produce estimates of the impact of units of PM10, so the results are applicable
in other settings (e.g., other developing countries with comparable impacts of units of
PM10 concentrations).

5. Results
5.1. Summary Statistics and Graphical Analysis

Table 1 presents the summary statistics for the main variables and provides evidence
on the validity of the RD design. Columns (1) and (2) report the mean values and SDs
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to the north and south of the Huai River. Column (3) documents the mean difference
between the north and the south along with the standard error, and column (4) reports
the discontinuous changes and standard errors along the Huai River using local linear
regression.

Table 1. Summary statistics, means, and standard deviations/errors.

Variable South North Difference in Means Adjusted Difference

(1) (2) (3) (4)

Panel A: Air pollution exposure at survey counties
PM10 82.748 118.072 35.324 *** 11.225 ***

(14.116) (25.527) (0.044) (3.459)
Panel B: Working place selection of respondents

Working near home 0.646 0.758 0.112 *** 0.053 **
(0.478) (0.428) (0.001) (0.027)

Panel C: Individual characteristics of respondents
Gender 0.489 0.488 −0.002 −0.016

(0.500) (0.500) (0.001) (0.024)
Nation 0.057 0.021 −0.036 *** −0.015

(0.232) (0.144) (0.000) (0.010)
Age 38.870 36.790 −2.080 *** −2.281

(20.570) (20.799) (0.045) (1.599)
Marriage 0.742 0.750 0.008 *** −0.007

(0.438) (0.433) (0.001) (0.010)
Hukou 0.435 0.308 −0.127 *** −0.246

(0.496) (0.462) (0.001) (0.146)
Panel D: Meteorological conditions at survey counties

Temperature 16.510 13.569 −2.940 *** 0.094
(1.201) (1.653) (0.003) (0.154)

Precipitation 9.498 8.879 −0.619 *** −0.205
(0.290) (0.182) (0.001) (0.131)

Relative humidity 77.127 65.521 −11.607 *** 0.776
(2.916) (5.033) (0.009) (0.657)

Wind speed 1.862 2.225 0.362 *** −0.291
(0.489) (0.462) (0.001) (0.273)

Note: SDs for means and standard errors for mean differences are in parentheses. Adjusted differences in
column (4) are the estimated discontinuity along the Huai River using local linear regression discontinuity with a
triangular kernel and the MSE bandwidth selection method. ** Significant at 5%; *** significant at 1%.

We begin the analyses with an assessment of the Huai River Policy’s impact on PM10.
Panel A shows large differences in PM10 concentrations between the south and the north
of the Huai River. According to the local linear RD estimates, the north-south difference
in PM10 along the Huai River is 11.2 µg/m3. In Figure 2, we plot the binned averages of
county-level PM10 concentrations against the distance from the county centroid to the Huai
River. We also plot the polynomial fit of PM10 against the running variable. It is clear that
PM10 has a discontinuous jump to the north of the river.

Similarly, we observed a large decline in the probability of working near home along
the Huai River. Column (3) in Panel B of Table 1 shows that the share of respondents
working near home in the north is much higher than in the south by 0.112. Column (4)
shows that the local linear adjusted differences are 5.3 percent. In Figure 3, we plot the
binned averages of working near home against the distance from the county centroid to the
Huai River and its polynomial fit. An upward jump in the share of working near home is
observed to the north of the river.
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on each side of the threshold.

Additionally, though the RD design’s identification assumption that unobservables
change smoothly at the boundary is impossible to be tested directly, it would be reassuring
if observable determinants change smoothly at the boundary. We tested a rich set of
demographic characteristics and weather variables and present them in Panels C and D
of Table 1. We found that, though there are differences between the south and north of
the Huai River, the differences from the local linear regressions are much smaller and
statistically insignificant at the boundary.
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5.2. Impact of the Huai River Policy

Table 2 presents the RD estimates of PM10 and working near home along the Huai
River using local linear regression. We used the mean squared error optimal bandwidth
method (MSE) proposed by Calonico et al. [49] and Calonico et al. [46]. Each RD estimate
also has the optimal bandwidth for both sides of the threshold and all standard errors
are clustered at the county level. Columns (1)–(3) report the RD results using the three
different kernel functions without inclusion of any other control variables. In Columns
(4)–(6), we present the results for the same three regressions but with demographic and
weather controls.

Table 2. RD estimates of the impacts of the Huai River Policy.

