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Abstract: Numerous novel improved support vector machine (SVM) methods are used in leak
detection of water pipelines at present. The least square twin K-class support vector machine
(LST-KSVC) is a novel simple and fast multi-classification method. However, LST-KSVC has a
non-negligible drawback that it assigns the same classification weights to leak samples, including
outliers that affect classification, these outliers are often situated away from the main leak samples.
To overcome this shortcoming, the maximum entropy (MaxEnt) version of the LST-KSVC is proposed
in this paper, called the MLT-KSVC algorithm. In this classification approach, classification weights
of leak samples are calculated based on the MaxEnt model. Different sample points are assigned
different weights: large weights are assigned to primary leak samples and outliers are assigned small
weights, hence the outliers can be ignored in the classification process. Leak recognition experiments
prove that the proposed MLT-KSVC algorithm can reduce the impact of outliers on the classification
process and avoid the misclassification color block drawback in linear LST-KSVC. MLT-KSVC is more
accurate compared with LST-KSVC, TwinSVC, TwinKSVC, and classic Multi-SVM.

Keywords: leak detection; outliers; LST-KSVC; maximum entropy; MLT-KSVC

1. Introduction

Water supply pipelines are important infrastructure in cities, and maintaining the
stable operation of water supply pipelines has significant economic, sanitary, and envi-
ronmental worth. Therefore, the real-time monitoring of pipeline operation status and
detection of suspected leak risks are significant for maintaining the safe operation of pipe
network, avoiding water resource waste, and realizing sustainable production [1].

As a vital technology in the machine learning field, the support vector machine
(SVM) [2] and its improved versions are widely utilized in pipeline leak detection and lo-
calization. To achieve greater efficiency in leak detection in water pipes, a novel improved
multi-class SVM algorithm is herein proposed, called maximum entropy [3] (MaxEnt)
version of LST-KSVC [4] (MLT-KSVC). This paper is organized as follows. Various leak
detection and location methods proposed in recent years are summarized in Section 2. The
theoretical explanation of LST-KSVC and MLT-KSVC is presented in Section 3. Experimen-
tal setup and data processing are presented in Section 4. Finally, the conclusions are offered
in Section 5.

2. Related Work

In recent years, several leak detection and location methods based on artificial intelli-
gence algorithms have been proposed. This paper divides these technologies into two cate-
gories: (1) leak recognition or detection method based on machine learning algorithms [5–8]
and (2) leak recognition or detection method based on deep learning algorithms [9–12].
These two methods collect leak acoustic signal, pressure signal, flow signal, or transient
water hammer wave signal of the water pipes to build leak dataset.
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In the leak detection system based on machine learning algorithms, Bohorquez [13]
presented a methodology that uses artificial neural networks (ANNs) to predict the pres-
ence of leak features in a pipeline. This methodology demonstrated the potential of the
combined use of both fluid transient pressure waves and ANNs to detect leak features in
pipelines. Pérez [14] also proposed an improved ANNs leak diagnosis for fluid transport
pipelines. In this methodology, the pressure and flow rate were acquired as original data
for ANNs, and the pipe friction factor was used as an input to estimate the leak point.
Gong [15] proposed a pipe leak detection method based on acoustic emission (AE) data
and neural networks. In this detection method, a leak classifier was built based on a
backpropagation neural network after leak feature extraction and analysis from AE signals.
Diao [16] combined particle swarm optimization (PSO) algorithm, MaxEnt, and variational
mode decomposition (VMD) to remove background noise from leak AE signals. Then, the
SVM was employed to complete leak recognition for de-noised leak data. Quy [17] used
the spectral portrait method to pre-process pipe leak AE signals. Next, a multi-class SVM
classifier was used for leak detection.

In the leak detection system based on deep learning algorithms, Kang [18] combined
a one-dimensional convolutional neural network (CNN) and SVM to solve computational
and time cost problems in an online pipe leak detection. Cody [19] combined CNN with
variational autoencoder to detect small leaks in buried water pipelines. Lang [20] recom-
mended a method to detect small leak apertures in pipelines. The method was composed
of wavelet packet analysis (WPA) and deep belief network (DBN) with independent com-
ponent regression (ICR).

However, these methods fail to remove the interference of noise. When SVM and
its improved algorithms are used in pipeline leak monitoring, outliers often disturb the
classification processing. Such outliers are distant from the data sample center and they
are mainly brought about by interference noise. To overcome this shortcoming, this paper
introduces a novel algorithm, the MLT-KSVC algorithm, which is based on the recently
presented LST-KSVC algorithm. Unlike the LST-KSVC algorithm, which assigns the same
classification weights to all data samples, MLT-KSVC uses the MaxEnt model to build two
classification weight matrices for leak samples. In these matrices, outliers are assigned
small values, minimizing their negative effect on classification, and effectively solving
the problem of outlier interference to the classification algorithm. Some researchers have
combined entropy theory with SVMs algorithm. Zhang [21] used sample entropy to extract
features from multichannel electroencephalography (EEG) signals; the extracted features
were used for the classification of classic SVM. Xie [22] combined optimized variational
mode decomposition, permutation entropy, and normalized Spearman correlation coeffi-
cient to extract features from ship-radiated noise (S-RN) signals. Then, these features were
classified by a multi-class SVM algorithm. However, most of these combinations are not
directly aimed at outliers, and their effect on outliers is very limited.

