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Abstract

Background: Statistical analyses of biological problems in life sciences often lead to
high-dimensional linear models. To solve the corresponding system of equations,
penalization approaches are often the methods of choice. They are especially useful
in case of multicollinearity, which appears if the number of explanatory variables
exceeds the number of observations or for some biological reason. Then, the model
goodness of fit is penalized by some suitable function of interest. Prominent
examples are the lasso, group lasso and sparse-group lasso. Here, we offer a fast and
numerically cheap implementation of these operators via proximal gradient descent.
The grid search for the penalty parameter is realized by warm starts. The step size
between consecutive iterations is determined with backtracking line search. Finally,
seagull -the R package presented here- produces complete regularization paths.

Results: Publicly available high-dimensional methylation data are used to compare
seagull to the established R package SGL. The results of both packages enabled a
precise prediction of biological age from DNA methylation status. But even though
the results of seagull and SGL were very similar (R2 > 0.99), seagull computed the
solution in a fraction of the time needed by SGL. Additionally, seagull enables the
incorporation of weights for each penalized feature.

Conclusions: The following operators for linear regression models are available in
seagull: lasso, group lasso, sparse-group lasso and Integrative LASSO with Penalty
Factors (IPF-lasso). Thus, seagull is a convenient envelope of lasso variants.

Keywords: Optimization, Machine learning, High-dimensional data, R package

Background
Linear regression is a widely used tool to explore the dependence between a response

variable and explanatory variables. For example, in genome-wide association studies,

counts of genetic variants along the genome are related to records of a disease or per-

formance trait. The high throughput of modern biotechnological procedures enables
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studying an extremely large amount of explanatory variables (p). However, this often

goes along with relatively few observations (n; p≫ n), making the estimation of effects

a challenge. As an example, high-dimensional methylation data are recently used to

build regression models termed epigenetic clocks, which enable biological age to be

predicted from DNA methylation status. Especially in the presence of multicollinearity,

penalization methods have proved to be useful; Tikhonov, elastic net [1] and lasso [2]

regularization are famous examples.

Standard approaches for epigenetic clocks employ elastic net regression, which per-

forms well but typically results in only ~ 100 methylation sites with non-zero effect,

limiting the potential for their genome-wide annotation and interpretation [3]. To sim-

ultaneously detect non-zero effects and account for the relatedness of explanatory vari-

ables, the lasso has been modified and enhanced to the group lasso [4], the sparse-

group lasso [5] and the “Integrative LASSO with Penalty Factors” (IPF-lasso) [6]. These

particular modifications of the lasso assume an underlying group structure within the

explanatory variables. For instance, in genome-wide association studies, a group struc-

ture can be identified from linkage and linkage disequilibrium among chromosome re-

gions. Thus, a method that exploits this structure such as the (sparse-)group lasso has

the potential to improve the accuracy of results. seagull -the R package presented here-

contains implementations of the lasso variants mentioned above focusing on precision

of parameter estimation and computational efficiency.

Hereinafter we briefly describe the optimization problem and all relevant input pa-

rameters of seagull. We then use public data to evaluate our package and to compare it

to the established R package SGL [7].

Implementation
The R package seagull offers regularization paths for optimization problems of the

form:

min
b;uð Þ

1
2n

y − Xb − Zuk k22 þ αλ uk k1 þ 1 − αð Þλ uk k2;1: ð1Þ

This is also known as the sparse-group lasso [5]. The first term expresses the “good-

ness of fit”. The second and third term are penalties, both of which are multiplied with

the penalty parameter λ > 0. The vector y contains n observations of the response vari-

able. The vectors b and u represent non-penalized and penalized effects, respectively; X

and Z are the corresponding design matrices. Moreover, α ∈ [0, 1] is the mixing param-

eter which convexly links the penalties.

In the two limiting cases of α = 1 and α = 0, the resulting objective function is the

lasso [2] and the group lasso [4], respectively. However, if α is chosen to be less than 1,

it is assumed that the explanatory variables have an underlying group/cluster structure

(with non-overlapping groups). Groups need to be determined prior to the call of sea-

gull, for instance, by applying a suitable cluster algorithm to the explanatory variables

or by grouping them according to the source of measurement (RNA expression, SNP

genotypes, etc.). Referring to this structure, the entries of u can be separated into the

corresponding groups, say u(l) for group l and pl is the size of group l (L is the total

number of groups). Hence:
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uk k2;1 ¼
XL
l¼1

ffiffiffiffi
pl

p
u lð Þ�� ��

2:

The penalty operators lasso, group lasso and sparse-group lasso are available in sea-

gull. Furthermore, it is possible to consider weights for each explanatory variable and

group. Thus, the implemented extension of the optimization problem (1) is:

min
b;uð Þ

1
2n

y − Xb − Zuk k22 þ αλ
Xp
j¼1

ωF
j u j

�� ��þ 1 − αð Þλ
XL
l¼1

ωG
l u lð Þ�� ��

2; ð2Þ

where ωF
j and ωG

l are positive weights for feature j and group l, respectively. The

weights for groups are defined as:

ωG
l ¼

ffiffiffiffiffiffiffiffiffiffi
plω

F
j

q
;

where the average over weights of features is taken over those features that belong to

group l, i.e., ωF
j ¼ 1

pl

P
j in group lω

F
j . Hence, if all weights ωF

j are set to 1, the

optimization problem (2) yields problem (1).