Variables RD Estimates

(1) (2) (3) (4) (5) (6)

Panel A: Impact of the Huai River Policy on PM10
PM10 11.225 *** 12.137 *** 12.213 *** 11.784 *** 12.603 *** 12.258 ***

(3.459) (3.447) (4.750) (3.367) (3.360) (4.706)
Bandwidth 538.312 500.452 455.471 546.285 507.273 452.124

Panel B: Impact of the Huai River Policy on working near home
Working near home 0.053 ** 0.058 ** 0.064 ** 0.056 ** 0.059 ** 0.059 **

(0.027) (0.028) (0.030) (0.026) (0.028) (0.029)
Bandwidth 274.914 241.226 208.783 279.352 250.149 218.813

Observations 802,178 802,178 802,178 802,178 802,178 802,178
Controls N N N Y Y Y
Kernel Triangular Epanech. Uniform Triangular Epanech. Uniform

Note: Each cell in the table represents a separate RD estimate along the Huai River using local linear regressions with
different kernel functions. Robust standard errors in parentheses are clustered at the county level. Controls include
weather information and sociodemographic variables defined in Table 1. ** Significant at 5%; *** significant at 1%.

Different kernel functions and the inclusion of control variables did not significantly
change the estimate. We emphasize the estimates from the most comprehensive specifica-
tion in Column (4). Panel A of Table 2 shows that the impact of the Huai River Policy on
PM10. We found that the Huai River Policy increases PM10 concentrations in the north by
11.8 µg/m3 on average, which is equivalent to an increase of 13.2 percent in the mean in
the regression sample (given the average PM10 is 89.2 µg/m3).

Panel B of Table 2 reports the RD estimates for working near home. We found that
the Huai River Policy has a large and statistically significant positive impact on working
near home. Specifically, the Huai River Policy increases the probability of working near
home in the north by 5.6 percent on average, which is equivalent to an increase of 8 percent
(given the sample mean is 0.702). These regression results echo the graphical results that
the Huai River Policy causes a significant deterioration in the air quality and an increase in
the probability of working near home in northern China.

5.3. Impact of PM10 on Work

Table 3 presents the estimated effects of an additional 10-µg/m3 increase in PM10
exposure on respondents working near home. Panel A reports the fuzzy RD estimates
using three different kernel functions. To make sure that our analyses are not sensitive
to different specifications, we estimated the fuzzy RD results without and with weather
and demographic characteristics. We found that the RD results are reasonably robust for
different kernel functions and control variables. We present the results in Column (4),
where the triangular kernel function is used and both demographic and weather conditions
are controlled. Panel A shows that an additional 10 µg/m3 in PM10 significantly increases
the probability of working near home by 13.6 percent. This observation is consistent with
the results in the previous section and indicates that the Huai River Policy affects the
probability of respondents working near home via its impact on PM10.
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Table 3. Fuzzy RD and OLS estimates of the impacts of PM10 on work.

Variables Panel A: Fuzzy RD Estimates Panel B: OLS Estimates

(1) (2) (3) (4) (5) (6) (1) (2)

PM10 (per 10 points) 0.132 *** 0.157 *** 0.152 ** 0.136 *** 0.155 *** 0.151 ** 0.005 *** 0.005 ***
(0.043) (0.046) (0.068) (0.043) (0.042) (0.064) (0.001) (0.001)

Bandwidth 401.273 396.563 374.286 412.204 415.305 345.638
Observations 802,178 802,178 802,178 802,178 802,178 802,178 802,178 802,178

Controls N N N Y Y Y N Y
Kernel Triangular Epanech. Uniform Triangular Epanech. Uniform

Note: Each cell in the table represents a separate estimate or regression. Columns (1)–(6) report the fuzzy RD
results estimating the impact of 10 µg/m3 of PM10 on work, treating distance from the Huai River as the forcing
variable and PM10 as the treating variable, with the Huai River representing a “fuzzy” discontinuity in the level of
air pollution exposure. Column (1) and (2) in Panel B report the OLS estimates of the association between PM10
and work. Robust standard errors in parentheses are clustered at the county level. Controls include weather
information and sociodemographic variables defined in Table 1. ** Significant at 5%; *** significant at 1%.

Panel B reports the OLS results for comparison. The estimate in Column (2) of Panel B
implies that a 10-point increase in PM10 is associated with a 0.5% increase in the probability
of working near home. In addition, it is worth emphasizing that, relative to the OLS
estimates, the fuzzy RD estimates are more stable and larger in magnitudes, suggesting that
OLS estimates are biased downward possibly due primarily to omitted variables and/or
measurement errors. These findings are remarkably stable and are not affected by the
inclusion of different controls and alternative ways to estimate the RD coefficient and
standard errors.