3. Theory
3.1. Background of LST-KSVC

LST-KSVC is a novel multi-class classification algorithm that uses the "one-versus-one-
versus-rest" strategy [23] to evaluate all training samples with ternary output {−1, 0, +1}. In
this section, we use D = {(x1, y1), (x2, y2), . . . , (xm, ym)} as the training data set. Where xi
represents the input sample in the m-dimensional real space Rm and yi ∈ Nq is the q-class
outputs i = 1, . . . , m. In the LST-KSVC classification, the formulas for two non-parallel
hyperplanes are as follows: {

w+
1 x + b+ = 0

w−2 x + b− = 0
(1)
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where w+
1 and w−2 ∈ Rn are the normal matrices of the hyperplane, but b+ and b− ∈ R

are two constants. The decision functions of LST-KSVC are obtained by the following two
optimization functions:

min
w+

1 ,b+ ,δ,ξ,η

1
2

δTδ +
c1

2
ξTξ +

c2

2
ηTη (2)

s.t.


Aw+

1 + e+b+ = δ
−e− −

(
Bw+

1 + e−b+
)
= ξ

e0(ε− 1)−
(
Cw+

1 + e0b+
)
= η

and
min

w−2 ,b− ,δ∗ ,ξ∗ ,η∗

1
2

ξ∗Tξ∗ +
c3

2
δ∗Tδ∗ +

c4

2
η∗Tη∗ (3)

s.t.


Bw−2 + e−b− = ξ∗

e+ −
(
Aw−2 + e+b−

)
= δ∗

e0(1− ε)−
(
Cw−2 + e0b−

)
= η∗

In Equations (2) and (3), δ and δ∗, ξ and ξ∗, and η and η∗ belong to the l1-dimensional
real space, l2-dimensional real space, and l3-dimensional real space, respectively. A, B, C ∈
Rli×n(i = 1, 2, 3), ci (i = 1, . . . , 4), and ε are positive real factors. e1 and e2, e0 are vectors
of appropriate dimensions. The final classification decision functions of LST-KSVC in the
linear case are determined as:

f (x) =


+1, if xTw+

1 + b+ > −1 + ε

−1, if xTw−2 + b− < 1− ε
0, otherwise

(4)

The decision functions of LST-KSVC in the nonlinear case are determined as:

f (x) =


+1, if k

(
xT, DT)w+

1 + b+ > −1 + ε

−1, if k
(
xT, DT)w−2 + b− < 1− ε

0, otherwise
(5)

3.2. MLT-KSVC
3.2.1. Background of MaxEnt Model

The principle of MaxEnt is to find the largest entropy model from the probability
model set that satisfies the known constraint conditions. Given a data set {xi, yi}N

i=1, the
feature function of the data set is fi(x, y), i = 1, 2, . . . n, and the constraints of the MaxEnt
model are obtained according to the empirical distribution condition:

∑
x,y

P̃(x)p(y|x) f (x, y) = ∑
x,y

P̃(x, y) f (x, y) (6)

Assume that all sets C satisfying the constraints are:

C = EP( fi) = EP̃( fi), i = 1, 2, . . . , n (7)

The conditional entropy is defined on the conditional probability distribution P(Y|X) is:

H(P) = −∑
x,y

P(y, x)lgP(y|x) = −∑
x,y

P̃(x)P(y|x)lgP(y|x) (8)

The goal is to find the corresponding P(y|x) when H(P) is the largest. Here, a minus
sign is added to H(P) to find the extreme minimum value. To make −H(P) a convex
function, it is convenient to use the convex optimization method to find the extreme value.
Therefore, the loss function for MaxEnt is:

P∗ = argmax
P∈C

H(P) (9)
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The objective function of the MaxEnt model is:

min
P∈C

∑
x,y

P̃(x)P(y|x)lgP(y|x) (10)

s.t. Ep( fi) = Ep̃( fi), ∑
y

P(y|x) = 1 (11)

The objective function of the MaxEnt model is an optimization problem with con-
straints. Based on the principle of Lagrangian duality, this problem can be transformed
into an unconstrained optimization problem. First, we introduce a series of Lagrangian
multipliers ω0, ω1, . . . , ωn, and define the Lagrangian function L(P, ω) corresponding to
this objective function:

L(P, ω) = −H(P) + ω0

[
1−∑

y
P(y|x)

]
+

n

∑
i=1

ωi
(
EP̃( fi)− EP( fi)

)
(12)

Next, the optimization problem is transformed into min
P∈C

L(P, ω), where the Lagrangian

function L(P, ω) must meet the constraints to obtain the extreme minimum value. After
satisfying the constraints, L(P, ω) = maxL(P, ω) is obtained, and then the optimization
problem is transformed into an extreme minimum-maximum solution problem that is
convenient for Lagrangian dual calculation:

min
P∈C

max
ω

L(P, ω) (13)

Since L(P, ω) is a convex function with respect to P, according to the Lagrangian
duality, the extreme minimum-maximum problem of L(P, ω) is equivalent to the extreme
maximum-minimum problem:

min
P∈C

max
ω

L(P, ω) = max
ω

min
P∈C

L(P, ω) (14)

