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BACKGROUND: We aimed to estimate and externally validate a new UK-specific prognostic model for predicting the long-term risk of
a first recurrent event (local recurrence, metastatic recurrence, or second primary breast cancer) in women diagnosed with early
breast cancer.
METHODS: Using data on the prognostic characteristics and outcomes of 1844 women treated for early breast cancer at the Churchill
Hospital in Oxford, parametric regression-based survival analysis was used to estimate a prognostic model for recurrence-free
survival. The model, which incorporated established prognostic factors, was externally validated using independent data. Its
performance was compared with that of the Nottingham Prognostic Index (NPI) and Adjuvant! Online.
RESULTS: The number of positive axillary lymph nodes, tumour grade, tumour size and patient age were strong predictors of
recurrence. Oestrogen receptor (ER) positivity was shown to afford a moderate protective effect. The model was able to separate
patients into distinct prognostic groups, and predicted well at the patient level, mean Brier Accuracy Score¼ 0.17 (s.e.¼ 0.004) and
overall C¼ 0.745 (95% CI, 0.717–0.773). Its performance diminished only slightly when applied to a second independent data set.
When compared with the NPI, the model was able to better discriminate between women with excellent and good prognoses, and
it did not overestimate 10-year recurrence-free survival to the extent observed for Adjuvant! Online.
CONCLUSION: The model estimated here predicts well at both the individual patient and group levels, and appears transportable to
patients treated at other UK hospitals. Its parametric form permits long-term extrapolation giving it an advantage over other
prognostic tools currently in use. A simple point scoring system and reference table allow 5-, 10-, and 15-year predictions from the
model to be quickly and easily estimated. The model is also available to download as an interactive computer program.
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It is acknowledged that the risk of recurrence and death in early
breast cancer patients varies depending on an array of prognostic
factors (Blamey et al, 1979; Haybittle et al, 1982; Walker, 2003;
Chang and Hilsenbeck, 2004; Williams et al, 2006). Also
established is that adjuvant systemic therapies (hormone therapy
and chemotherapy) can prevent disease recurrence, yet their
associated toxicities can adversely affect patient health-related
quality of life (HRQoL; Chie et al, 2000; Conner-Spady et al, 2001;
Sorensen et al, 2004; Early Breast Cancer Trialists’ Collaborative
Group, 2005a). These features of both disease and treatment, mean
clinical decision making in early breast cancer is challenging.
Predicting a patient’s baseline risk is key in estimating the absolute
benefit (survival net of any treatment-related decrement in
HRQoL) likely to be afforded by treatment.

In the field of early breast cancer in the UK, statistical models
and algorithms are often used to generate prognosis predictions.
The Nottingham Prognostic Index (NPI), for example, which was
developed using Cox proportional hazards modelling, has been
widely used for this purpose (Blamey et al, 1979; Haybittle et al,
1982; Todd et al, 1987; Galea et al, 1992). Calculated as tumour
stage plus tumour grade plus 0.2� tumour size, a patient’s NPI
score classifies them into one of a number of prognostic groups,
for which published survival curves are available and provide
a point of reference for clinicians who wish to approximate
prognosis.

Unfortunately, the heterogeneity present in early breast cancer
means that within these NPI groups, the prognosis (and absolute
effectiveness of treatment) for some patients will differ substan-
tially from that of the group as a whole. In recognition of this,
some clinicians in the UK have attempted to discriminate between
patients within NPI prognostic groups. Examples include restrict-
ing chemotherapy to oestrogen receptor (ER)-negative patients
with an NPI score p3.4, or to women aged o50 years with an NPI
score p4.4 (Williams et al, 2006). Only recently has a more formalReceived 16 April 2010; revised 23 July 2010; accepted 31 July 2010

*Correspondence: Dr HE Campbell;
E-mail: helen.campbell@dphpc.ox.ac.uk
4 These authors contributed equally to the study

British Journal of Cancer (2010) 103, 776 – 786

& 2010 Cancer Research UK All rights reserved 0007 – 0920/10

www.bjcancer.com

C
lin

ic
a
l

S
tu

d
ie

s

http://dx.doi.org/10.1038/sj.bjc.6605863
http://www.bjcancer.com
mailto:helen.campbell@dphpc.ox.ac.uk
http://www.bjcancer.com


approach to obtain better baseline prognosis predictions using
the NPI been proposed, with the publication of an algorithm
for converting all individual NPI scores into 10-year survival
percentages (Blamey et al, 2007).