5.4. Robustness Checks

We conducted several robustness checks to help assess the validity of our results. First,
we used the air quality index (AQI) as an independent variable and re-estimate. We used
the PM10 concentration in the main tables because PM10 is the main pollutant produced
by coal-fired heating. Coal combustion produces a variety of pollutants. We used the
overall measure of ambient air quality, the AQI, to measure pollution. Six air pollutants
(i.e., PM2.5, PM10, SO2, NO2, CO, and O3) were used to compute the AQI (the Ministry
of Environmental Protection: http://www.mee.gov.cn/ (accessed on 10 May 2021)). In
reality, the Ministry of Environmental Protection (MEP) often uses it to inform the public of
pollution levels [43]. The larger the AQI score, the higher the air pollution level. Appendix A
Table A2 reports the results using the AQI. In general, we found that the results are similar
in sign and magnitude to those in Tables 2 and 3.

Second, we constructed two alternative measures for respondents working near home:
whether respondents drive to work (Yes = 1) and the time required for going to work (in
minutes). If one works near home, this means that they are less likely to drive to work, and
that the time required to go to work should be shorter. Appendix A Figures A1 and A2
present the RD plots. Table A3 reports the estimated results. We found air pollution
significantly decreases the probability of respondent driving to work and the time required
for going to work. These results support our findings in the main analysis.

Third, we conducted a placebo test to assess the significance of these findings, ex-
ploring whether discontinuities are observed in other regions of China. We estimated the
discontinuities in PM10 and working near home at 100 km intervals north and south of the
Huai River across China as well as at the actual Huai River (which is reported as the 0 km
displacement). Figure A3 presents estimates and shows that the only statistically significant
discontinuous changes in PM10 and working near home occur at the actual Huai River. In
all other instances, the estimated effect of zero is within the 95% confidence interval.

Fourth, we then examined the sensitivity of our RD estimates to small changes in
bandwidths. We set the bandwidths to range from 100 km to 1000 km. For each bandwidth,
we estimated the discontinuities in PM10 and working near home by local linear regression

http://www.mee.gov.cn/
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and second-order polynomial regression, respectively. As shown in Figures A4 and A5 in
the Appendix A, the estimate results remain reasonably robust to alternative bandwidths.

Finally, given that air pollution may be responsible for migration in China [15], we
explored the potential impact of migration on the results in two ways. One way was to
test whether air pollution causes respondents to migrate. We defined migration equal
to one if the respondent migrated in the past two years, and zero otherwise, and then
investigated the impact of the Huai River Policy and PM10 on migration using an RD
design. The RD estimates are shown in Table A4. The results in Panel A show that there
is no difference in mobility between the north and the south. The results in Panel B show
that air pollution has no effect on population migration. This result is consistent with the
results of Ebenstein et al. [12]. They assessed migration patterns in China and found that
migration did not appreciably alter people’s lifetime exposure to air pollution. There is
little evidence that there are many environmental migrations in China. The second way
was to exclude those samples with a residence duration of less than 5 years at the same
prefecture city level and re-estimate the models (following Ding et al. [52]). Appendix A
Table A5 reports the results of the RD estimates. In general, we found that the results are
similar in sign and magnitude to those in Tables 2 and 3.

6. Heterogeneity Analysis

To better understand the effect of air pollution on working place choice, we ex-
amined different subgroups based on respondents’ demographic characteristics. It is
helpful for researchers to further study the research topic and for policy makers to design
appropriate policies.

6.1. Gender Difference

We examine the gender difference in Table 4. We compared males and females and
found that exposure to PM10 had a greater positive effect on females working near home
than males in general. Panel A summarize the RD estimates of the Huai River Policy
on working near home for both men and women. We estimated that the increase in the
probability of working near home at the Huai River boundary is around 5.1% and 6.2%
(statistically significant) for males and females, respectively. Panel B summarizes the fuzzy
RD estimates of PM10 on the probability of respondents working near home for both
men and women. A 10-unit increase in PM10 will significantly increase the probability of
working near home for males and females by 9.8% and 11.1%, respectively. These results
indicate that females suffer from air pollution more than males. This is consistent with
existing studies which show that women have a higher risk for cognitive and health declines
associated with increased exposure to air pollution (e.g., Kim et al. [53]; Zhang et al. [7];
Ding et al. [52]).