Next, we find the extreme minimal problem min
P∈C

L(P, ω) of max
ω

min
P∈C

L(P, ω), and

min
P∈C

L(P, ω) is solved to obtain the function of ω, denoted as Ψ(ω):

Ψ(ω) = min
P∈C

L(P, ω) = L(Pω, ω) (15)

The solution Pω of the above formula is:

Pω = argmin
P∈C

L(P, ω) = Pω(y|x) = [Zω(x)]−1 exp

(
n

∑
i=1

ωi fi(x, y)

)
(16)

Zω(x) = ∑
y

exp

[
n

∑
i=1

ωi fi(x, y)

]
(17)

In Equation (17), fi(x, y) represents the feature function and ωi is the weight value of
the feature function, and thus Pω(y|x) is the MaxEnt model. The minimization problem is
solved to obtain the weight value function of ω, and the solved optimal solution is recorded
as ω∗:

ω∗ = argmax
ω

[
∑
x,y

P̃(x, y)
n

∑
i=1

ωi fi(x, y) + ∑
x

P̃(x)lgZω(x)

]
(18)

A series of obtained weight values ω∗i are filled into the matrix W1+. Then, ω∗i are
reversed to obtain −ω∗i and filled into matrix W2−. Because outliers are distant from the
data center, their probability (P) value belonging to the data set is the lowest among all
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sample points. Hence, the weight value corresponding to outliers is much smaller than
other normal sample points.

3.2.2. Linear MLT-KSVC

Similar to LST-KSVC, MLT-KSVC also has two hyperplanes. The two hyperplanes in
linear MLT-KSVC are defined as follows:{

w+
1 x + b+ = 0

w−2 x + b− = 0
(19)

where w+
1 and w−2 are normal matrices of the hyperplane, w+

1 , w−2 ∈ Rn, b+ and b−
belong to R real number space. Next, W1+ and W2− matrices are introduced into the
objective functions of MLT-KSVC. This operation makes MLT-KSVC avoid the negative
impact of outliers to the greatest extent. The obtained objective functions of MLT-KSVC are
as follows:

min
w+

1 ,b+ ,α,γ,η

1
2

αTα +
c1

2
γTγ + c2λTη (20)

s.t.


W1+

(
Aw+

1 + e+b+
)
= α

W2−
{
−e− −

(
Bw+

1 + e−b+
)}

= γ
e0(γ− 1)−

(
Cw+

1 + e0b+
)
= η

and
min

w−2 ,b− ,α∗ ,γ∗ ,η∗

1
2

γ∗Tγ∗ +
c3

2
α∗Tα∗ + c4λ∗Tη∗ (21)

s.t.


W2−

(
Bw−2 + e−b−

)
= γ∗

W1+
{

e+ −
(
Aw−2 + e+b−

)}
= α∗

e0(1− γ)−
(
Cw−2 + e0b−

)
= η∗

where ci (i = 1, . . . , 4) is positive real number factor, W1+ and W2− are obtained from the
MaxEnt model, α and α∗ are two vectors belonging to the l1-dimensional real number
space, γ and γ∗ are two vectors belonging to the l2-dimensional real number space, and η
and η∗ are two vectors belonging to the l3-dimensional real number space. The matrices
A, B, and C all belong to the real number space Rli×n(i = 1, 2, 3), e0 and e1, e2 are three
adjustment vectors. λ and λ∗ also belong to the l3-dimensional real number space. They
are calculated by the least-squares linear loss function and can be used to avoid the
local convergence phenomenon of the objective function. Next, constraint conditions in
Equations (20) and (21) are substitute into the objective functions so that the objective
functions are optimized under the constraint conditions. The new objective functions
obtained are as follows:

min
w+

1 ,b+ ,α,γ,η

1
2‖W1+

(
Aw+

1 + e+b+
)
‖2

+ c1
2 ‖W2−

{
−e− −

(
Bw+

1 + e−b+
)}
‖2

+c2λT{e0(γ− 1)−
(
Cw+

1 + e0b+
)} (22)

and

min
w−2 ,b− ,α∗ ,γ∗ ,η∗

1
2‖W2−

(
Bw−2 + e−b−

)
‖2

+ c3
2 ‖W1+

{
e+ −

(
Aw−2 + e+b−

)}
‖2

+c4λ∗T
{

e0(1− γ)−
(
Cw−2 + e0b−

)} (23)

It can be seen that Equations (22) and (23) are two minimization problems. Partial
derivatives of w+

1 , b+ and w−2 , b− are respectively determined from Equations (22) and (23),
and then all partial derivatives are equal to zero:

W1+A
(
W1+Aw+

1 + W1+e+b+
)
+ c1W2−B

(
W1+Bw+

1 + W1+e−b+ + W1+e−
)
− c2λ∗TC = 0

W1+e+
(
W1+Aw+

1 + W1+e+b+
)
+ c1W2−e−

(
W1+Bw+

1 −W1+e−b+ −W1+e−
)
− c2λ∗Te0 = 0

(24)
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W2−B
(
W2−Bw−2 + W2−e−b−

)
+ c3W1+A

(
W1+Aw−2 −W1+e+b− + W1+e+

)
− c4λ∗TC = 0

W2−e−
(
W2−Bw+

1 + W2−e−b−
)
+ c3W1+e+

(
W1+Aw−2 + W1+e+b− −W1+e+

)
− c4λ∗Te0 = 0

(25)

