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A B S T R A C T   

Here, we offer an easy and eco-friendly sonochemical pathway to fabricate Nd2Zr2O7 nanostructures and 
nanocomposites with the help of Morus nigra extract as a new kind of capping agent. For the first time, the 
performance of Nd2Zr2O7-based ceramic nanostructure materials has been compared upon NOx abatement. 
Diverse kinds of techniques have been employed to specify purity and check the attributes of the fabricated 
Nd2Zr2O7-based nanostructurs by Morus nigra extract. Outcomes revealed the successful fabrication of Nd2Zr2O7 
nanostructures and nanocomposites applying Morus nigra extract through sonochemical pathway. All nano-
structured samples have been fabricated through ultrasonic probe with power of 60 W (18 KHz). Further, the 
fabricated Nd2Zr2O7-based ceramic nanostructure materials can be applied as potential nanocatalysts with 
appropriate performance for propane-SCR-NOx, since the conversion of NOx to N2 for the best sample (Nd2Zr2O7- 
ZrO2 nanocomposite) was 70%. In addition, in case of Nd2Zr2O7-ZrO2 nanocomposite, the outlet quantity of CO 
as an unfavorable and unavoidable product was lower than the rest.   

1. Introduction 

Nowadays, the usage of nanoscale compounds in diverse fields is 
very significant [1–4]. Among the nanoscale compounds, rare earth 
zirconium oxides (Re2Zr2O7) have been examined by the scholars 
because of their extraordinary attributes. These compounds are tech-
nologically a very beneficial kind of materials because of their usages in 
gas turbines [5], catalytic process [6–8], diesel engines [9], environ-
mental remediation [10,11] and coating materials [12]. To date, a va-
riety of approaches for making the nanostructured Re2Zr2O7 has been 
offered and employed like combination of the sol–gel and co- 
precipitation [13], floating zone technique [14], solid-state reaction 
[6,15], microwave plasma technique [16] and Pechini approach [17]. 
Use of ultrasonic approach for making the nanoscale compounds, has 
fascinated extraordinary attention for its ease, fastness and low cost as 
well as its environmental friendliness [18–21]. Thus, many scientists 
have been tried to create a variety of nano compounds with the help of 
ultrasonic path [22,23]. Multiple bubbles are created within the sono-
chemical path. After growth stage, these bubbles destructed because of 

the shake waves. The energy release by bubbles destruction can be 
reason to drive the chemical reactions to form the nano-compound 
[24,25]. There is no report about fabrication of Nd2Zr2O7 nano-
structures and nanocomposites through a simple and eco-friendly 
sonochemical pathway. 

Chemical and physical attribute and efficiency of the nanoscale 
compounds can be dependent to fabrication path, size distribution, pu-
rity rate, shape of them [26–30]. To date, intense research attempt has 
been undertaken to adjust size distribution, purity rate, shape of the 
nanoscale compounds [31,32]. 

In recent times, multitude literatures have been published upon 
process of SCR-NOX utilizing a variety of hydrocarbon compounds like 
propane [33,34] and also methane [35] as well as ammoniac in role of 
reductant. A variety of oxide compounds and also zeolites have been 
offered in the role of catalyst for NOx abatement. These consist 
aluminum oxide (Al2O3), cerium oxide (CeO2), zirconium oxide (ZrO2), 
vanadium oxide (V2O5) as well as zeolites like ZSM-5 and clinoptilolite 
[36]. Ghasemian et al. introduced ion-exchanged clinoptilolite zeolite 
upon propane-SCR-NOx [37]. Our research group examined the usage of 
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Ln2Zr2O7 (Ln = Nd, Pr) ceramics in role of catalytic materials to elimi-
nate NOx [38]. 

