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Abstract: Lung cancer is the most common cause of cancer death worldwide. Tobacco smoking 
is the most predominant etiology for lung cancer. However, only a small percentage of heavy 
smokers develop lung cancer, which suggests that other cofactors are required for lung carcino-
genesis. Viruses have been central to modern cancer research and provide profound insights into 
cancer causes. Nevertheless, the role of virus in lung cancer is still unclear. In this article, we 
reviewed the possible oncogenic viruses associated with lung cancer. 
Keywords: oncogenic virus, lung cancer, human papillomavirus, Merkel cell polyomavirus, 
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Introduction
Lung cancer is the most common cause of cancer death worldwide, with an 
estimated 1.8 million deaths each year.1 Lung cancer is divided into two main 
categories: non-small-cell lung cancer (NSCLC) that comprises approximately 85% 
of lung cancer cases and small-cell lung cancer (SCLC) that comprises about 15%.2 

Tobacco smoking is the most predominant etiology for lung cancer, accounting for 
more than 80% of cases in the US and other countries where cigarette smoking is 
common.3 Lung cancer in nonsmokers is more common in women and in Asia and 
is a different disease with molecular characteristics that differ from lung cancer in 
smokers.4 This suggests that other factors are required for lung carcinogenesis, 
which include inherited genetic susceptibility and infectious agents, such as virus.3

Since Rous’s initial experiments suggesting virus as a possible transmissible 
agent for cancer, the virus-associated cancer research field has witnessed a roaring 
progress over the last century.5 Until now, seven human viruses have been dis-
covered to cause 10–15% of human cancers worldwide, including Epstein–Barr 
virus (EBV), hepatitis B virus (HBV) or hepatitis C virus (HCV), human 
T-lymphotropic virus-1 (HTLV-1), human papillomavirus (HPV), Kaposi’s sarcoma 
herpesvirus (KSHV), and Merkel cell polyomavirus (MCPyV).5,6 Mounting evi-
dences point to a potential role of several viruses for lung cancer (Figure 1.), such 
as HPV,7–9 MCPyV10–12 and EBV.13–15 It has been reported that Jaagsiekte sheep 
retrovirus (JSRV) spontaneously induces a transmissible lung adenocarcinoma 
through the viral envelope protein in sheep.16 However, human lung cancer 
shows no cogent evidence of being associated with oncogenic viruses so far.17 In 
this article, getting more insight into viral etiology for lung cancer, we thoroughly 
reviewed the possible oncogenic viruses associated with lung cancer through 
systematic literature searching.
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HPV
HPV Detection in Lung Cancer Tissues
Since Syrjanen’s suggestion of HPV involvement in bron-
chial squamous carcinoma reported in 1979,18,19 several 
studies have explored this relationship between HPV 
infection and lung cancer occurrence. However, the results 
of these studies have been inconsistent, with some authors 
in favor of this association20–36 and the others not37–43 

(Table 1). HPV infection is the most common sexually 
transmitted infection, with estimates for the probability 
of infection with the virus exceeding 80% for women 
and 90% for men across their lifetime.44 The HPV DNA 
is detected in lung cancer tissue, but also detected in 
peripheral blood, bronchial brushing, and the exhaled 
breath condensate of patients with lung cancer.45–47 HPV 
16 and 18 are the two most common genotypes detected in 
lung cancer worldwide.48 The other frequently detected 
high-risk subtypes are HPV 31 and 33 and the most pre-
valent low-risk subtypes are HPV 6 and 11.19 Recently, 
Xiong et al conducted a meta-analysis comparing HPV 
infection rates in lung cancer tissues (19.8% for HPV 16 
and 18.59% for HPV 18) vs noncancer controls (5.84% for 
HPV 16 and 4.29% for HPV 18) and found that HPV 
infection was a risk factor of lung cancer.7

Several studies have reported a higher prevalence of 
HPV infection in lung cancer tissues derived from patients 
in Asian than other continents.7,9,19,20,25,26,32 Syrjanen 
shows that the average HPV infection rate in lung cancer 
tissues worldwide is 26.5%, the highest in China (37.7%), 
the lowest in North America (12.5%), with Australia, 
Europe, South America, and other Asian regions (18.5%, 
16.9%, 23.9%, and 17.2%), respectively.19 Moreover, 
HPV infection rate in squamous cell carcinoma (25.1%) 
is found to be higher than that in adenocarcinoma (15.1%). 
This result is consistent with that of the study by Xiong 
et al, which may be explained by the high affinity of HPV 
to squamous epithelial cells.7 They further explored that 
the reported wide variability in HPV infection rates of lung 
cancer tissues was not majorly owing to the HPV detection 
methods, but was better explained by the geographical 
origin of the study and the histological type of lung 
cancer.19

Transmission Routes of HPV into Lung
HPV can be transmitted through physical contact as well 
as vertically from the HPV-positive mother to her newborn 
and cause subclinical or clinical infection.49 How HPV is 
transmitted into the lung, however, remains unidentified. 
Several studies suggested that HPV might be transmitted 