Subsequently, Equations (24) and (25) are organized into the matrix forms (Equations
(26) and (27)). 

c2λ∗T
[

C
e0

]
{M + c1N}−1 =

[
w+

1
b+

]
M =

[
W1+AW1+A −W1+AW1+e+
−W1+e+W1+A W1+e+W1+e+

]
N =

[
W2−BW1+B −W1+BW−1 e−
−W1+e−W2−B W2−e−W1+e−

] (26)



c4λ∗T
[

C
e0

]
{M + c3N}−1 =

[
w−2
b−

]
M =

[
W2−BW2−B −W2−BW2−e−
−W1+e+W1+A W1+e+W1+e+

]
N =

[
W1+AW1+A −W1+AW1+e+
−W2−e+W+

1 A W1+e−W1+e−

] (27)

Therefore, the solutions for w+
1 , b+ and w−2 , b− can be solved by Equations (26) and (27).

After w+
1 , b+ and w−2 , b− are solved, Equation (19) can be used to construct two linear

classification hyperplanes of MLT-KSVC. The proposed linear MLT-KSVC is summarized
in Algorithm 1.

Algorithm 1: Linear MLT-KSVC

(1) Initialize matrices A, B, and C ∈ Rli×n(i = 1, 2, 3), e0 and e1, e2.
(2) Run the program based on MaxEnt structure to obtain the weight matrices W1+, W2−.
(3) Select the kernel parameter as “linear”, and use the grid search method to optimize the
hyperparameter C and penalty factor G.
(4) Initialize w+

1 , b+ and w−2 , b−, α and α∗, γ and γ∗, η and η∗, λ and λ∗.
(5) For iter ≥ 0:
Calculate

c2λ∗T
[

C
e0

]
{M + c1N}−1 =

[
w+

1
b+

]
c4λ∗T

[
C
e0

]
{M + c3N}−1 =

[
w−2
b−

]
(6) End for convergence and obtain the optimal solutions: w+

1 , b+ and w−2 , b−.

3.2.3. Nonlinear MLT-KSVC

Considering that the distribution of sample points is not regularly linearly separable
in real classification, extending the linear classification theory of MLT-KSVC to a nonlinear
version is necessary. In nonlinear MLT-KSVC case, two classification hyperplanes are no
longer linear functions, they are defined as follows:{

Kw+
1
(
xT , DT)+ b+ = 0

Kw−2
(
xT , DT)+ b− = 0

(28)

where K(·) is an arbitrary kernel function [24]. It maps the complex linear inseparable
problem to a high-dimensional space, transforming the linear inseparable problem into
a linear separable problem. Similar to the linear MLT-KSVC, after the classification hy-
perplanes are obtained, the objective functions for solving w+

1 , b+ and w−2 , b− should be
defined. The objective functions of the nonlinear MLT-KSVC are defined as follows:

min
w+

1 ,b+ ,α,γ,η

1
2

αTα +
c1

2
γTγ + c2λTη (29)
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s.t.


W1+

(
Kw+

1
(
A, DT)+ e+b+

)
= α

W2−
{
−e− −

(
Kw+

1
(
B, DT)+ e−b+

)}
= γ

e0(γ− 1)−
(
Kw+

1
(
C, DT)+ e0b+

)
= η

and
min

w−2 ,b− ,α∗ ,γ∗ ,η∗

1
2

γ∗Tγ∗ +
c3

2
α∗Tα∗ + c4λ∗Tη∗ (30)

s.t.


W2−

(
Kw−2

(
B, DT)+ e−b−

)
= γ∗

W1+
{

e+ −
(
Kw−2

(
A, DT)+ e+b−

)}
= α∗

e0(1− γ)−
(
Kw−2

(
C, DT)+ e0b−

)
= η∗

In the constraints of the objective functions Equation (29) and Equation (30), classifi-
cation weight matrices W1+ and W2− are considered, which implies that the interference
of outliers can also be reduced in the nonlinear MLT-KSVC case. The constraints are
substituted into objective functions of Equation (29) and Equation (30), and the following
formulas obtained:

min
w+

1 ,b+ ,α,γ,η

1
2‖W1+

(
Kw+

1
(
A, DT)+ e+b+

)
‖2

+ c1
2 ‖W2−

{
−e− −

(
Kw+

1
(
B, DT)+ e−b+

)}
‖2

+ c2λT{e0(γ− 1)−
(
Kw+

1
(
C, DT)+ e0b+

)} (31)

min
w−2 ,b− ,α∗ ,γ∗ ,η∗

1
2‖W2−

(
Kw−2

(
B, DT)+ e−b−

)
‖2

+ c3
2 ‖W1+

{
e+ −

(
Kw−2

(
A, DT)+ e+b−

)}
‖2

+ c4λ∗T
{

e0(1− γ)−
(
Kw−2

(
C, DT)+ e0b−

)} (32)

Partial derivatives with respect to w+
1 , b+ and w−2 , b− are solved, and then partial

derivative equations are transformed in matrix form:

c2λ∗T
[

C
e0

]
{U + c1V}−1 =

[
w+

1
b+

]

U =

[ (
W1+K

(
A, DT))2 W2

1+K
(
A, DT)e+

W2
1+e+K

(
A, DT) (W1+e+)