Table 4. The impacts of PM10 on work by gender.

Variables Panel A: Impacts of Huai River Policy on Work Panel B: Impacts of PM10 on Work

Males Females Males Females

(1) (2) (3) (4) (1) (2) (3) (4)

Working near home 0.051 ** 0.045 * 0.062 ** 0.087 *** 0.098 * 0.079 * 0.111 ** 0.090 *
(0.026) (0.024) (0.029) (0.033) (0.051) (0.043) (0.054) (0.052)

Bandwidth 311.742 264.165 278.618 297.873 307.526 229.815 291.463 233.927
Observations 463,585 463,585 338,593 338,593 463,585 463,585 338,593 338,593

Controls Y Y Y Y Y Y Y Y
Kernel Triangular Uniform Triangular Uniform Triangular Uniform Triangular Uniform

Note: Each cell in the table represents a separate estimate or regression. Panel A reports the RD results estimating
the impact of the Huai River Policy on work. Panel B reports the fuzzy RD results estimating the impact of
10 µg/m3 of PM10 on work, treating distance from the Huai River as the forcing variable and PM10 as the treating
variable, with the Huai River representing a “fuzzy” discontinuity in the level of air pollution exposure. Robust
standard errors in parentheses are clustered at the county level. Controls include weather information and
sociodemographic variables defined in Table 1. * Significant at 10%; ** significant at 5%; *** significant at 1%.
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6.2. Age Group Difference

Second, in Table 5, we investigate the impact of air pollution on working place choice
for different age groups. We divided the sample into two age groups: young people
(aged < 50 years) and old people (aged ≥ 50 years). Panel A summarizes the RD estimates
of the Huai River Policy on working near home for both elderly and young people. We
found that the Huai River Policy has a positive and statistically significant impact on
working near home for the elderly. The increase in the probability of the elderly working
near home at the threshold is around 6.8%. In contrast, the magnitude of the estimates is
much smaller and statistically insignificant for the young group. Based on the fuzzy RD
results in Panel B, a 10-unit increase in PM10 will increase the probability of the elderly
working near home by 14.8%. Since the elderly suffer from air pollution resulting from
the Huai River Policy [43], they are more sensitive to air pollution and are more likely to
choose to work near home to mitigate the negative impact of air pollution on health.

Table 5. The impacts of PM10 on work by age.

Variables Panel A: Impacts of Huai River Policy Panel B: Impacts of PM10 on Work

Age < 50 Age ≥ 50 Age < 50 Age ≥ 50

(1) (2) (3) (4) (1) (2) (3) (4)

Working near home 0.048 0.049 0.068 *** 0.093 *** 0.100 0.115 0.148 ** 0.144 **
(0.030) (0.033) (0.020) (0.020) (0.133) (0.327) (0.074) (0.065)

Bandwidth 291.291 206.563 241.578 319.535 279.627 167.415 284.219 314.158
Observations 600,252 600,252 201,926 201,926 600,252 600,252 201,926 201,926

Controls Y Y Y Y Y Y Y Y
Kernel Triangular Uniform Triangular Uniform Triangular Uniform Triangular Uniform

Note: Each cell in the table represents a separate estimate or regression. Panel A reports the RD results estimating
the impact of the Huai River Policy on work. Panel B reports the fuzzy RD results estimating the impact of
10 µg/m3 of PM10 on work, treating distance from the Huai River as the forcing variable and PM10 as the treating
variable, with the Huai River representing a “fuzzy” discontinuity at the level of air pollution exposure. Robust
standard errors in parentheses are clustered to the county level. Controls include weather information and
sociodemographic variables defined in Table 1. ** Significant at 5%; *** significant at 1%.

6.3. Rural–Urban Difference

We also examined how air pollution affects workplace choice behavior between rural
and urban individuals. Samples were divided into two groups by the type of hukou
(i.e., household registration): urban group and rural group. Table 6 reports the RD estimates
for each group. In Panel A, we find that the Huai River Policy significantly increases the
probability of working near home by 18.7% for urban respondents, but insignificantly for
rural respondents. The fuzzy RD results in Panel B show that a 10-unit increase in PM10 will
increase the probability of urban respondent working near home by 25.1%. There are three
reasons. First, air pollution in urban areas is more serious than in rural areas [43], because
there are more pollution emissions (e.g., industrial emissions) and higher implementation
intensities for the Huai River Policy in urban areas. Second, air pollution information is
readily available in urban areas, but the same information is difficult to obtain in rural
areas. Air pollution information is a key determinant of pollution avoidance and associated
health impacts [24,43]. Third, due to the nature of the work and transportation cost, the
work of rural individuals is relatively fixed (e.g., work on the field). In urban areas, the
traffic is relatively perfect and individuals have more job choices. Thus, the effect of air
pollution on working near home for the urban group is more significant than that for the
rural group.
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Table 6. The impacts of PM10 on work by rural–urban.