Figure 1 HPV-mediated oncogenic mechanisms in NSCLC.
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to the lung from the aerodigestive tract, for instance, oral 
mucosa, esophagus, larynx, or sinonasal mucosa.50–52 In 
addition, the findings of higher risk of developing lung 
cancer in female patients with anogenital malignancies 
than those without53,54 and morphological resemblance of 
HPV-infected bronchial squamous cell carcinoma to HPV- 
infected genital warts18 indicate that HPV may be trans-
mitted to the lung from the genital tract.55

Blood circulation may be another transmission route 
for HPV infection in the lung. Chiou et al found that HPV 
16 DNA in blood circulation was significantly associated 
with that in lung cancer tissue.46 They proposed that 
peripheral lymphocytes could harbor HPV particles and 
might be involved in the spreading of HPV viral particles.

Several studies have confirmed the presence of HPV 
DNA in surgical smoke and previous cases of treating 
gynecologist developing laryngeal HPV-associated neo-
plasm after performing laser therapy have been reported 
as well.56 In addition, Carpagnano et al found the presence 
of HPV in the exhaled breath condensate of patients with 
lung cancer.45 This evidence suggests another possible 
means of HPV transmission through inhalation.

Interplay of HPV with Lung Cell 
Receptors and Cell Entry
Cell entry is a fundamental process of the infectivity of 
any virus into host cell.57 Host cell entry of HPV is 
initiated by binding of the virus particle to cell surface 
receptors. Heparan sulfate proteoglycans (HSPG) is sug-
gested as the initial attachment receptor for HPV and is 
ubiquitously expressed in the extracellular matrix and on 
the surface of most cells, including baseline membrane of 
type 1 alveolar epithelial cells and endothelial cell and 
endothelial cell surface.58 HPV can specifically attach to 
exposed basement membrane HSPG, followed by a series 
of conformational changes and, ultimately transfer of 
encapsidated plasmid DNA into the host cells.59 

Although evidence of infectivity of human lung cell lines 
by HPV is lacking, the presence of HSPG in lung cells 
indicates that HPV may interact with these receptors and 
enter into lung cells. Moreover, mutation and modification 
in HSPG chains/sulfation patterns on a variety of solid 
tumors has been demonstrated.60 In particular, a recent 
study showed HPV capsids preferentially bind and infect 
lung cancer cells in vitro and in vivo, at least supporting 
HPV as a cofactor in the process of lung cancer 
carcinogenesis.61

HPV and Survival
Several studies have explored the impact of HPV infection 
on lung cancer prognosis.23,34,37,62–66 However, the results 
of these studies have been inconsistent, with some authors 
supporting the prognostic role of HPV infection34,64–66 and 
others supporting no association.23,37,62,63 Among them, 
Miyagi et al suggested that high intratumor infiltration of 
Langerhans cell might be responsible for better prognosis 
of HPV-infected lung cancer.66 Wang et al demonstrated 
the prognostic value of HPV status in lung adenocarci-
noma, showing that patients with HPV-infected lung ade-
nocarcinoma had a better prognosis than those without, 
with a 32% reduction in mortality.34 Guo et al further 
conducted a meta-analysis confirming the association 
between HPV infection and improved survival for lung 
adenocarcinoma patients, but not for squamous cell carci-
noma patients.67 It seems mutually conflicting when it 
comes to HPV with pro-oncogenic potential seeming to 
improve survival of patients with lung cancer. We can only 
hypothesize that the presence of HPV may attract more 
immune cells including Langerhans cells in the tumor 
microenvironment and trigger stronger antitumor immune 
responses, leading to better prognosis. Without doubt, 
more evidence is needed to explain this phenomenon.

Oncogenic Mechanisms of 
HPV-associated NSCLC
HPV-16 E6/7 and HIF-1a/HIF-2a
HIF-1a is a transcription factor involved in the regulation 
of angiogenesis, which plays a vital role in tumor pro-
gression, metastasis, and drug resistance.68 VEGF, one of 
the key downstream targets of HIF pathway, regulates 
vessel formation through their effect on endothelial cell 
migration, proliferation, permeability and survival.69 

HIF-1a expression tends to be higher in HPV-infected 
NSCLC than HPV-negative NSCLC. HPV-16 E6/7 onco-
proteins significantly potentiate angiogenic phenotype of 
NSCLC cells in vitro and in vivo by upregulating the 
expression of HIF-1a, VEGF and IL-870,71 (Figure 1). 
PI3K/Akt and c-Jun signaling pathway might be respon-
sible for HIF-1a/VEGF-mediated angiogenesis triggered 
by HPV-16 oncoproteins.70 HPV-16 E6/7 also promote 
NSCLC progression by facilitating epithelial- 
mesenchymal transition (EMT) process through their 
effect on EMT-related transcription factors including 
ZEB1, Snail1, Slug and Twist1.72 Moreover, upregulated 
expression of HPV-16 E6/7 enhanced GLUT1 expression 
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in NSCLC cells through the inhibition of RRAD and 
translocation of p65,73 suggesting HPV oncoproteins 
involved in the regulation of the Warburg effect.74