Over the last decade, clinicians in the UK have made increasing
use of Adjuvant! Online (http://www.adjuvantonline.com) for
prognosis prediction and treatment benefit estimation (Ravdin
et al, 2001; Olivotto et al, 2005; Siminoff et al, 2006). Adjuvant!
is an internet-based program into which users can enter
information on a patient’s age, number of involved axillary lymph
nodes, and the grade, size, and ER status of the primary tumour.
The program returns predictions of 10-year overall survival, breast
cancer-specific survival, and event (recurrence)-free survival, for
each unique array of prognostic factor data entered. It, thus, has a
greater discriminative ability than the NPI. In addition, Adjuvant!
calculates the absolute survival benefit of any proposed adjuvant
therapy by using treatment effect estimates from meta-analyses
and randomized controlled trials to proportionately adjust its
mortality and recurrence rates.

Adjuvant!’s estimates are not informed by prognostic modelling,
but are derived instead from the observed 10-year survival
experiences of over 30 000 women with invasive early breast
cancer in the Surveillance, Epidemiology, and End-Results (SEER)
tumour registry in the United States (Adjuvant! Online, 2005).
Prognostic factor profiles entered into Adjuvant! are matched to
those of women in the SEER registry. The mortality data from
these matched cases (following certain adjustments) are then used
as the basis of the program’s survival predictions. Data on
recurrence are not available from SEER, and so Adjuvant!
estimates the risk of a recurrent event and thus event-free survival
indirectly by inflating breast cancer mortality rates.

Despite its increasing acceptance in the UK, Adjuvant! has not
been validated for use in this country. Indeed, a recent study
assessing the performance of Adjuvant! in a cohort of UK early
breast cancer patients showed the program’s predictions to be
optimistic – a finding most likely attributable to breast cancer
mortality rates in the US being systematically lower than those
in the UK (Cancer Information Section – International Agency
for Research on Cancer, 2008; Campbell et al, 2009). Furthermore,
and as Adjuvant!’s predictions are derived from observed
10-year outcome data rather than from a prognostic model,
the program currently has no facility to predict long-term
outcomes.

In this paper, we report on the estimation and external
validation of a new UK-based parametric prognostic model for
predicting long-term recurrence-free survival for early breast
cancer patients. The model’s performance is compared with that
of the NPI and Adjuvant! Online, and a scoring algorithm and
downloadable program to facilitate its use are presented.

MATERIALS AND METHODS

Data

The model was estimated using data collected on 1844 women with
early invasive ductal carcinoma of the breast. These women were
diagnosed consecutively and underwent surgery (77% breast
conserving surgery, 23% mastectomy) at the Churchill Hospital,
Oxford, between 1 January 1986 and 31 January 2001. Patient
follow-up was till 31 January 2006 and was 89% complete (Clark
et al, 2002). In all, 573 women suffered a first recurrent event
(a local recurrence, a metastatic recurrence, or a second primary
breast tumour). Median (range) time to a first recurrent event was
6.6 years (0.02–19.6 years). Columns 2 and 3 of Table 1 show the
characteristics of the patient cohort.

Table 1 shows that with the exception of ER status, data were
relatively complete. Even so, excluding women with any missing

Table 1 Summary statistics from original and imputed Churchill Hospital
data sets

Original Imputed

Variablea Number % Median number Range Overall %

Age groupb

o35 56 3.04 56 0 3.04
X35 and o45 257 13.95 257 0 13.94
X45 and o55 533 28.94 533 533 – 534 28.92
X55 and o65 473 25.68 473 473 – 474 25.67
X65 and o75 388 21.06 388 388 – 390 21.08
75+ 135 7.33 135 135 – 137 7.36
Unknown 2 0 — — —

Positive nodesc

0 1070 60.45 1122 1118 – 1122 60.77
1 258 14.58 265 265 – 270 14.46
2 142 8.02 145 143 – 145 7.83
3 92 5.20 96 95 – 98 5.22
4 52 2.94 53 53 – 55 2.91
5 33 1.86 35 34 – 36 1.90
6 35 1.98 36 35 – 36 1.93
7 21 1.19 21 21 – 22 1.16
8 16 0.90 16 0 0.87
9 10 0.56 10 10 – 12 0.58