This paper offered novel framework and easy path to fabricate 
Nd2Zr2O7 nanostructures with the help of ultrasonic approach. The 
study demonstrates the first try on checking the role of Morus nigra 
extract, as an eco-friendly kind of capping agent, in the sonochemical 
synthesis of Nd2Zr2O7 nanostructures. Morus nigra extract has been 
utilized as a new kind of capping agent because it comprises high 
quantity of anthocyanins [39]. As-fabricated Nd2Zr2O7 nanostructure 
has been employed as a potential nanocatalyst for NOx abatement and its 
yield has been checked. The synthesis method has been demonstrated to 
have notable impact on attribute and performance of nanoscale com-
pounds [24]. In our previous work, Nd2Zr2O7 sample produced via 
combustion path and checked its performance on NOx abatement [38]. 
Here, to examine the role of synthesis pathway, the activity of Nd2Zr2O7 
samples produced by two different pathways (sonochemical and com-
bustion) on propane-SCR-NOx is compared. In addition, the nano-
structured Nd2Zr2O7-ZrO2 and Nd2Zr2O7-Nd2O3 have been fabricated 
with the help of Morus nigra extract via sonochemical pathway, to check 
the possibility of coupling ZrO2 or Nd2O3 into neodymium zirconate and 
its effect on shape, dimension and activity. So far, there is no report 
comparing the performance of Nd2Zr2O7-based ceramic nanostructure 

materials (sonochemically fabricated by Morus nigra extract) on pro-
pane-SCR-NOx. The outcomes signify that Nd2Zr2O7-based ceramic 
nanostructure materials (sonochemically fabricated by Morus nigra 
extract) may be applied as nanocatalysts with appropriate performance 
for propane-SCR-NOx. 

2. Experimental 

2.1. Substances and characterization 

Neodymium nitrate, diethylenetriamine (dien) and also zirconyl ni-
trate with analytical grade in fabrication of Nd2Zr2O7-based nano-
structure materials have been applied without additional purification. 
The shape and dimension of Nd2Zr2O7-based nanostructure materials 
have been checked by a microscope (MIRA3 FEG-SEM). Nd2Zr2O7-based 
nanostructure materials have been scanned by X-ray diffractometer 
(Philips Company) to illustrate and verify the phase composition. The 
surface properties of Nd2Zr2O7-based nanostructure material have been 
checked with a nitrogen adsorption in a Micromeritics Tristar 3000 
apparatus. FTIR studies on Nd2Zr2O7-based nanostructure materials 
have been accomplished applying a Magna-IR, spectrometer 550 Nico-
let. TEM data for Nd2Zr2O7-based nanostructure materials have been 
recorded with a microscope (TEM, JEM-2100). All experiments have 
been conducted with a probe as ultrasound source. Its power has been 
regulated in 60 W. 

2.2. Fabrication of Nd2Zr2O7-based nanostructures 

Nd2Zr2O7 nanostructures have been fabricated through a simple and 
eco-friendly sonochemical pathway in which Morus nigra extract has 
been applied as a new kind of capping agent. First, 5 ml of Morus nigra 
extract (Mn Ex) has been admixed to a solution mixture of neodymium 
nitrate and zirconyl nitrate (molar ratio of Zr:Nd = 1:1) under sonication 
(60 W). While the prepared mixture was subjected under ultrasound, a 
new precipitator namely diethylenetriamine (dien) was added drop by 
drop to the above mixture to achieve its pH to 6. The sonication 

Table 1 
Synthesis conditions for Nd2Zr2O7-based nanostructure materials.  

Sample 
no 

Capping 
agent 

Sonication 
(time-power) 

Zr: 
Nd 

Crystalline 
size (XRD/ 
nm) 

Figure of 
FESEM 
images 

1 Morus 
nigra 
extract 

10 min- 60 W 1:1 11 4a and b 

2 Morus 
nigra 
extract 

10 min- 60 W 2:1 13.4 4c and d 

3 Morus 
nigra 
extract 

10 min- 60 W 1:2 15.5 4e and f  

Fig. 1. Schematic illustration of integral catalytic reactor system for SCR-NOx process [38].  
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continued for 10 min. Created precipitate was subsequently rinsed (with 
ethanol and water) and air-dried. To fabricate Nd2Zr2O7 nanostructure, 
the residue was heated (at 650 ◦C within 90 min in a furnace). In order to 
create Nd2O3-Nd2Zr2O7 and ZrO2-Nd2Zr2O7 nanocomposites, 1:2 and 
2:1 M ratios of Zr:Nd have been applied, respectively, under the con-
ditions mentioned above. Experimental details are visible in Table 1. 