2

]

V =

[
W2

1+W2−
(
K
(
B, DT))2 W2

1+K
(
B, DT)e−

W1+e−W2−K
(
B, DT) W2−W1+e2

−

] (33)



c4λ∗T
[

C
e0

]
{U + c3V}−1 =

[
w−2
b−

]

U =

[ (
W2−K

(
B, DT))2 W2

2−K
(
B, DT)e−

W2
1+e+K

(
A, DT) (W1+e+)

2

]

V =

[ (
W1+K

(
A, DT))2 W2

1+e+K
(
A, DT)

W2−W1+e+K
(
A, DT) (W1+e−)

2

] (34)

After obtaining the solutions of w+
1 , b+ and w−2 , b−, the nonlinear MLT-KSVC classi-

fication hyperplanes are established according to Equation (28). The proposed nonlinear
MLT-KSVC is summarized in Algorithm 2.
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Algorithm 2: Nonlinear MLT-KSVC

(1) Initialize matrices A, B, and C ∈ Rli×n(i = 1, 2, 3), e0 and e1, e2.
(2) Run the program based on MaxEnt structure to obtain the weight matrices W1+, W2−.
(3) Select the kernel parameter as “RBF” or “Gaussian”, and use the grid search method to
optimize the hyperparameter C and penalty factor G.
(4) Initialize w+

1 , b+ and w−2 , b− under the selected nonlinear kernel function.
(5) Initialize α and α∗, γ and γ∗, η and η∗, λ and λ∗.
(6) For iter ≥ 0:
Calculate

c2λ∗T
[

C
e0

]
{U + c1V}−1 =

[
w+

1
b+

]
c4λ∗T

[
C
e0

]
{U + c3V}−1 =

[
w−2
b−

]
(7) End for convergence and obtain the optimal solutions: w+

1 , b+ and w−2 , b−.

3.3. Multi-Classification Rule of MLT-KSVC

MLT-KSVC is an improved algorithm of LST-KSVC. As described in Section 3.1,
LST-KSVC is a classification algorithm based on the "one-versus-one-versus-rest" strategy.
Therefore, MLT-KSVC is also a classification algorithm based on "one-versus-one-versus-
rest" strategy. In the "one-versus-one-versus-rest" strategy, the classification algorithm
outputs three labels {+1, 0, −1}. When the classification number is q (q > 2), q(q − 1)/2
MLT-KSVC sub-classifiers are required to complete the classification. This classification
process is a voting process. In vote classification, MLT-KSVC labels “+1” to i-th class
samples, “−1” to j-th class samples, and “0” to all remaining classes, respectively, where
i, j ∈ {1, 2, . . . , q}. Then, the hyperplane parameters w+

1 , b+ and w−2 , b− of the (i, j)th
sub-classifier are obtained from Equations (26), (27), (33) and (34). In linear MLT-KSVC
case, classification labels are determined using the following function:

f (x) =


+1, if xTw+

1 + b+ > −1 + ε

−1, if xTw−2 + b− < 1− ε
0, otherwise

(35)

In nonlinear MLT-KSVC case, the corresponding decision function is:

f (x) =


+1, if k

(
xT , DT)w+

1 + b+ > −1 + ε

−1, if k
(
xT , DT)w−2 + b− < 1− ε

0, otherwise
(36)

Finally, after q(q − 1)/2 sub-classifiers, the test samples are classified as the label with
the most votes.

4. MLT-KSVC-Based Leak Detection
4.1. Overview of the Recommended Leak Detection Procedure

In this experimental section, the proposed MLT-KSVC algorithm is used for water
supply pipe leak identification. A schematic of the experiment is shown in Figure 1. The
experiment includes four steps as follows.

Step 1: Piezoelectric (PZT) acoustic sensor was used to acquire the vibro-acoustic
emission (VAE) data on the pipe, which VAE data was used as the data source for the next
feature extraction.

Step 2: Eight methods, including standard deviation, kurtosis, variance, RMS, margin,
mean, waveform factor, and peak factor, were used to extract feature values from the VAE
data source. These feature values have been proven by previous studies [25,26] that they
can indicate the features of different leak severity. Then, the extracted features constituted
the leak sample data.
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Step 3: The extracted feature values were simplified by the Delaunay triangulation
(DT) algorithm [27]. The simplification process was to remove redundant points in the
sample center and retain the mainframe of the samples.

Step 4: According to the distribution characteristics of the sample points, MaxEnt was
used to establish classification weight matrices W1+ and W2−, and then the samples were
classified by the proposed algorithm, and finally leak detection was completed.

Entropy 2021, 23, 1247 9 of 18 
 

 

Step 3: The extracted feature values were simplified by the Delaunay triangulation 
(DT) algorithm [27]. The simplification process was to remove redundant points in the 
sample center and retain the mainframe of the samples. 

Step 4: According to the distribution characteristics of the sample points, MaxEnt was 
used to establish classification weight matrices 1+  and 2− , and then the samples 
were classified by the proposed algorithm, and finally leak detection was completed. 

 
Figure 1. A schematic diagram of pipeline leakage test platform. 