HIF-2a, however, possesses similarly proangiogenic 
functions as to HIF-1a via the activation of downstream 
effectors including VEGF.75 HPV-16 E6/7 stimulates the 
expression of HIF-2a and subsequent VEGF in several 
NSCLC cell lines by suppressing LKB1.76

HPV E6 and MMPs/TIMP-3
MMPs are enzymes that degrade protein and collagen in 
the extracellular matrix (ECM) and are implicated in 
tumor invasion and metastasis.77 An in vitro study has 
shown that HPV-16 E6 enhances the expression of 
MMP-2 and MMP-9 by stimulating IL-8 expression in 
lung adenocarcinoma cells.78 Tissue inhibitor of metallo-
proteinase (TIMP), rather, acts as a MMP inhibitor to 
reduce proteolytic destruction of the cell matrix to 
decrease cancer metastasis and improve prognosis.79 

Loss of heterozygosity of TIMP-3 has been involved in 
several cancer types.80–82 Frequency of TIMP-3 loss by 
LOH and/or promoter hypermethylation is higher in HPV- 
16/18 infected NSCLC than HPV-16/18 negative 
NSCLC.63 Loss of TIMP-3 potentiates malignant beha-
viors and poor survival of HPV-infected NSCLC by ele-
vating IL-6 production via the tumor necrosis factor a/ 
nuclear factor κB axis.63

HPV E6 and hTERT
The activation of human telomerase reverse transcriptase 
(hTERT), a catalytic subunit of the enzyme telomerase, is 
implicated in the process of human cell immortality and 
malignant transformation.83 The hTERT expression is 
found to be elevated in NSCLC including preneoplastic 
lesions, suggesting its role in the early stage of lung cancer 
development.84 HPV E6 seems to activate hTERT over-
expression in HPV related lung cancer.85 Cheng et al 
further explored that Sp1 cooperated with c-Myc to acti-
vate hTERT transcription in HPV E6-positive lung cancer 
cells under the context of c-Myc induced by E6 promoting 
its binding onto hTERT promoter.85 However, p53 has 
been reported to inhibit hTERT expression by binding to 
Sp1 and preventing its access to the hTERT promoter.86 

Moreover, LBK1 inhibition and subsequent Sp1 upregula-
tion are required for the HPV E6-mediated hTERT upre-
gulation in lung carcinogenesis.87

HPV E6 and p53
p53 has been described as “the guardian of the genome” 
because of its role in conserving the integrity of the gen-
ome by inducing cell cycle arrest or apoptosis on DNA 
damage. Inactivation of tumor suppressor p53 has been 
found to occur in most cancers including lung cancer. The 
classic function of oncogene protein E6 is to induce p53 
degradation through its binding to the LxxLL motif of the 
cellular ubiquitin ligase E6AP.88,89 E6-mediated p53 inac-
tivation results in chromosomal instability and increased 
potential of HPV-infected cells becoming malignant.89 

Transcription of p21WAF1/CIP1 and mdm-2, two down-
stream targets of p53, are inhibited by E6 in lung tumors. 
p21WAF1/CIP1, a cyclin-dependent kinase (CDK) inhibitor, 
acts on cyclin E/cdk2 complexes and inhibits the phos-
phorylation of the pRb protein, thus preventing S phase 
entry.90 Induction of p21 is fulfilled through p53- 
dependent91 or p53-independent92 pathways. mdm-2, 
a cellular oncogene product, regulates the activity of p53 
protein, which in turn modulates the transcription of mdm- 
2 gene.93 The human dead-box RNA helicase (DDX3), 
which plays a role in the regulation of gene expression 
via RNA metabolism,94 has been implicated in the devel-
opment of viral-associated cancers.95 DDX3 transcription 
is directly regulated by p53 and DDX3 synergistically 
promotes p53-activated p21 transcription via increased 
Sp1 binding affinity onto the p21 promoter in NSCLC 
cells.95 p21 reduction by the E6-inactivated p53 pathway 
contributes to tumor progression and a poor relapse-free 
survival in lung cancer patients.95

HPV E7 and pRb
Oncoprotein E7 targets retinoblastoma suppressor protein 
(pRb) to induce its degradation, allowing the dissociation 
of the E2F/pRb/histone deacetylase (HDAC) complex and 
deregulation of cell proliferation.96 E7 also target and 
degrade the “pocket proteins” p107 and p130, both of 
which are E2F regulators.96 p16INK4A, an inhibitor cyclin- 
dependent kinase, is mapped to a critical region at chro-
mosome 9p21 and hypermethylation of p16INK4A in the 
CpG-rich promoter regions occurs frequently in 
NSCLC.97,98 E7-mediated pRb degradation leads to the 
release of HDAC to enhance p16INK4 hypermethylation 
through chromatin remodeling by HDAC in HPV- 
infected tumors.99,100 Wu et al confirmed the potential 
correlation between p16INK4A hypermethylation and HPV 
infection in nonsmoking female patients with NSCLC with 
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the finding that p16INK4A hypermethylation frequency was 
as high as 70% with HPV infection as compared to those 
without HPV infection.100 Reports from the same research 
group further indicated the linking of expression of DNA 
methyltransferase 3 (DNMT3) protein and HPV 
infection.101 They argued that, HPV infection upregulated 
DNMT3 protein expression, which subsequently increased 
p16INK4A hypermethylation.