Variables Panel A: Impacts of Huai River Policy Panel B: Impacts of PM10 on Work

Rural Urban Rural Urban

(1) (2) (3) (4) (1) (2) (3) (4)

Working near home 0.025 0.027 0.187 *** 0.197 *** 0.045 0.034 0.251 ** 0.185 *
(0.025) (0.025) (0.043) (0.046) (0.055) (0.048) (0.128) (0.098)

Bandwidth 293.338 238.894 310.852 251.616 276.526 204.354 285.683 352.119
Observations 554,756 554,756 247,422 247,422 554,756 554,756 247,422 247,422

Controls Y Y Y Y Y Y Y Y
Kernel Triangular Uniform Triangular Uniform Triangular Uniform Triangular Uniform

Note: Each cell in the table represents a separate estimate or regression. Panel A reports the RD results estimating
the impact of the Huai River Policy on work. Panel B reports the fuzzy RD results estimating the impact of
10 µg/m3 of PM10 on work, treating distance from the Huai River as the forcing variable and PM10 as the treating
variable, with the Huai River representing a “fuzzy” discontinuity in the level of air pollution exposure. Robust
standard errors in parentheses are clustered at the county level. Controls include weather information and
sociodemographic variables defined in Table 1. * Significant at 10%; ** significant at 5%; *** significant at 1%.

6.4. Occupation Difference

Last, we examined the occupation difference. Samples were divided into three groups
by the type of occupation of respondents: primary industry, secondary industry, and
tertiary industry. Table 7 reports the RD estimates for each group. Panel A summarizes the
RD estimates of the Huai River Policy for the three groups. We found that the Huai River
Policy has a negative and statistically significant impact on working near home for those
respondents who work in secondary and tertiary industries. Specifically, the increase in
the probability of working near home at the threshold is around 16.1% and 14.7% for those
respondents who work in secondary and tertiary industries, respectively. Correspondingly,
a 10-unit increase in PM10 will increase the probability of working near home by 23.5% and
16.9%, respectively. However, this effect does not exist for those respondents who work in
primary industries. This is due to the nature of the primary industries. Primary industries
depend on natural conditions (e.g., land and trees), which are immovable. Thus, for those
respondents who work in the primary industries, work and workplace cannot be changed
at will.

Table 7. The impacts of PM10 on work by occupation.

Variables Panel A: Impacts of Huai River Policy Panel B: Impacts of PM10 on Work

Ind1 Ind2 Ind3 Ind1 Ind2 Ind3

(1) (2) (3) (1) (2) (3)

Working near home 0.003 0.161 *** 0.147 *** 0.001 0.235 *** 0.169 ***
(0.004) (0.040) (0.030) (0.004) (0.067) (0.055)

Bandwidth 399.085 342.017 379.282 315.258 349.973 373.902
Observations 263,564 235,168 303,446 263,564 235,168 303,446

Controls Y Y Y Y Y Y
Kernel Triangular Triangular Triangular Triangular Triangular Triangular

Note: Each cell in the table represents a separate estimate or regression. Panel A reports the RD results estimating
the impact of the Huai River Policy on work. Panel B reports the fuzzy RD results estimating the impact of
10 µg/m3 of PM10 on work, treating distance from the Huai River as the forcing variable and PM10 as the treating
variable, with the Huai River representing a “fuzzy” discontinuity in the level of air pollution exposure. Robust
standard errors in parentheses are clustered at the county level. Controls include weather information and
sociodemographic variables defined in Table 1. *** Significant at 1%.