2.3. Evaluation of catalytic performance 

The performance of the samples was assessed utilizing an integral 
catalytic reactor illustrated in Fig. 1 [40]. In short, the inlet gas comprise 
a admixture with nitric oxide (30 ppm), nitrogen dioxide (460 ppm), 
oxygen (2.5 vol%), C3H8 (1000) ppm and also Argon gas (balance). The 
mentioned composition enters a flow meter set at 300 cm3/min (with 
atmospheric pressure) and afterward is preheated and also steered into 
an integral reactor comprising 500 mg catalyst. The furnace is respon-
sible for heating the reactor that its diameter is ½ inch. Reactor tem-
perature is regulated in the range of 150–500 ◦C. For measurement of 
quantity of nitric oxide, nitrogen dioxide, carbon monoxide and O2 at 
the outlet of reactor, a KANE 940 analyzer which detects them is uti-
lized. Besides, a gas chromatography (SHIMADZU model 2010 plus) is 
employed for determining of nitrous oxide quantity in effluent. More 
data can be found in the previous literature [40]. 

3. Results and discussion 

This paper offered novel framework and easy path to fabricate 
Nd2Zr2O7 nanostructures with the help of ultrasonic approach. The 

study demonstrates the first try on checking the role of Morus nigra 
extract, as an eco-friendly kind of capping agent, in the sonochemical 
synthesis of Nd2Zr2O7 nanostructures. Morus nigra extract has been 
utilized as a new kind of capping agent because it comprises high 
quantity of anthocyanins. In addition, the nanostructured Nd2Zr2O7- 
ZrO2 and Nd2Zr2O7-Nd2O3 have been fabricated with the help of Morus 
nigra extract via sonochemical pathway, to check the possibility of 
coupling ZrO2 or Nd2O3 into neodymium zirconate and its effect on 
shape, dimension and activity. 

3.1. Structural determination and purity 

The crystal structures of net Nd2Zr2O7 nanostructure and Nd2Zr2O7- 
ZrO2 and Nd2Zr2O7-Nd2O3 nanocomposites are given in Fig. 2. The 
intense peaks visible in XRD data are indicative of the crystalline nature 
of the compounds. XRD pattern of the net Nd2Zr2O7 nanostructure ex-
hibits signals that fit well to cubic phase neodymium zirconium oxide 
(JCPDS No. 78-1618). When 1:2 and 2:1 M ratios of Zr:Nd are applied in 
the experiment conditions, the nanocomposite samples can be created. It 
is visible that in the case of Nd2Zr2O7-ZrO2 nanocomposite, the 
diffraction signals corresponding to Nd2Zr2O7 and tetragonal zirconium 
oxide (JCPDS No. 80-0965) seen, signifying the incorporation of ZrO2 
over Nd2Zr2O7 (see Fig. 2b). Further, Nd2Zr2O7-Nd2O3 nanocomposite 
denotes diffraction signals corresponding to hexagonal neodymium 
oxide (JCPDS No. 40-1282) and Nd2Zr2O7, implying coupling of both 
oxides during the fabrication stage (see Fig. 2c). The above-mentioned 
findings suggest that the process of fabrication nanocomposite does 
not alter the crystalline structure neodymium zirconium oxide. No other 
crystalline impurities can be visible, signifying purity of all three sam-
ples. The mean crystallite diameters for Nd2Zr2O7-based nanostructure 
samples have been estimated with Scherer equation (see Table 1). 