HPV and FHIT LOSS
The fragile histidine triad (FHIT) gene at chromosome 
3p14.2 is altered by loss of heterozygosity (LOH) and 
occasional homozygous deletions in various human can-
cers including lung cancer.102,103 Allelic deletion of FHIT 
plays an important role in lung tumorigenesis104 and can 
be used as a negative prognostic marker.105 After HPV 
infection, HPV DNA integration into the fragile site 
FRA3B adjacent to FHIT occurs to cause allele loss of 
the gene.106 A study from Taiwan reported a high fre-
quency of FHIT LOH in HPV-positive nonsmoking female 
lung cancer patients, suggesting its possible role in HPV- 
infected lung carcinogenesis.103 Carpagnano et al found 
microsatellite alterations (MA) at chromosome 3p existed 
in 100% of HPV-positive NSCLC patients enrolled in their 
study.107 Yu et al further suggested FHIT loss and p53 
mutation might synergistically exerted on HPV-infected 
lung carcinogenesis.108 Verri et al found that different 
mechanisms as promoter methylation and LOH interplay 
to inactivate FHIT expression.109

HPV E6 and EGFR Mutation
EGFR somatic mutation is associated with HPV presence 
in NSCLC.110 A meta-analysis including four studies 
with a total of 498 Asian patients showed the presence 
of EGFR somatic mutation was significantly higher in 
HPV-positive patients compared with HPV-negative 
counterpart (P=0.012).110 Several studies reported that 
HPV infection in NSCLC denoted a better overall survi-
val and better response to EGFR-TKI therapy.111,112 This 
observation could be explained that HPV-positive 
NSCLC patients are more likely to exhibit EGFR somatic 
mutation, thus having a better response to EGFR-TKI and 
better survival. However, the association between HPV 
infection and EGFR mutation or response to EGFR-TKI 
seems to be limited by geographical origin since 
Marquez-Medina et al reported the negative outcomes 
obtained from western patients.113 The underlying 
mechanism of this relationship remains unknown. 

Inhibitors of antiapoptosis proteins (IAP), including 
cIAP1, cIAP2 and XIAP, are a family of caspase inhibi-
tors that block cell apoptosis and are considered as 
a therapeutic target in lung cancer.114 Wu et al indicated 
that HPV-16 E6 led to cIAP2 upregulation through phos-
phorylation of cAMP response element-binding protein 
(CREB) via EGFR/PI3K/AKT pathway and cIAP2 
expression correlated with EGFR mutation.115 

Inflammatory-induced oxidative stress is implicated in 
the development of lung adenocarcinoma and the level 
of 8-hydroxy-2ʹdeoxyguanosine (8-OH-dG), an oxidative 
stress biomarker, is closely associated with EGFR muta-
tion in lung cancer.116 Tung et al found that HPV16/18 
E6 elevated 8-OH-dG through increased ROS production, 
which in turn cooperated with HPV16/18 E6 to contribute 
to EGFR mutation in NSCLC.33

HPV and Smoking Exposures
Tobacco smoking is one of the well-known risk factors 
for developing lung cancer. However, only a small per-
centage of heavy smokers develop lung cancer. This 
phenomenon suggests that other cofactors are required 
for lung carcinogenesis. Whether HPV infection has 
a synergistic effect with smoking on lung carcinogenesis 
remains unknown. Munoz et al demonstrated that the 
proliferative rate and anchorage-independent growth of 
HPV16 E6/7 transfected lung epithelial cells were sig-
nificantly elevated when exposed to cigarette smoke 
components (CSC), suggesting that the functional inter-
action between cigarette smoking and HPV infection 
promoted the possibility of lung carcinogenesis.117 Pena 
et al further showed that CSC activated HPV16 p97 
promoter through their effects on the long control region 
(LCR) in lung epithelial cells.118 Moreover, HPV16 E6/7 
was able to increase oxidative DNA damage induced by 
CSC.118

Benzo[a]pyrene (B[a]P), a major constituent of cigar-
ette smoke, is associated with lung cancer development.119 