The option of including weights can be used for any reason but it also enables the

user to apply the strategy of IPF-lasso. In order to show this, we go back to

optimization problem (2) with α = 1:

min
b;uð Þ

1
2n

y − Xb − Zuk k22 þ λ
Xp
j¼1

ωF
j u j

�� ��:
For convenience, we assume the absence of any effects b and multiply the entire ex-

pression by 2n. Thus:

min
u

y − Zuk k22 þ 2nλ
Xp
j¼1

ωF
j u j

�� ��;
where a simplification can be obtained via λ j ¼ 2nλωF

j :

min
u

y − Zuk k22 þ
Xp
j¼1

λ j u j

�� ��:
As a last step we assume that the entries of u are obtained from M different sources,

i.e., “modalities” – as called by the authors of [6]. Then, we let all λ’s which belong to

the same modality m have the same value λ(m). Therefore, the last term in the above ex-

pression can be written as a sum over modalities:

Xp
j¼1

λ j u j

�� �� ¼XM
m¼1

λ mð Þ u mð Þ�� ��
1:

And this immediately leads to the IPF-lasso. So in the seagull package, this particular

lasso variant is implicitly included. The weights for features just need to be set accord-

ingly, i.e., the same weight for features that belong to the same modality.

The penalty parameter λ > 0 reflects the strength of the penalization. Our package

provides the opportunity to calculate a maximal value for λ (i.e., λmax) and to perform a

grid search by gradually decreasing this value down to a minimal value (i.e., λmin). This
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minimum value is determined as a user-specified proportion ξ of λmax, i.e., λmin = ξλmax.

The sequence of penalty parameters is then calculated on a logarithmic scale. To effi-

ciently accelerate the corresponding grid search, we implemented warm starts. Thus,

the solution of b and u for the current value of λ is used as starting point for the subse-

quent value of λ. Eventually, seagull provides a sequence of penalty parameters and cal-

culates the corresponding path of solutions.

The optimization problem is solved via proximal gradient descent (PGD; e.g., [8]).

PGD is an extension of gradient descent for optimization problems which contain non-

smooth parts, i.e., problems where the gradient is not available for the entire objective

function. More details about this algorithm are presented in Additional file 4. As PGD

is an iterative algorithm, a proper step size between consecutive iterations is crucial for

convergence. This step size is determined with backtracking line search.

In the best case, an iterative algorithm such as PGD converges to the solution of the

optimization problem. But typically, in the neighborhood of the solution the gain from

one iteration to the next iteration decreases. Thus, a stopping criterion is implemented.

Such a criterion is often based on a measurement of gain itself. In seagull, we imple-

mented a stopping criterion which measures the gain from iteration k − 1 to k and

scales it with the estimates at iteration k:

bb
u

 ! k½ �
−

bb
u

 ! k − 1½ �������
������
∞bb

u

 ! k½ �������
������
2

≤εrel:

We refer to εrel as the relative accuracy, due to its definition as a ratio.

All implemented algorithms are based on the R package Rcpp 1.0.3 [9].

Data and evaluation criteria
We analyzed blood DNA methylation profiles at about 1.9 million CpG sites and its as-

sociation with chronological age in mice (n = 141). The data set is publicly available

and described in detail in [10]. We split the data set into training (n = 75) and valid-

ation (n = 66) data, where all age classes appeared almost equally in both sets, and ap-

plied the sparse-group lasso variant of seagull 1.0.5. R scripts for processing and

analyzing the data are available in the supplementary material (Additional files 1 and

2). Ready-to-use data are also available at Code Ocean (see Availability of data and

materials).

We compared the outcome of seagull to that of the established R package SGL 1.3

[7]. Its implementation is based on accelerated generalized gradient descent. Both pack-

ages offer regularization paths to the same optimization problem (1). Thus, the input

parameters for both packages are very similar. For example, we set the mixing param-

eter α to 0.95, a grid of 50 values for λ, and the ratio ξ between minimal and maximal λ

equal to 0.001. However, despite the similarities between seagull and SGL, the imple-

mented convergence criteria differ due to different meanings of accuracy parameters.

In the SGL package, this parameter is an upper bound for the ℓ1-norm of the estimates
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of b and u. Unless stated otherwise, we set the accuracy parameter for SGL and seagull

to 10− 4 and 10− 6, respectively.