FT-IR data further verify the formation of Nd2Zr2O7-based nano-
structures and their chemical purity. FT-IR data of the net Nd2Zr2O7 
nanostructure, Nd2Zr2O7-ZrO2 and Nd2Zr2O7-Nd2O3 nanocomposites 
(samples 1–3) are visible in Fig. 3a–c. The intensive signals nearly 403, 

Fig. 2. XRD patterns of (a) net Nd2Zr2O7 nanostructure and (b) Nd2Zr2O7-ZrO2 
and (c) Nd2Zr2O7-Nd2O3 nanocomposites fabricated with the help of Morus 
nigra extract via sonochemical pathway. 

Fig. 3. FT-IR spectra of (a) net Nd2Zr2O7 nanostructure and (b) Nd2Zr2O7-ZrO2 
and (c) Nd2Zr2O7-Nd2O3 nanocomposites fabricated with the help of Morus 
nigra extract via sonochemical pathway. 

S. Zinatloo-Ajabshir et al.                                                                                                                                                                                                                     



Ultrasonics Sonochemistry 71 (2021) 105376

4

401 and 418 cm− 1 appeared in FT-IR data of the net Nd2Zr2O7 nano-
structure, Nd2Zr2O7-ZrO2 and Nd2Zr2O7-Nd2O3 nanocomposites, corre-
spondingly, were ascribable to the metal-oxygen stretching vibrations 
[17,41,42]. Besides, signals near 3373, 1616, 3486 and 3490 − 1 in FT-IR 
data of the samples 1–3, correspondingly, are indicative of adsorbed 
H2O molecules [43]. 

3.2. Morphological observations 

Morphological aspects of net Nd2Zr2O7 nanostructure and Nd2Zr2O7- 
ZrO2 and Nd2Zr2O7-Nd2O3 nanocomposites have been checked with 
FESEM and outcomes are given in Fig. 4. Various morphologies can be 
visible in the case of three samples. The homogenous nanoparticles are 

visible in the case of net Nd2Zr2O7 (Fig. 4a and b), and the structure of 
Nd2Zr2O7-ZrO2 with a nanobundle-like shape is illustrated in Fig. 4c and 
d. The morphology for Nd2Zr2O7-Nd2O3 is irregular and agglomerated 
micro/nanobundle-like (Fig. 4e and f). The outcomes illustrate that the 
morphology of Nd2Zr2O7 is different before and after introduction of 
ZrO2 or Nd2O3. Thus, ZrO2 or Nd2O3 can alter the morphology of 
Nd2Zr2O7. All the above samples were fabricated with the help of Morus 
nigra extract. Morus nigra extract has been utilized as a new kind of 
capping agent because it comprises high quantity of anthocyanins that 
may cause to the convenient steric hindrance effect in sonochemical 
synthesis phase. The anthocyanins can play a helpful role in adjusting 
particle size. 

TEM data further verify the formation of Nd2Zr2O7-based 

Fig. 4. FESEM images of (a and b) net Nd2Zr2O7 nanostructure and (c and d) Nd2Zr2O7-ZrO2 and (e and f) Nd2Zr2O7-Nd2O3 nanocomposites fabricated with the help 
of Morus nigra extract via sonochemical pathway. 
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nanostructures (see Fig. 5). The sphere-shaped nanoparticles of 
Nd2Zr2O7 are visible in Fig. 5a. TEM data of Nd2Zr2O7-ZrO2 and 
Nd2Zr2O7-Nd2O3 nanocomposites (samples 2 and 3) are given in Fig. 5b 
and c. In agreement with FESEM outcomes, TEM data display the 
presence of agglomerated nanoparticles. The nanobundle-like 
morphology of Nd2Zr2O7-ZrO2 sample is visible in Fig. 5b. Nd2Zr2O7- 
Nd2O3 sample illustrates the irregular and agglomerated micro/ 
nanobundle-like structure assembled by nanoparticles (see Fig. 5c). 
HRTEM data of both the nanocomposite samples denote the lattice 
fringes (Fig. 5d and e). The lattice fringes of Nd2Zr2O7-ZrO2 sample 
demonstrate the interplanar distances of cubic neodymium zirconium 
oxide and tetragonal zirconium oxide. The observed interplanar distance 
(d) of 0.25 nm correspond to 1 1 0 planes of tetragonal zirconium oxide 