B[a]P can increase the number of virions and genomes of 
HPV.120 B[a]P treatment contributes to gene promoter 
hypermethylation, which is the main pathway implicated 
in repair gene inactivation.121 In addition, combination of 
inactivation of repair genes and exposure to B[a]P facil-
itates DNA damage.122 Interestingly, HPV acts synergisti-
cally with B[a]P to induce DNA damage in NSCLC cells, 
promoting lung carcinogenesis, especially in female 
patients.123
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Others
HPV E6/7 and Mcl-1
Myeloid cell leukemia (Mcl)-1 is an antiapoptotic member 
of the Bcl-2 family that contributes to the control of cancer 
development.124 The presence of Mcl-1 is implicated in 
cancer cell growth and evasion of apoptosis in various 
cancer types, including lung cancer.124 Concomitant 
expression of IL-6 or IL-17 and Mcl-1 is colocalized 
with HPV DNA in NSCLC.125 HPV E6/7 leads to upre-
gulated expression of IL-6 or IL-17 and Mcl-1 through 
phosphatidylinositol-3-OH kinase pathway.126 The micro-
environmental inflammation manifested by high level of 
IL-6 and IL-17 secreted by lung cancer cells in response to 
HPV stimuli is, therefore, likely to be responsible for 
HPV-infected lung tumorigenesis.125,126

HPV E6/7 and FOXM1
Increased expression of Foxhead box M1 (FOXM1) is 
associated with tumor progression and poor prognosis in 
various cancer types including NSCLC.127 FOXM1 is 
upregulated by E2F released by Rb phosphorylation 
through p53 inactivation and interacts with HPV-16 E7 
to enhance the transformation potential of rat embryo 
fibroblasts.128 Chen et al failed to identify E7-triggered 
FOXM1 upregulation in HPV-positive cancer cells includ-
ing lung cancer cells.62 However, elevated FOXM1 
expression was triggered by E6 through the MZF1/ 
NKX2-1 axis, which activated beta-catenin nuclear trans-
location and subsequently potentiated cell invasiveness 
and stemness in HPV-positive NSCLC.62

HPV E6 and miR-30c-2/MTA-1
miR-30c-2 is one of tumor suppressor microRNAs which 
are implicated in tumor development. The downregulation 
of miR-30c-2 promotes the invasion of NSCLC by target-
ing metastasis-associated protein-1 (MTA-1).129 Wu et al 
demonstrated that HPV-16/18 E6 negatively correlated 
with miR-30c-2 expression and positively with MTA-1 in 
NSCLC tissues and expression levels of miR-30c-2 and 
MTA-1 could predict prognosis and therapeutic response 
to chemotherapy of patients with NSCLC.130

Experimental Models of 
HPV-Associated Lung SCLC
In vitro and in vivo animal models are widely used in HPV 
research.131 No data are available concerning experimental 
models used to investigate how HPV infects and 

transforms lung cells. Importantly, Carraresi et al initially 
established a transgenic mouse model of SCLC induced by 
HPV-16 E6/E7 oncoproteins under the control of the cyto-
keratin 5 gene promoter.132 Furthermore, they developed 
two murine cell lines derived from transgenic lung SCLC, 
both of which showed absence of p53 and pRB and sustain 
tumor formation after subcutaneous injection in syngenic 
mice.133 These findings provide more direct evidence for 
ability of HPV to induce SCLC, possibly through the 
inactivation of p53 and pRB.

Possible Connection of HPV 
Vaccination and Lung Cancer
Prophylactic HPV vaccination, mainly covering girls and 
women under 25, is currently included into national vaccina-
tion programs in 60 countries worldwide.134 It aims at the 
formation of virus-neutralized antibodies and expected to 
protect from developing cervical cancer based on the estab-
lished association between HPV and the progression of cer-
vical neoplasia. The possible involvement of HPV in lung 
cancer may necessitate the introduction of prophylactic vac-
cination in both boys and girls. Undoubtedly, more lines of 
evidence are warranted to establish definitive evidence of 
HPV as an oncogenic factor of human lung cancer and to 
verify whether there is an impact on the lung cancer incidence 
of HPV-directed vaccine meant to prevent cervical cancer.

Merkel Cell Polyomavirus (MCPyV)
With the discovery by Feng et al in 2008 of Merkel cell 
polyomavirus (MCPyV) as a causative agent of Merkel 
cell carcinoma (MCC),135 several authors have investi-
gated the association between the presence of MCPyV in 
several human tumors including lung cancer.136–139 

MCPyV infections are widespread in the human popula-
tion with MCPyV continuously shed from healthy skin.140 

Moreover, MCPyV DNA fragments have been detected in 
a wide variety of anatomical locations, including lower 
respiratory tract.141 A recent study investigating MCPyV 
presence in 10 autopsies with an extensive organ sampling 
revealed a high prevalence of MCPyV was found in lung 
samples as well as in blood and brain samples.142 

Persistent presence of MCPyV in the respiratory tract 
may facilitate the development of lung cancer.