We used the following criteria to evaluate the two packages: the minimum mean

squared error (MSE) of predicted age based on methylation data (i.e., methylation age)

and measured chronological age in the validation set along the regularization path, the

squared correlation coefficient R2 between predicted and chronological age, the number

of features with an estimated effect different from zero (i.e., non-zeros), and the execu-

tion time needed to compute the entire regularization path.

Another example for the application of seagull in genome-wide association studies is

given in Additional file 3. It is shown how parameters (i.e., weights) can be tuned for

IPF-lasso.

Results and discussion
Figure 1a shows the model fit based on regression coefficients which led to the mini-

mum mean squared error of chronological age in the validation set. The correlation be-

tween the chronological and the predicted age (“methylation age”) was 95.8%, and 5095

non-zero effects were identified with seagull. Hence, using only the identified fraction

of CpG sites enabled a precise prediction of age. As an option for regulating the spars-

ity, increasing the accuracy parameter of seagull by two magnitudes (10− 6 to 10− 4) in-

creased the number of non-zero effects by one magnitude. Though the implemented

convergence criteria differed between both packages, results were similar. The correl-

ation between regression coefficients leading to the minimum mean squared error was

99.5% (Fig. 1b). The number of non-zero effects obtained with SGL was 8822. In con-

trast to SGL, seagull computed the solution in a fraction of the time (seagull: ~ 2 h;

SGL: ~ 45 h).

Table 1 displays the impact of the accuracy parameter on evaluation criteria in

detail. If the accuracy parameter of seagull was set to 10− 6 or 10− 8, seagull out-

ran SGL with respect to all evaluation criteria. The measures for R2 and non-

Fig. 1 a Relationship between observed (chronological) and predicted (methylation) age. Each blue dot
represents a sample in each class of observed chronological age (3mos, 4mos, etc.). Mean methylation age
and error bars are displayed in black for each class of age. b Methylation age obtained with seagull vs. SGL.
Blue dots represent samples; the dashed line is a regression line with slope 1
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zeros are both based on the value of λ for which the minimum MSE of predic-

tion was obtained. The dependence between λ and the corresponding MSE is

shown in Fig. 2.

In addition to SGL, seagull enables the opportunity to introduce weights for each pe-

nalized feature. This option was recently investigated in [11], where an optimization

problem similar to (2) was used to estimate effects of SNP genotypes in a flowering

plant breed (Arabidopsis thaliana). In that study, weights were defined according to

Table 1 Performance evaluation

R package Accuracy parameter R2 MSE Non-zero Time

SGL 10−4 0.91 12.78 8822 45 h 20 min

seagull 10−4 0.92 12.38 65,463 20 min

seagull 10−5 0.92 11.57 11,823 40 min

seagull 10−6 0.92 11.79 5095 2 h 13min

seagull 10−8 0.92 11.84 5072 4 h 50min

Accuracy parameter refers to a package-dependent convergence parameter; R2 is the squared correlation coefficient and
MSE is the mean squared error of chronological and predicted age; Non-zero denotes the number of CpG sites with non-
zero effect estimate; Time is the computational time needed to calculate the full regularization path

Fig. 2 Path of mean squared error (MSE) of predicted age for each λ. Results of seagull and SGL are
represented in blue and violet, respectively. The vertical lines mark the index in the sequence of λ’s with
lowest MSE in corresponding color. The respective lowest MSE of seagull and SGL were 11.79 and 12.78
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the minor allele frequency (MAF) of genetic variants at each locus j, i.e., ωF
j ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MAF jð1 −MAF jÞ
p

. Unlike seagull, the optimization problem described in [11] does

not involve the incorporation of group weights other than the square root of the size of

each group.

Conclusions
Here we introduced our R package seagull, which offers regularization paths for the

lasso, group lasso, sparse-group lasso, and IPF-lasso for linear regression models. We

compared seagull to the established R package SGL. Both packages delivered similar re-

sults in terms of mean squared error, squared correlation coefficient, and sparsity pat-

tern. Despite these similarities, seagull computed the solution in a fraction of time that

SGL required. Furthermore, only seagull offered the opportunity to incorporate weights

for each penalized variable which enables further variants of the lasso such as the IPF-

lasso. In summary, seagull is a convenient envelope of lasso variants.

Availability and requirements
Project name: seagull.

Project home page: https://CRAN.R-project.org/package=seagull

Source code: https://github.com/jklosa/seagull

Operating system(s): Platform independent.

Programming language: R, Rcpp.

Other requirements: R (> = 3.5.0).

License: GPL (> = 2).

Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03725-w.

Additional file 1. An R script for downloading and processing the methylation data used in this study.

Additional file 2. An R script for the analysis of the processed data to generate Fig. 1.

Additional file 3. An R script for performing an exemplary genome-wide association study.

Additional file 4. A document with information about proximal gradient descent for the sparse-group lasso.
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