7. Discussion

Our RD analysis showed that an additional 10 µg/m3 in PM10 significantly increases
the probability of working near home by 13.6 percent. This implies that, facing high levels
of pollution, individuals would choose to work nearby to reduce pollution exposure given
that migration is restricted. As far as its mechanism and theoretical framework is concerned,
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the main explanation for our findings may be that air pollution has a significant negative
impact on physical and mental health, and this impact is well known [8,12,17]. This
mechanism is supported by many related literature reports. Using the same identification
strategy as this article, Chen et al. [2] and Ebenstein et al. [12] found that the winter heating
policy raised PM10 levels by 46 percent in the region north of the Huai River between
2004 and 2012, causing a reduction in life expectancy of 3.4 years. Individuals can take
preventive measures to reduce exposure and mitigate the negative impact of air pollution.
Based on sales data on air purifiers, Ito and Zhang [14] estimated that a household is willing
to pay $13.40 annually to remove 10 mg/m3 of PM10 and $32.70 annually to eliminate the
increased pollution caused by China’s winter heating policy. Willingness to pay for air
quality is one of the risk aversion behaviors. Our findings are consistent with the above
literature. To mitigate this negative impact of outdoor air pollution, individuals choose
to work near home. If one works near home, which means that they are less likely to
drive to work and need a shorter amount of time to get to work, they can be less exposed
to air pollution. This is a natural and instinctive response to air pollution. Our findings
confirm and expand the conclusions of the existing literature. After 2013, China’s real-time
pollution monitoring and disclosure program (henceforth, the information program) was
launched and marked a turning point in pollution information access and awareness [24].
Therefore, individuals can more easily obtain air quality information and pay attention to
health. Based on personal welfare and utility maximization, individuals are more likely to
choose to work near home to reduce pollution exposure.

On the other hand, in terms of workplace choice behavior, our results show that
in areas with more serious pollution, the labor force tends to work in local cities rather
than across regions. A natural question is, what does that mean? A direct result and
interpretation is that outdoor air pollution reduces the cross-regional flow of labor and
reduces the possibility of labor working across regions. In areas with more serious pollution,
the labor mobility is lower, which is an important reason for labor spatial mismatch and
market segmentation, as well as further widening of the income gap and unbalanced
development among regions [20,40]. In fact, air pollution is aggravating the segmentation
of the labor market as a new natural factor [54]. This is a clue that has not been fully studied
in the previous literature. The existing studies mainly believe that rivers and terrain are
the natural determinants of labor market segmentation [55,56]. In other words, our results
show that if air pollution is controlled and reduced, individuals can choose to work further
away. This can promote labor mobility and balanced development. These are the theoretical
and practical implications of the paper. Our theoretical implication is to build a bridge
between environmental economics and labor economics from the perspective of labor
mobility. The practical implication is that we have emphasized the necessity of pollution
control and that environmental regulation policies should be implemented for a long time.

8. Conclusions

Air pollution is considered as a major issue for the community in China. Understand-
ing how changes in pollution levels affect public health and avoidance behaviors is crucial
for optimal environmental policy design. We used China’s Huai River Policy as an RD
design to evaluate the causal impact of air pollution on working place choice. The Huai
River Policy led to the construction of a coal-powered centralized heating infrastructure
only in cities north of the Huai River, with no equivalent system in cities to the south.
The discontinuity in air pollution caused by the Huai River Policy provides a natural
experiment to estimate the impact of air pollution. The data link the 2015 census microdata
at the individual level with air pollution at the county level.

Our results show that the Huai River Policy has increased PM10 concentrations by
13.2 percent and caused a 5.6 percent increase in the probability of individuals working near
home. This implies that an additional 10 µg/m3 in PM10 would significantly increase the
probability of working near home by 13.6 percent in China, which means that individuals
would choose to work nearby to reduce pollution exposure and mitigate the negative
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impact of pollution on health. Heterogeneity analyses showed that the positive effect
of air pollution on the choice to work nearby is more significant for women, the elderly,
urban respondents and those respondents who work in secondary and tertiary industries.
Following the rich literature, we provided several explanations for our results and discussed
the negative impact of air pollution on labor mobility and mismatch by making individuals
work nearby.

The results provide new evidence on how people protect themselves against pollution.
Individuals facing high levels of pollution would choose to work nearby to reduce exposure
and mitigate the impact. This paper deepens our understanding of coping strategies and
avoidance behaviors to environmental shocks and highlights a negative impact on labor
mobility and regional balanced development. This is crucial for the regional balanced
development policy and environmental policy design in many developing countries. Our
results go beyond the trade-off between the economy and environment, and show that
worsening air pollution could reduce the potential for economic growth. One policy
implication is that to improve the economic quality, air pollution must be further controlled.
If air pollution decreases significantly, the resulting rise in labor mobility will promote
productivity and achieve a win-win situation for the economy and the environment. One
limitation of this paper is that, in recent years, China’s air quality has been continuously
improved and the household registration system has been relaxed, and thus people’s
risk aversion behavior may change (e.g., migration), which may make the estimation
of this paper a higher bound. In future research, we will use updated data and clearer
identification strategies to verify the above problems.
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Figure A1. RD plot for driving to work. Notes: The figure shows the binned averages of driving to 
work against the running variable. The solid line represents a quartic polynomial fit of driving to 
work by car on each side of the threshold. 