MCPyV and Lung Cancer
Since SCLC harbors the histological similarities towards 
MCC,143,144 whether MCPyV leads to the development of 
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SCLC has caught the attention of researchers. Studies have 
detected viral DNA sequences in SCLC tissues.145,146 

However, there is evidence indicating no role of MCPyV 
in SCLC.147,148 Furthermore, the prevalence of MCPyV in 
NSCLC has been investigated as well. Researchers found 
varying degrees of MCPyV infection positivity in NSCLC 
at the DNA, RNA and protein levels.11,149–153 Hashida 
et al provided the first evidence of not only the detection 
of MCPyV DNA but also the expressions of both LT RNA 
transcripts and LT antigen in NSCLCs.10 They revealed 
that nine out of 32 SCC, nine out of 45 AC, one out of 32 
large-cell carcinoma, and one out of three pleomorphic 
carcinomas were positive for MCPyV DNA.10 Another 
study showed statistically significant difference between 
stages of NSCLC and MCPyV LT-Ag DNA load, which 
suggested viral load may be increased with tumor 
progression.11

Possible NSCLC-Specific Oncogenic 
Mechanisms
Currently, neither human cell lines nor animal models are 
available to explore lung carcinogenesis by MCPyV. Like 
HPV, cell entry of MCPyV follows a two-step attachment- 
and-entry process154 and abundant expression of sulfated 
glycosaminoglycans in lung cells provides a basis for 
MCPyV to enter lung cells.

Integration of MCPyV DNA into the host cell genome 
is thought to cause MCC through the constitutive expres-
sion of the transforming large T (LT) and small T (ST) 
proteins with distinct mechanisms.155 However, the 
pathogenesis of MCPyV-induced NSCLC remains to be 
determined. It has been suggested that mutant BRAF 
drives the development of lung adenocarcinoma.156 

Heterodimer of Bax/Bcl-2 induces a neutralization of 
Bax and a loss of apoptosis.157 Lasithiotaki et al revealed 
increased expression of BRAF as well as the downregu-
lation of Bcl-2 in MCPyV-positive NSCLC samples as 
compared to MCPyV-negative NSCLC samples, suggest-
ing a role of MCPyV in NSCLC through deregulation of 
BRAF and Bcl-2.149 They further demonstrated that the 
expression of NSCLC-associated microRNAs (miR-21, 
miR-376, and miR-145) and their corresponding target 
genes were influenced by the presence of MCPyV in lung 
cancer tissues, providing evidence of a MCPyV- 
associated epigenetic mechanism in NSCLC.12 Xu et al 
found a significant correlation between MCPyV infection 
and EGFR mutations by screening 189 NSCLC 

samples.152 Their finding suggested MCPyV infection 
might induce EGFR mutations in NSCLC. If this were 
the case, it would explain the phenomenon provided by 
Lasithiotaki et al of higher expression of BRAF in 
MCPyV-positive samples since BRAF is a downstream 
target of EGFR pathway.149 Hashida et al identified two 
MCPyV integration sites (5q23.1 and 11q25) in NSCLC 
patients.10 However, both integration sites were not close 
to the EGFR gene location (7p12).10 Therefore, whether 
MCPyV infection induces EGFR mutations in NSCLC 
warrants further investigations.

Epstein–Barr Virus (EBV)
EBV is a lymphotropic gamma herpes virus with onco-
genic properties infecting more than 90% of adults world-
wide. It is directly involved in the pathogenesis of 
a variety of lymphoproliferative and neoplastic disorders, 
including undifferentiated nasopharyngeal carcinoma and 
lymphoepithelioma-like carcinoma (LELC) at various 
sites.158,159 The association of EBV and lung cancer pre-
sents significant differences according to tumor histotype 
and geographical site.15,160 The EBV is often detected in 
pulmonary LELC occurring in patients from east and 
southeast Asia where nasopharyngeal carcinoma is highly 
prevalent,13,161–164 but rarely detected or even undetected 
in other types of lung cancer such as adenocarcinoma, 
squamous cell carcinoma, and SCLC.42,165,166 Recently, 
Wang et al explored the EBV genomic variations in lung 
carcinoma and reported four newly sequenced EBV gen-
omes isolated from primary lung carcinomas with apparent 
genomic diversity among these EBV genomes.15 However, 
whether EBV genomic variations contribute to lung carci-
nogenesis remains unknown and deserves further 
investigation.

It is well-known that cell entry of EBV is initiated by 
the interaction of the viral envelope glycoprotein gp350 
with the cellular surface receptor CD21 of B cells and 
epithelial cells.167 Several studies have demonstrated the 
expression of EBV receptor CD21 in human bronchial 
epithelium,168 and more specifically in type 2 alveolar 
epithelial cells,169 implying possibility of EBV to infect 
and possibly transform lung cells in a CD-21 dependent 
manner. Yet, it needs further investigations.