4.2. Acquisition of VAE Data 
To simulate the pipe leak condition, a 200-m water pipeline system was built. Figure 

2a shows the pipe leak test platform. The entire platform consists of pipelines, PZT sound 
sensor, PZT driving module, signal attenuator, National Instruments (NI) data acquisition 
(DAQ) device, and a computer. The PZT sensor has a resonant frequency of 18 KHz and 
a frequency range of 0.35–6 KHz; its output voltage signal was amplified by a PZT driving 
module (preamplifier). To prevent the amplified voltage of the PZT sensor from exceeding 
the input range of DAQ device, we designed a signal attenuator between the preamplifier 
and DAQ card. The maximum sampling rate of DAQ card is 1 MHz. Figure 2b shows the 
PZT sensor was mounted on the pipe away from the leak source. Different opening de-
grees of the faucet were used to simulate leak conditions. Three leak situations were uti-
lized: background noise (no leak), small leak, and large leak (shown in Figure 3left). We 
collected 300 sets of data for each leak situation. Finally, 900 sets of data for the three leak 
situations were obtained. The right of Figure 3 shows a group of time-domain waveforms 
corresponding to the above three leak situations. It is not difficult to see that the leak time-
domain waveform becomes more and more intense with the increasing leak volume. Dur-
ing the data sampling process, the sampling rate was set at 10 KHz, and the single sam-
pling time was 10 s. 

Figure 1. A schematic diagram of pipeline leakage test platform.

4.2. Acquisition of VAE Data

To simulate the pipe leak condition, a 200-m water pipeline system was built. Figure 2a
shows the pipe leak test platform. The entire platform consists of pipelines, PZT sound
sensor, PZT driving module, signal attenuator, National Instruments (NI) data acquisition
(DAQ) device, and a computer. The PZT sensor has a resonant frequency of 18 KHz and a
frequency range of 0.35–6 KHz; its output voltage signal was amplified by a PZT driving
module (preamplifier). To prevent the amplified voltage of the PZT sensor from exceeding
the input range of DAQ device, we designed a signal attenuator between the preamplifier
and DAQ card. The maximum sampling rate of DAQ card is 1 MHz. Figure 2b shows
the PZT sensor was mounted on the pipe away from the leak source. Different opening
degrees of the faucet were used to simulate leak conditions. Three leak situations were
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utilized: background noise (no leak), small leak, and large leak (shown in Figure 3left). We
collected 300 sets of data for each leak situation. Finally, 900 sets of data for the three leak
situations were obtained. The right of Figure 3 shows a group of time-domain waveforms
corresponding to the above three leak situations. It is not difficult to see that the leak
time-domain waveform becomes more and more intense with the increasing leak volume.
During the data sampling process, the sampling rate was set at 10 KHz, and the single
sampling time was 10 s.
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4.3. Feature Extraction of VAE Data

Eight statistical indices were used to extract feature values from the collected leak
VAE data. Subsequently, these feature values were used to construct a training data set
T for classification. To facilitate the visualization of the classification process, we selected
standard deviation and kurtosis feature values as an example and drew a two-dimensional
(2−D) scatter diagram of the feature values (Figure 4a). The classification experiment used
this 2−D scatter diagram as a study case.

Entropy 2021, 23, 1247 11 of 18 
 

 

4.3 Feature Extraction of VAE Data 
Eight statistical indices were used to extract feature values from the collected leak 

VAE data. Subsequently, these feature values were used to construct a training data set T 
for classification. To facilitate the visualization of the classification process, we selected 
standard deviation and kurtosis feature values as an example and drew a two-
dimensional (2−D) scatter diagram of the feature values (Figure 4a). The classification 
experiment used this 2−D scatter diagram as a study case. 

 
Figure 4. (a) Original 2−D pipe leak status samples. (b) Simplified 2−D pipe leak status samples. 

4.4 DT Pre-Processing of Data 
It is well known that SVM and its improved algorithms are supervised machine 

learning algorithms, which are mainly suitable for the training and testing of the small-
scale sample. Thus, original leak sample data should be simplified. However, some re-
dundant data within the sample points are not helpful for classification. We used the DT 
algorithm to simplify the original leak sample data. The main process is to retain the main-
frame of the samples and remove the redundant points located at the center of the sample 
points. Figure 4 shows the original sample data and the simplified sample points with 
redundant data removed. 

4.5 MLT-KSVC Classification for Leak Detection 
In MLT-KSVC leak classification, the first step was used, MaxEnt frame, to establish 

the classification weight matrices  and  for leak samples. In the process of 
constructing the weight matrix, the data of sample center was given a large weight, while 
the outliers were given a small weight. Figure 5 shows three typical outliers generated by 
the interference of environmental noise. Therefore, these sample points can be classified. 
Here, LST-KSVC was also used to classify the same leak sample points as a comparative 
experiment example for MLT-KSVC. In the classification process, we used the grid search 
method to optimize the hyperparameters C and G of MLT-KSVC and LST-KSVC. In 
nonlinear MLT-KSVC and nonlinear LST-KSVC classification, we selected the ‘RBF’ as the 
kernel function, in which all programs were run on MATLAB 2019a. 

Figure 4. (a) Original 2−D pipe leak status samples. (b) Simplified 2−D pipe leak status samples.