 
Figure A2. RD plot for the time required for going to work. Notes: The figure shows the binned 
averages of the time required for going to work against the running variable. The solid line repre-
sents a quartic polynomial fit of time on each side of the threshold. 
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Figure A1. RD plot for driving to work. Notes: The figure shows the binned averages of driving to
work against the running variable. The solid line represents a quartic polynomial fit of driving to
work by car on each side of the threshold.
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Figure A2. RD plot for the time required for going to work. Notes: The figure shows the binned
averages of the time required for going to work against the running variable. The solid line represents
a quartic polynomial fit of time on each side of the threshold.
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Figure A4. Robustness to alternative bandwidths for the impact of the Huai River Policy on PM10. 
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the 95 percent confidence interval, ranging from 100 km to 1000 km bandwidths. (Panel A) plots 
estimates using linear polynomials in distance. (Panel B) plots estimates from equivalent regres-
sions but using second-order polynomials in distance. Each RD estimate is based on the MSE band-
width selection method and triangular kernel function. 
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Figure A3. Placebo testing: estimated discontinuity in pollution at displaced Huai River boundaries.
Notes: In (a), each point plots the point estimate of a separate estimation of α1 in Equation (2) along
with the 95 percent confidence interval at the displaced Huai River boundaries. In (b), each point
plots the point estimate of a separate estimation of δ1 in Equation (3) along with the 95 percent
confidence interval at the displaced Huai River boundaries. Each RD estimates is based on the MSE
bandwidth selection method and triangular kernel function.
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Figure A4. Robustness to alternative bandwidths for the impact of the Huai River Policy on PM10.
Notes: Each point plots the point estimate of a separate estimation of α1 in Equation (2) along with
the 95 percent confidence interval, ranging from 100 km to 1000 km bandwidths. (Panel A) plots
estimates using linear polynomials in distance. (Panel B) plots estimates from equivalent regressions
but using second-order polynomials in distance. Each RD estimate is based on the MSE bandwidth
selection method and triangular kernel function.
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Figure A5. Robustness to alternative bandwidths for the impact of the Huai River Policy on work.
Notes: Each point plots the point estimate of a separate estimation of δ1 in Equation (3) along with
the 95 percent confidence interval, ranging from 100 km to 1000 km bandwidths. (Panel A) plots
estimates using linear polynomials in distance. (Panel B) plots estimates from equivalent regressions
but using second-order polynomials in distance. Each RD estimate is based on the MSE bandwidth
selection method and triangular kernel function.
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Figure A7. McCrary test of the discontinuity in distances of counties from the Huai River. Notes: The
hollow circles represent the point estimates within bins. Solid lines are the density curve estimates.

Table A1. Descriptive statistics.

Variables Obs Mean Std. Dev Min Max

Working place selection
Working near home (Yes = 1) 802,178 0.702 0.458 0.000 1.000

Air pollution
PM10 concentration (µg/m3) 802,178 89.241 30.496 25.192 181.676

Individual characteristics
Gender (Male = 1) 802,178 0.487 0.500 0.000 1.000
Nation (Han = 1) 802,178 0.086 0.281 0.000 1.000

Age 802,178 37.364 20.593 0.000 111.000
Marriage (Yes = 1) 802,178 0.735 0.441 0.000 1.000

Type of hukou (Urban = 1) 802,178 0.410 0.492 0.000 1.000
Meteorological conditions

Temperature of county (◦C) 802,178 3.627 3.883 24.473 3.627
Precipitation of county (mm) 802,178 0.508 0.000 10.118 0.508

Relative humidity 802,178 9.008 34.465 86.018 9.008
Wind speed (m/s) 802,178 0.515 0.931 5.845 0.515

Note: This table reports the summary statistics for the main variables used in the analysis.

Table A2. Robustness to using the alternative air pollution measure (AQI).