Previous studies have measured circulating EBV DNA 
in the plasma of patients with pulmonary LELC and sug-
gested its role for monitoring response to therapy.170,171 

Recently, Xie et al performed a prospective multicenter 
study in Southern China investigating the association 
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between baseline EBV DNA and OS and disease-free 
survival (DFS) in a total of 429 patients with pulmonary 
LELC and showed that baseline EBV DNA copy of at 
least 4000 copies/mL predicted disease recurrence and 
poorer survival among patients with early- or advanced- 
stage pulmonary LELC.14 Through sequential blood draw, 
they found that plasma EBV DNA frequently preceded 
disease progression during posttherapy follow-up. 
Moreover, patients with persistently detectable plasma 
EBV DNA after radial resection had significantly worse 
OS and DFS than did those with EBV DNA after 
surgery.14 The above findings further supported an onco-
genic role of EBV in a fraction of Asian patients of 
pulmonary LELC. Nevertheless, neither in vitro cellular 
nor animal models exist currently verifying EBV’s ability 
to infect and transform malignantly human lung cells. 
Therefore, the possible oncogenic mechanism in EBV- 
associated lung cancer remains unknown.

Jaagsiekte Sheep Retrovirus (JSRV)
JSRV is a known betaretrovirus capable of inducing the 
formation of transmissible lung cancer in sheep called 
ovine pulmonary adenocarcinoma (OPA).172 OPA is char-
acterized by the multifocal mixed presentation of adeno-
carcinoma, with its early lesions having similarity to 
lepidic-predominant adenocarcinoma and its advanced 
lesions resembling adenocarcinoma with papillary or aci-
nar characteristics.173 JSRV infects and transforms bronch-
iolar and alveolar epithelial cells, namely type II 
pneumocytes and club cells.174 The cellular receptor for 
JSRV is hyaluronidase-2 (Hyal2) and Hyal2 has been 
shown to mediate human cell entry of JSRV Env pseudo-
typed retroviral particles.175 The envelope (Env) protein of 
JSRV is an oncogenic protein and its carcinogenic property 
has been demonstrated in sheep and mice in vivo and in 
various cell lines in vitro, including human bronchial 
epithelial cells.16

Given that the capacity of JSRV to induce OPA and 
histological similarities between OPA and human adenocar-
cinoma, as well as due to the findings that human bronchial 
epithelial cells express Hyal2 for JSRV entry and JSRV Env 
protein transforms human lung epithelial cells in vitro, 
numerous studies have explored the role of JSRV in the 
induction of human lung cancer.176–183 By immunohisto-
chemical analysis on human lung tissues using an antiserum 
to JSRV capsid protein, De las Heras et al revealed a positive 
reaction in 30% of 129 human lepidic adenocarcinomas, 26% 
of 65 other adenocarcinomas, and two of seven large cell 

carcinomas.176 By human lung cancer tissue arrays, 
Linnerth-Petrik et al further found the presence of JSRV 
Env protein by immunostaining and JSRV Env and Gag 
sequences by PCR in a subset of human 
adenocarcinomas.177 In addition, JSRV related DNA 
sequences have been detected in paraffin sections of lepidic 
adenocarcinoma specimens from lung cancer patients in 
Sardinia178 and in blood of Africans from Nigeria and 
Cameroon.179 Nonetheless, other groups failed to find evi-
dence for JSRV Env and Gag proteins by immunostaining182 

or for JSRV DNA or RNA by PCR in human 
adenocarcinoma.180,181 Recently, a more definitive method 
using a high-throughput sequencing approach was also 
unable to find evidence for JSRV sequences in five lepidic 
adenocarcinomas.183 Until now, no conclusive evidence 
exists regarding the link between JSRV and the development 
of lung adenocarcinomas in humans and much needs to be 
done.

John Cunningham Virus (JCV)
JCV is a member of polyomavirus family infecting a large 
proportion of the population worldwide and 80% to 90% of 
adults are seropositive.184 Recent literature reports the pre-
sence of JCV in various types of human neoplasm, includ-
ing lung cancer.185 The JCV T-antigen is considered to play 
an important role in JCV-associated carcinogenesis.186 The 
T-antigen can inactivate tumor suppressor proteins, p53 and 
pRb, and deregulate the Wnt signaling pathway through 
promoting the stability and accumulation of beta-catenin 
via direct binding, which culminating in uncontrolled pro-
liferation and immortal survival.187 Giuliani et al, for the 
first time, suggested the presence of JCV in lung tumors by 
showing JCV sequences were amplified in one lung carci-
noma only.184 Zheng et al examined the JCV by targeting 
JCV T-antigen and expression of Ki-67, caspase-3, beta- 
catenin, p53, and pRb in 103 lung carcinomas and 18 
normal lung tissues.188 In their study, the detection rate 
and copy number of JCV was higher in lung carcinoma 
than in normal lung tissue. JCV copies correlated positively 
with expression of Ki-67 and negatively with membrane 
beta-catenin expression, which suggested that lung carci-
noma with high JCV copies exhibited high proliferation and 
downregulation of cell adhesion mediated by membrane 
beta-catenin. Moreover, JCV T-antigen was found in the 
nuclei of lung carcinoma cells and adjacent alveolar epithe-
lial cells.188 These above findings along with previous 
report indicating that terminal a2,6-linked sialic acid is 
a critical component of the JCV receptor, which is 
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abundantly expressed in normal lungs,189 suggested that 
JCV might be implicated in the malignant transformation 
of pulmonary epithelial cells and supported the notion that 
the respiratory tract might be a portal of entry for JCV 
infection.189 Abdel-Aziz et al explored the presence of 
JCV genome in 62 lung cancer and 23 normal lung tissue 
by targeting the T-antigen, VP, and agnoprotein.190 The JCV 
genome was detected in approximately half of lung cancer 
cases and JCV T-antigen correlated significantly with p53 
and nuclear staining of beta-catenin. Sinagra et al recently 
investigated JCV gene sequences by targeting T-antigen in 
lung adenocarcinoma and its surrounding normal lung 
tissue.185 JCV positivity was observed in seven of 13 lung 
cancer tissues and none were JCV-positive for surrounding 
normal lung tissues. Noguchi et al generated transgenic 
(TG) mice with a transgene including the K-19 promoter, 
which was specific to bronchial and digestive epithelium 
and the JCV T-antigen and found pulmonary tumors in two 
out of 15 TG mice (13.3%) without any metastasis, suggest-
ing possible association of JCV with bronchial tumorigen-
esis in experimental animals.191