Entropy 2021, 23, 1247 12 of 18

4.4. DT Pre-Processing of Data

It is well known that SVM and its improved algorithms are supervised machine
learning algorithms, which are mainly suitable for the training and testing of the small-
scale sample. Thus, original leak sample data should be simplified. However, some
redundant data within the sample points are not helpful for classification. We used the
DT algorithm to simplify the original leak sample data. The main process is to retain the
mainframe of the samples and remove the redundant points located at the center of the
sample points. Figure 4 shows the original sample data and the simplified sample points
with redundant data removed.

4.5. MLT-KSVC Classification for Leak Detection

In MLT-KSVC leak classification, the first step was used, MaxEnt frame, to establish
the classification weight matrices W1+ and W2− for leak samples. In the process of con-
structing the weight matrix, the data of sample center was given a large weight, while
the outliers were given a small weight. Figure 5 shows three typical outliers generated by
the interference of environmental noise. Therefore, these sample points can be classified.
Here, LST-KSVC was also used to classify the same leak sample points as a comparative
experiment example for MLT-KSVC. In the classification process, we used the grid search
method to optimize the hyperparameters C and G of MLT-KSVC and LST-KSVC. In nonlin-
ear MLT-KSVC and nonlinear LST-KSVC classification, we selected the ‘RBF’ as the kernel
function, in which all programs were run on MATLAB 2019a.
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Figure 5. Three typical outliers in leak sample points.

Figure 6 shows the classification results of linear MLT-KSVC and linear LST-KSVC,
in which black points represent large leaks (+1 class), green points represent small leaks
(−1 class), blue points represent background noise (no leak, 0 class), and red circles repre-
sent support vector points. It can be seen from Figure 6b that a misclassification color block
(within the red oval box) appears in linear LST-KSVC, but linear MLT−KSVC overcomes
this shortcoming. By comparing Figure 6a,b, it can be found that the classification color
block of linear MLT-KSVC are more regular than linear LST-KSVC, which means that the
generalization ability of linear MLT-KSVC is stronger than that of linear LST-KSVC.
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for leak samples. (b) Linear LST−KSVC classification for leak samples.

Figure 7 shows the classification results of nonlinear MLT-KSVC and nonlinear LST-
KSVC algorithms. In an ideal classification state, the boundary inside the red oval box in
Figure 7a,b should be similar to a straight line. But the boundary inside the red oval box in
Figure 7a,b is not straight, we conjecture that the phenomenon is a negative result caused
by outliers. Comparing the red oval box of Figure 7a,b, we found that the nonlinear MLT-
KSVC is slightly affected by outliers, but this is much less than the nonlinear LST-KSVC.
The classification boundary of nonlinear LST-KSVC is not very regular in Figure 7b. It is
not difficult to see that the classification boundary in the black rectangular box is wrong in
Figure 7b. We speculate that the misclassification boundary is caused by the overfitting in
the nonlinear LST-KSVC. However, the classification boundary (Figure 7a) of nonlinear
MLT-KSVC is still more regular compare to that of nonlinear LST-KSVC, which shows that
the outliers of sample points have less influence on the linear MLT-KSVC algorithm.
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To further compare the performance of the two algorithms, we used MLT-KSVC and
LST-KSVC to conduct multiple nonlinear classification experiments to obtain optimal hy-
perparameter C, penalty factor G, and cross-validation accuracy based on these sample
points. Figure 8 shows a three-dimensional distribution map that combined optimal hy-
perparameter C, penalty factor G, and cross-validation accuracy. Ten-fold cross-validation
was used to cross-validate the algorithms, which divided the samples into 10 parts, and
took 9 parts as training data and 1 part as test data, in turn, to implement experiments. It
can be seen from the Figure 8 that the optimal cross-validation accuracy rate of nonlinear
MLT-KSVC is as high as 96.2264%, while that of nonlinear LST-KSVC is only 87.1698%.
In nonlinear MLT-KSVC classification, the mean of cross-validation accuracy is 96.15%,
and the standard deviation of cross-validation accuracy is 0.0330. In nonlinear LST-KSVC
classification, the mean of cross-validation accuracy is 87.60%, and the standard deviation
of cross-validation accuracy is 0.0610. Then, we can obtain the overall confusion matrix in
Table 1 and Figure 9. The following metrics were calculated by us.

Accuracy =
TP + TN + TR

TP + TN + TR + FP + FN + FR
·100% (37)

Sensitivity =
TP

TP + FN + FR
·100% (38)
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Table 1. Confusion matrix.

Predicted +1 TP FN FR
Predicted −1 FP TN FR
Predicted 0 FP FN TR

True +1 True −1 True 0

In Table 1, TP represents the true positive judgment, TN represents the true negative
judgment, TR represents the true rest judgment, FP represents the false positive judgment,
FN represents a false negative judgment, and FR represents a false rest judgment. In
Figure 9, L-leak represents large leak, S-leak represents small leak, BG-noise represents
background noise. In Figure 9a, the overall accuracy of nonlinear MLT-KSVC is 96.2%,
and the sensitivity of nonlinear MLT-KSVC is 93.5%. In Figure 9b, the overall accuracy of
nonlinear LST-KSVC is 87.2%, and the sensitivity of nonlinear LST-KSVC is 92.6%.