10+ 41 2.32 43 42 – 46 2.37
Unknown 74 0 — — —

Tumour sized

o1 cm 204 11.16 207 205 – 208 11.21
X1 cm and o2 cm 644 35.23 650 649 – 650 35.23
X2 cm and o3 cm 562 30.74 567 565 – 569 30.75
X3 cm and o4 cm 238 13.02 240 239 – 240 13.00
X4 cm and o5 cm 77 4.21 78 0 4.23
5 cm+ 103 5.63 103 0 5.59
Unknown 16 0 — — —

Tumour gradee

1 329 18.97 343 342 – 351 18.73
2 770 44.41 827 812 – 828 44.60
3 635 36.62 675 673 – 681 36.68
Unknown 110 0 — — —

ER status
Negative 477 33.33 657 652 – 661 35.61

of

Positive 954 66.67 1187 1183 – 1192 64.39
Unknown 413 0 — — —

Radiotherapy
Yes 1516 83.57 1543 1543 – 1544 83.69
No 298 16.43 301 300 – 301 16.31
Unknown 30 0 — — —

Hormone therapyg

Yes 1386 76.45 1412 1412 – 1413 76.59
No 427 23.55 432 431 – 432 23.41
Unknown 31 0 — — —

Chemotherapyh

Yes 490 27.36 498 498 – 500 27.04
No 1301 72.64 1346 1344 – 1346 72.96
Unknown 53 0 — — —

Abbreviations: CMF¼ cyclophosphamide, methotrexate, fluorouracil; ER¼ oestro-
gen receptor. aOnly more established prognostic factors and adjuvant therapies are
shown. bAge range is 24–90 years. c47 women had no lymph node biopsy.
Comorbidities necessitated less invasive surgery. dMeasured pathologically on
histology. eAssessed using the modified Bloom and Richardson system. fw2-test
comparing proportions in original and imputed data sets¼ 4.92, P¼ 0.03. gAll ER-
positive women received 5 years of hormone therapy – B94% received tamoxifen
and 6% (patients treated most recently) received anastrazole. Some ER-negative
women treated in the late 1980s/early 1990s also received hormone therapy. hIn the
first instance, women found to be axillary node-positive and below the age of
60 received chemotherapy. Over time, however, chemotherapy was administered
to more women, for example, ER-negative older women. Of the patients given
chemotherapy, B80% received CMF. Patients treated most recently were more
likely to receive an anthracycline-based regimen.
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data would have reduced the sample size by approximately one
quarter, and could have potentially introduced bias (if the women
excluded were a non-random sample of the cohort). We therefore
used multiple imputation (MI) to impute a number of values for
each missing data point (van Buuren et al, 1999). Multiple
imputation uses regression analysis to allow the correlations
between the variables in the data set to be maintained when
imputing. Through its prediction of ‘multiple’ values for each
missing data point, the technique also accounts for the uncertainty
in the imputation process per se. We performed MI in STATA
(version 10; Stata Corp., College Station, TX, USA), imputing three
values for each missing data point and in effect creating three
separate data sets (Royston, 2004). A comparison of original and
imputed data is presented in Table 1.

Model estimation

Model estimation was also conducted in STATA. A parametric
regression-based survival model was estimated on time from initial
surgery to a first recurrent event or censoring (patients were
censored when they died from causes unrelated to breast cancer
without recurrence being first recorded (n¼ 111/1844) or were lost
to follow-up, again without any previous diagnosis of recurrence).
Parametric models assume survival times and consequently the
hazard function follow a particular distribution. Based on the
hazard of recurrence for the average woman in the Churchill
data set (Figure 1A), we considered models using log-normal,
log-logistic, and gamma distributions. All three can model a
hazard function which changes direction with time and are
supported by the accelerated failure time (AFT) class of model
(Bradburn et al, 2003). Accelerated failure time models differ
from the more established proportional hazards (PH) models in
that rather than estimating a baseline hazard function, AFT models
instead estimate a baseline survival function. The estimated
covariates are then multiplicative with respect to survival time.
When exponentiated (transformed using the formula ex, where
e¼ 2.71828 and x is the coefficient value), the coefficients in an
AFT model are termed as time ratios. A time ratio greater (less)
than one indicates that a covariate increases (decreases) time to
recurrence, stretching (shrinking) the baseline survivor function
along the time axis.