Variables RD Estimates

(1) (2) (3) (4) (5) (6)

Panel A: Impact of the Huai River Policy on AQI
AQI 13.241 *** 12.781 *** 12.238 *** 13.331 *** 11.942 *** 12.852 ***

(3.032) (3.103) (4.328) (4.219) (3.534) (3.163)
Bandwidth 494.842 503.716 467.435 473.853 482.471 453.289

Panel B: Impact of the AQI on working near home
Working near home 0.142 ** 0.148 ** 0.161 ** 0.136 ** 0.141 ** 0.157 **

(0.061) (0.065) (0.067) (0.063) (0.064) (0.062)
Bandwidth 478.537 486.562 469.364 459.817 467.384 439.715

Observations 802,178 802,178 802,178 802,178 802,178 802,178
Controls N N N Y Y Y
Kernel Triangular Epanech. Uniform Triangular Epanech. Uniform

Note: Each cell in the table represents a separate RD estimate along the Huai River using local linear regressions with
different kernel functions. Robust standard errors in parentheses are clustered at the county level. Controls include
weather information and sociodemographic variables defined in Table 1. ** Significant at 5%; *** significant at 1%.
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Table A3. RD estimates of the impacts on the alternative work measure.

Variables Panel A: Impact of the Huai River
Policy on Work Panel B: Impacts of PM10 on Work

(1) (2) (1) (2)

Driving to work −0.128 *** −0.124 *** −0.244 ** −0.242 **
(0.013) (0.014) (0.113) (0.119)

Bandwidth 365.666 316.909 296.336 297.601
Time required −3.709 *** −3.781 *** −7.186 *** −7.499 **

(1.263) (1.251) (2.195) (2.927)
Bandwidth 354.039 356.565 233.738 229.445

Observations 802,178 802,178 802,178 802,178
Controls N Y N Y
Kernel Triangular Triangular Triangular Triangular

Note: Each cell in the table represents a separate estimate or regression. Panel A reports the RD results estimating
the impact of the Huai River Policy on work. Panel B reports the fuzzy RD results estimating the impact of
10 µg/m3 of PM10 on work, treating distance from the Huai River as the forcing variable and PM10 as the treating
variable, with the Huai River representing a “fuzzy” discontinuity in the level of air pollution exposure. The triangular
kernel function is used. Robust standard errors in parentheses are clustered at the county level. Controls include
weather information and sociodemographic variables defined in Table 1. ** Significant at 5%; *** significant at 1%.

Table A4. RD estimates of the impacts on migration.

Variables Panel A: Impact of the Huai River
Policy on Migration Panel B: Impacts of PM10 on Migration

(1) (2) (1) (2)

Migration 0.053 0.070 0.146 0.195
(0.122) (0.123) (0.216) (0.271)

Bandwidth 219.60 243.68 218.91 228.66
Observations 802,178 802,178 802,178 802,178

Controls N Y N Y
Kernel Triangular Triangular Triangular Triangular

Note: Each cell in the table represents a separate estimate or regression. Panel A reports the RD results estimating
the impact of the Huai River Policy on migration. Panel B reports the fuzzy RD results estimating the impact of
10 µg/m3 of PM10 on migration, treating distance from the Huai River as the forcing variable and PM10 as the
treating variable, with the Huai River representing a “fuzzy” discontinuity in the level of air pollution exposure.
The triangular kernel function is used. Robust standard errors in parentheses are clustered at the county level.
Controls include weather information and sociodemographic variables defined in Table 1.

Table A5. RD estimates for samples with a residence duration at the same prefecture-level city of
more than 5 years.

Variables Panel A: Impact of the Huai
River Policy on Work Panel B: Impacts of PM10 on Work

(1) (2) (1) (2)

Working near home 0.051 ** 0.054 ** 0.128 *** 0.124 ***
(0.022) (0.027) (0.041) (0.042)

Bandwidth 277.742 279.925 431.48 427.57
Observations 698,504 698,504 698,504 698,504

Controls N Y N Y
Kernel Triangular Triangular Triangular Triangular

Note: Each cell in the table represents a separate estimate or regression. Panel A reports the RD results estimating
the impact of the Huai River Policy on work. Panel B reports the fuzzy RD results estimating the impact of
10 µg/m3 of PM10 on work, treating distance from the Huai River as the forcing variable and PM10 as the treating
variable, with the Huai River representing a “fuzzy” discontinuity in the level of air pollution exposure. The triangular
kernel function is used. Robust standard errors in parentheses are clustered at the county level. Controls include
weather information and sociodemographic variables defined in Table 1. ** significant at 5%; *** significant at 1%.
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