(JCPDS No. 80-0965), and the measured 0.21 nm agrees with the d of 4 2 
2 planes of cubic neodymium zirconium oxide (JCPDS No. 78-1618). 
The corresponding data of Nd2Zr2O7-Nd2O3 sample illustrate the inter-
planar distances of the 2 2 0 planes of cubic neodymium zirconium oxide 
(0.37 nm) and the 1 1 0 planes of hexagonal neodymium oxide (0.34 
nm) lattices. The above-mentioned findings as well as XRD and FTIR 
data represent that samples 2 and 3, are desirous compounds, namely, 
Nd2Zr2O7-ZrO2 and Nd2Zr2O7-Nd2O3 nanocomposites. 

3.3. Sonication effect and formation mechanism 

As mentioned above, Nd2Zr2O7-based nanostructures were fabri-
cated through a simple and eco-friendly sonochemical pathway with the 

Fig. 5. TEM images of (a) net Nd2Zr2O7 nanostructure and (b) Nd2Zr2O7-ZrO2 and (c) Nd2Zr2O7-Nd2O3 nanocomposites and HRTEM images of (e) Nd2Zr2O7-ZrO2 
and (f) Nd2Zr2O7-Nd2O3 nanocomposites. 
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help of Morus nigra extract as a new kind of capping agent. Cavitation 
resulting from ultrasonic waves can create appropriate and particular 
structures in nano dimension and homogeneous trend. Extensive usage 
of ultrasonic approach for making the nanoscale compounds can be for 
its ease, fastness and low cost as well as its environmental friendliness 
[18–21]. Multiple bubbles are created within the sonochemical path. 
After growth stage, these bubbles destructed because of the shake waves. 
The energy release by bubbles destruction can be reason to drive the 
chemical reactions to form our products [24,25]. Further, the anthocy-
anins in Morus nigra extract can play a helpful role in adjusting particle 
size. The key and possible reactions for the sonochemical formation of 
Nd2Zr2O7-based nanostructures with the help of dien may be as [44,45]:  

H2O→H•+OH• (1)  

OH•+H2NCH2CH2NHCH2CH2NH2+2H2O→H3N+CH2CH2NHCH2CH2 
N+H3+2OH− +byproducts                                                                (2)  

3OH− +Nd(NO3)3→3NO3
− +Nd(OH)3                                                  (3)  

2OH− +ZrO(NO3)2→2NO3
− +ZrO(OH)2                                               (4)  

Nd(OH)3+ZrO(OH)2→NdZrO(OH)5                                                   (5)  

NdZrO(OH)5or
(
NdZrO(OH)5 + ZrO(OH)2

)
or

(
NdZrO(OH)5 + Nd (OH)3

)

→Δ Nd2Zr2O7 or Nd2Zr2O7 − ZrO2or Nd2Zr2O7 − Nd2O3

(6) 

The decomposition of O–H bond in water augments the quantity of 
OH radical species. The generated OH radicals can be reason for creation 
of the OH– ions (Eq. (2)), which can play a key and helpful role in 

formation of Nd2Zr2O7-based nanostructures. Subsequently, reaction of 
ZrO2- and Nd3+ with OH– brings to creation of metal hydroxide and 
formation of Nd2Zr2O7-based nanostructures performed as illustrated in 
Eq. (5), 6 (see Scheme 1). 

3.4. Surface characteristics 

Catalytic performance of the nanoscale compounds can be depen-
dent to the surface characteristics of them. These characteristics (surface 
area and porosity) are checked via nitrogen adsorption process. The 
adsorption− desorption isotherms of net Nd2Zr2O7 nanostructure and 
Nd2Zr2O7-ZrO2 nanocomposite are compared in Fig. 6. Based on the 
outcomes, both samples display the mesoporous structure. Further, the 
specific surface areas of net Nd2Zr2O7 nanostructure and Nd2Zr2O7-ZrO2 
nanocomposite were 26.435 and 32.637 m2/g, correspondingly. Table 2 
gives the textural features of the Nd2Zr2O7-based nanostructures. It is 
visible that the surface area of Nd2Zr2O7-ZrO2 nanocomposite is greater 
than that of net Nd2Zr2O7. The mesoporous structures and convenient 
surface area of the Nd2Zr2O7-based nanostructures can be conducive to 
the possibility of highly efficient catalytic performance. 