Then, we changed the feature number of leak samples and used the classical Multi-
SVM, TwinSVC, TwinKSVC, LST-KSVC and MLT-KSVC to classify these samples. In these
experiments, we still chose ‘RBF’ as the kernel function of the classification algorithm.
Table 2 shows the comparison of the classification accuracy and calculation time of the
classical Multi-SVM [28], TwinSVC [29], TwinKSVC [30], LST-KSVC and MLT-KSVC. In
Table 2, different feature number correspond to different feature types, and the correspond-
ing relationship between them is as follows:

1. Feature number = 1: standard deviation.
2. Feature number = 2: standard deviation, kurtosis.
3. Feature number = 3: standard deviation, kurtosis, variance.
4. Feature number = 4: standard deviation, kurtosis, variance, RMS.
5. Feature number = 5: standard deviation, kurtosis, variance, RMS, margin.
6. Feature number = 6: standard deviation, kurtosis, variance, RMS, margin, mean.
7. Feature number = 7: standard deviation, kurtosis, variance, RMS, margin, mean,

waveform factor.
8. Feature number = 8: standard deviation, kurtosis, variance, RMS, margin, mean,

waveform factor, peak factor.

Table 2. Leak classification accuracy and calculation time results of Multi-SVM, TwinSVC, TwinKSVC,
LST-KSVC and MLT-KSVC.

Feature
Number Outputs Multi-SVM TwinSVC TwinKSVC LST-KSVC MLT-KSVC

1
accuracy (%) 62.2641 74.7170 75.8491 85.6604 92.4528

calculation time (s) 3.0124 2.1105 1.9012 0.2207 0.2310

2
accuracy (%) 60.3773 74.3396 76.9811 87.1698 96.2264

calculation time (s) 2.6820 2.0164 1.9146 0.2298 0.2304

3
accuracy (%) 60.7547 75.4717 77.7358 87.9245 96.9811

calculation time (s) 2.7504 2.3738 1.9872 0.2860 0.2834

4
accuracy (%) 61.1321 73.2075 77.3585 89.4340 95.8491

calculation time (s) 2.7018 2.1083 1.8509 0.3019 0.3095

5
accuracy (%) 63.0189 75.8491 78.1132 90.1887 95.0943

calculation time (s) 2.7239 2.1834 1.8957 0.3672 0.3932

6
accuracy (%) 63.7736 75.0291 78.4906 90.9434 97.7358

calculation time (s) 2.6713 2.5263 1.9863 0.4153 0.4035

7
accuracy (%) 63.3962 76.6038 78.8679 93.2075 98.1132

calculation time (s) 3.1121 2.5967 2.1558 0.4507 0.4518

8
accuracy (%) 64.1509 76.2264 78.8680 93.9623 97.3585

calculation time (s) 3.2386 2.6093 2.4853 0.4964 0.5086
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From Table 2, it can be seen that the calculation time of nonlinear MLT-KSVC is similar
to that of nonlinear LST-KSVC, but the accuracy is higher than that of nonlinear LST-KSVC
and other classifiers.

4.6. Application Discussion of MLT-KSVC Classification in City Water Pipelines

Then, we will briefly discuss the MLT-KSVC application for leak recognition of city wa-
ter pipelines. Figure 10 presents a complete schematic diagram of pipeline leak recognition
system. From bottom to top, the recognition system is divided into three layers.
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Figure 10. The entire leak recognition system for city water pipeline.

1. The first is the physical layer, which uses many data acquisition (DAQ) nodes to
collect the pipeline acoustic vibration data and transmit the pipe data to the relay
gateway. The DAQ node comprises a sensing module, analog to digital conversion
(ADC) module and data wireless transmission module. In order to obtain the pipeline
position information from the DAQ node, it is necessary to take the DAQ node number
as the frame header of the pipe data when transmitting the pipeline data frame.

2. The second is data transmission layer. After the relay gateway received the wireless
pipe data frame, and then the relay gateway uses the public networks (3G/4G/5G) to
transmit the pipe data to the cloud server.

3. The third is the application layer. In this layer, the cloud server will run the MLT-KSVC
classification algorithm model. The application layer performs feature extraction
preprocessing on the pipeline data; then, the classification model will complete the
leak recognition task based on the extracted features. The user can check the leak
recognition results through the terminal device, and take corresponding maintenance
and repair plans for different leak statuses.
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5. Conclusions

This paper used the MaxEnt model to establish two weight matrices that can be used
for classification. These weight matrices can make the MLT-KSVC classification algorithm
reduce sensitivity to outliers. From the linear classification result, a misclassification color
block appears in linear LST-KSVC, but the linear MLT-KSVC can aovid this shortcoming.
Whether in linear or nonlinear classification results perspective, the MLT-KSVC has more
regular classification color blocks for leak samples than corresponding LST-KSVC, which
proves that MLT-KSVC is less sensitive to outliers, and the generalization ability of MLT-
KSVC is stronger than that of LST-KSVC. The MLT-KSVC and LST-KSVC took the similar
calculation time to complete the classification, but still much less than Multi-SVM, TwinSVC
and TwinKSVC. Although the calculation time remains comparable to that of LST-KSVC,
MLT-KSVC is more accurate in classifying leak sample points. However, MLT-KSVC
has some limitations. For instance, when the data sample is very large, the MLT-KSVC
algorithm may crash and even terminate. Solving this problem will be an important
research direction in the future.
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