Challenges in Virus-associated Cancer 
Research and Future Perspectives
The global health burden of viral infection in cancer is 
high but underappreciated. Infectious agents are estimated 
to be blamed for 15.4% of cancers worldwide, with most 
being viruses.192 Viruses have had a chequered history in 
cancer biology throughout the past century.5 There are 
several inherent characteristics of viral biology making it 
difficult to identify viral agents as causative factors for 
human cancers.193 First, most of the viruses are ubiquitous 
in nature, but only a small percentage of infected indivi-
duals develop cancers. Second, no human cancer arises as 
the acute consequence of infection. The latency period 
between infection and the development of a cancer make 
exposure markers difficult to assess along the carcinogenic 
process. Third, viral agents might act as indirect carcino-
gens, without persistence of their genes within the respec-
tive cancer cells. It remains unclear whether these viruses 
cause cancer solely through sustaining mature tumor cells 
by viral products or chronic infection and inflammation or 
directly through contributing to cancer cell transformation 
by viral oncogenes. Viral etiology research may be influ-
enced by “hit and run” hypothesis, where the viral genes 
are lost as the tumor begins to mature. Fourth, species- 

specific barriers often limits the use of animals as surro-
gate hosts to study human tumor viruses.

Even so, the exploitation for viral etiology for selected 
solid cancers should not cease. We are now entering 
a more mature phase of research with the realization that 
a considerable proportion of cancers are indeed caused by 
viruses. With the advent of new sequencing technologies, 
it is highly probable that this proportion will increase. The 
discovery of cancers with an infectious origin is critical to 
develop antilatent viral drugs and immunological thera-
pies. The recognition of the importance of viral cancers 
has already resulted in vaccines against HBV and high-risk 
HPV and targeted therapies against HCV and HIV, and will 
create more opportunities in cancer control.

Conclusion
This article highlights several important findings on lung 
cancer-associated oncogenic viruses. First, HPV is detected 
in a substantial fraction of human lung cancer tissues world-
wide, with widely variable infection rates in lung cancer 
tissues depending on the geographical origin of the study. 
The association seems to be stronger in squamous cell 
carcinoma than in other lung cancer subtypes. Multiple 
oncogenic mechanisms have been proposed to play a part 
in HPV-infected NSCLC carcinogenesis, such as transcrip-
tion of oncogenes that contribute to lung cancer cell trans-
formation, induction of EGFR mutation, and clonal 
integration into the cellular genome. Furthermore, HPV 
might act as a cofactor of smoking exposures to facilitate 
lung cancer carcinogenesis. MCPyV has been put under the 
spotlight of searching oncogenic virus associated with lung 
cancer since the discovery of MCPyV being as a causative 
agent of MCC. Limited evidence indicates a role of MCPyV 
in lung cancer, especially NSCLC. Like HPV, MCPyV 
might also induce EGFR mutation in NSCLC, but through 
unknown mechanism. The association between MCPyV and 
lung cancer warrants further investigation. The association 
of EBV and lung cancer presents significant differences 
according to tumor histotype and geographical site. EBV is 
often detected in pulmonary LELC occurring in patients 
from east and southeast Asian and circulating EBV DNA 
in the plasma of patients with pulmonary LELC predicts 
disease recurrence. EBV may be related to pulmonary 
LELC, especially in east and southeast Asia, while a more 
general role of EBV in lung carcinogenesis seems unlikely. 
Although JSRV has been known to induce ovine lung ade-
nocarcinoma through the viral envelope protein, no conclu-
sive evidence exists related to the possible link between 
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JSRV and the development of lung adenocarcinomas in 
humans so far. Compared with the above four viruses, JCV 
are less-studied. Obviously, more research in the future is 
needed to get more insight into their role in lung 
carcinogenesis.
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