3.5. Catalytic activity 

According to GC analysis, nitrous oxide was absent in the outlet 
streams. Hence, nitrogen in the product might be obtained via mass 
balance of nitric oxide and nitrogen dioxide which are traceable with 
Kane 940 gas analyzer. To examine the role of synthesis pathway, the 
activity of Nd2Zr2O7 samples produced by two different pathways 
(sonochemical and combustion) on propane-SCR-NOx is compared at a 
GHSV (gas hourly space velocity) of 47048 h− 1 (see Fig. 7). It is visible 

Scheme 1. Schematic diagram for creation Nd2Zr2O7-based nanostructures.  
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that by enhancement of temperature, NOx conversion rate to nitrogen is 
grown and afterward is reduced after 400 ◦C for both of Nd2Zr2O7 
nanostructure samples. Both of nanostructures may manifest maximum 
conversion at 400 ◦C since, conversion of NOx to nitrogen for Nd2Zr2O7 
(fabricated by sonochemical approach) is 64% and for Nd2Zr2O7 (sam-
ple.1 in Ref. [38] fabricated by combustion approach) is 56%. From XRD 
data (see Table 1), it is visible that the crystallite size of Nd2Zr2O7 
nanostructure (fabricated by sonochemical approach) is 11 nm and for 
Nd2Zr2O7 (fabricated by combustion approach) is 20 nm. Thus, Nd2Zr2O7 
nanostructure (fabricated by sonochemical approach) has the crystallite 
size smaller than the other sample. Besides, FESEM findings demonstrate 
that particle size of Nd2Zr2O7 nanostructure (fabricated by sonochemical 
approach) is smaller. Also, this nanostructure possesses better unifor-
mity. It is worthy to note that the enhancement of surface area from 11. 
504 for Nd2Zr2O7 (fabricated by combustion approach) to 26.435 m2 g− 1 

for the Nd2Zr2O7 nanostructure (fabricated by sonochemical approach) 
also may possess a positive effect upon the catalytic performance. Thus, 
very convenient surface area as well as smaller and also more homoge-
neous nanoparticles can be reasons for more proper conversion of 
Nd2Zr2O7 nanostructure (fabricated by sonochemical approach). 

In following, the effect of adding Nd2O3 and ZrO2 to Nd2Zr2O7 on the 
performance of NOx conversion to N2 was checked. Fig. 8 exhibits plots of 
the total NOx conversion into nitrogen versus reaction temperature for 
Nd2Zr2O7-based ceramic nanostructure materials at a GHSV of 47048 
h− 1. A similar trend between the performances of the various samples is 
seeable. In the case of all samples, there is a maximum conversion in 
400 ◦C. Regarding the maximum conversion temperature, it is visible that 
Nd2Zr2O7-Nd2O3 possesses the least rate of conversion (52%). Net 
Nd2Zr2O7 displays a maximal conversion of 64%. This is while Nd2Zr2O7- 

ZrO2 illustrates a very appreciable maximum conversion of 70%. It would 
be informative and helpful to consider the change in the nitrogen 
adsorption features of the samples. Fig. 6a and c illustrate the nitrogen 
adsorption isotherms of Nd2Zr2O7 and Nd2Zr2O7-ZrO2 respectively. It is 
plainly perceived that the adsorption capacity enhances in sample of 
Nd2Zr2O7-ZrO2. This phenomenon is in compliance with the creation of 
an observed hysteresis in the adsorption/desorption isotherms at upper 
range of volume so that pore volume increases from 0.1527 to 
0.1843cm3g− 1. This is accompanied with an enhancement of the specific 
surface area from 26.435 to 32.637 m2g− 1. It is valuable to mention that, 
the increase of surface area (see Table 2) influence positively the catalytic 
activity. It can be state that, the remarkable increment of surface area in 
the case of Nd2Zr2O7-ZrO2 (from 6.423 to 32.637 m2g− 1) and also 
enhancement of pore volume (from 0.0624 to 0.1843 cm3g− 1) positively 
affect the catalytic yield. Moreover, FESEM findings illustrate that 
Nd2Zr2O7-ZrO2 nanocompisite has smaller and also more homogeneous 
nanoparticles. It is worthy to note that, from XRD outcomes, the crys-
tallinity of the Nd2Zr2O7-Nd2O3 is lower than the rest so that as 

Fig. 6. N2 adsorption/desorption isotherms (a and c) and pore size distribution curves (b and d) of net Nd2Zr2O7 nanostructure and Nd2Zr2O7-ZrO2 nanocomposites, 
correspondingly. 

Table 2 
Summary of surface features for Nd2Zr2O7-based nanostructure materials.  

Sample BET area 
(m2g− 1) 

Pore volume (cm3 

g− 1) 
Pore diameter 
(nm) 

Nd2Zr2O7  26.435  0.1527  18.216 
Nd2Zr2O7-ZrO2  32.637  0.1843  15.177 
Nd2Zr2O7- 

Nd2O3  

6.423  0.0624  36.541  
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demonstrated at previous works [46], decrement of crystalinity may lead 
to fall of performance. Summing up, very appropriate surface area as well 
as having fine and also homogeneous nanoparticles can be reasons for 
more favorable conversion of Nd2Zr2O7-ZrO2 nanocomposite. 

Fig. 9 denotes plots of the outlet CO concentration of reactor versus 
reaction temperature for Nd2Zr2O7-based ceramic nanostructure mate-
rials. It is visible that for Nd2Zr2O7-ZrO2 nanocomposite, quantity of CO 
production is minimum (30 ppm at 500 ◦C) in comparison with the rest. 

Recall, creation of CO as an unfavorable product during NOx abatement 
by hydrocarbons like C3H8 is unavoidable. This occurrence may be 
related to the unselective combustion of C3H8 at greater temperatures, 
as stated in previous works [38,39]. Further, reaction of CO creation can 
be activated within the nanostructure channel and do not exclusively 
take place in the gas phase. Further data on this topic can be found in the 
previous literature [37]. 

4. Conclusions 

In summary, a simple and swift pathway was selected to fabricate 
beneficial active materials, which can be employed on propane-SCR- 
NOx. Nd2Zr2O7 nanostructures and nanocomposites were sonochemi-
cally fabricated with the help of Morus nigra extract as a new kind of 
capping agent. For the first time, the performance of Nd2Zr2O7-based 
ceramic nanostructure materials has been compared on propane-SCR- 
NOx. Outcomes revealed the successful fabrication of Nd2Zr2O7 nano-
structures and nanocomposites applying Morus nigra extract through 
sonochemical pathway. It is demonstrated that ultrasound irradiation 
can play a helpful role in formation of Nd2Zr2O7-based nanostructures. 
Further, the fabricated Nd2Zr2O7-based ceramic nanostructure materials 

Fig. 7. The role of the reaction temperature and kind of nanostructure (produced by two different pathways) on the conversion of NOx (NO + NO2) into N2 in the 
range of 150–500 ◦C. 

Fig. 8. Plots of total conversion of NOx (NO + NO2) into N2 versus reaction 
temperature for Nd2Zr2O7-based ceramic nanostructure materials in the range 
of 150–500 ◦C. 

Fig. 9. Plots of the outlet CO concentration of reactor versus reaction tem-
perature for Nd2Zr2O7-based ceramic nanostructure materials. 
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can be applied as potential nanocatalysts with appropriate performance 
for propane-SCR-NOx. The synthesis way facilitated large scale pro-
duction as a result of its easiness, fastness and low cost as well as its 
environmental friendliness. Further, these Nd2Zr2O7-based ceramic 
nanostructure materials might find substantial usages in relevant fields. 
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