In each of the MI data sets, time to a first recurrent event in
days was regressed against the number of positive axillary lymph
nodes (number), tumour grade (1, 2, or 3), tumour size (cm),
ER status (positive or negative), and patient age (years).
Continuous variables were retained on their original scales with
the exception of ER, which was treated as dichotomous in nature.
This was because different techniques for measuring ER (the
ligand-binding assay (LBA) and the immunohistochemical (IHC)
assay) were used during the course of the data collection.
Although the assays used non-comparable measurement scales,
both did use a cutoff score to indicate ER positivity/negativity.
It was this dichotomous form of the variable that we entered
into the model. In addition, also included were indicator variables
for radiotherapy, and for adjuvant hormone therapy and
chemotherapy. This would allow us to control for the effects of
treatment received by patients in the data set (Table 1) so as to
then have a prognostic model that could predict the baseline risk
of recurrence in its absence (achieved by setting the indicator
variables to zero).

For continuous variables, we investigated the functional form of
the relationship between each variable and time to a first recurrent
event using fractional polynomials (Royston and Altman, 1994).
We also included in the model the following treatment/prognostic
variable interactions: ER status and hormone therapy, age and
adjuvant chemotherapy, and number of positive axillary lymph
nodes and adjuvant chemotherapy.

Quantile– Quantile plots were used to determine the appro-
priateness of the AFT framework and Akaike’s Information
Criterion (AIC) to select between models estimated using the
log-normal, log-logistic, and gamma distributions (Akaike, 1974;
Bradburn et al, 2003). Across the three data sets created using
MI there was agreement as to the type of distribution to use.
For two of the covariates (number of positive axillary lymph
nodes and tumour size), the data suggested a non-linear relation-
ship with time to a recurrent event. Clinical opinion was used to
confirm the plausibility of the indicated relationships before
such transformations were made. Finally, there was agreement
across the MI data sets on the significance of all modelled
interactions.

The goodness of fit of each model was investigated by
comparing each model’s predicted hazard with the hazard for
the average Churchill patient. In addition, the formal test proposed
by Hosmer and Lemeshow was used (Hosmer and Lemeshow,
1999; Bradburn et al, 2003). The test compares the number of
observed and predicted recurrences in risk groups within the data
set at a fixed point in time. We selected a 5-year time point for the
test, which was performed using 1589 patients. Recurrence status
at 5 years was unobservable for the remaining 255 patients. A total
of 94 women died from causes unrelated to breast cancer and
161 were lost to follow-up, before 5 years. All were recurrence free
at the time of censoring.

Finally, the ‘micombine’ command in STATA was employed to
generate one overall prognostic model by averaging across the
individual models estimated on each of the three data sets.

Model performance

The aggregated model’s performance at 5 years was assessed
separately in each of the three data sets generated using MI. The
prognostic factors and treatments received by each patient were
fed into the model and the resulting predictions were assessed with
respect to calibration, accuracy, and discrimination (Mackillop
and Quirt, 1997). Calibration was given by the ratio of predicted
to observed 5-year recurrence-free survival across the cohort
(n¼ 1844). Assessments of accuracy and discrimination required
information on recurrence status at 5 years and so were conducted
only for patients for whom these data were available (n¼ 1589).
Brier accuracy scores (concerned with performance at the
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Figure 1 Recurrence hazard functions – for ‘average’ Churchill Hospital
patient (A) and as predicted by the model (B). For comparability
with B, which is evaluated at the mean of the covariates, the hazard
contributions in A (estimated as the change in the Nelson–Aalen
cumulative hazard between time ti and time ti�1, and smoothed by
STATA’s default kernel density function) were also calculated at the mean
values of the model covariates using STATA’s adjustfor(varlist) command.
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individual patient level) were calculated for each patient and then
averaged (Brier, 1950). An accuracy score of 0 indicates that
the model can perfectly forecast patient-level outcomes at 5 years.
The worst score achievable is 1.

Overall C (equivalent to the area under the receiver operating
characteristic curve measure routinely used to evaluate the
performance of diagnostic tests), was used to assess the model’s
discriminative ability (Mackillop and Quirt, 1997). A score of 1
suggests that the model can perfectly discriminate between
patients who will and will not experience a recurrence. A score
of 0.5 indicates that the model has no discriminative ability.

To assess how well the model could predict outcomes on the
basis of prognostic factors alone, we repeated the above analyses
after setting the treatment indicator variables to zero. If reasonable
performance levels could be retained (analysts have suggested that
variation in prognosis is attributable to prognostic factors rather
than any particular therapy), it would suggest that the model could
be used to generate baseline prognosis predictions (Williams et al,
2006).

In addition, we calculated the prognostic index (PI) from the
model for each patient – this is simply the sum of the constant, and
the cross products of the coefficients and the specified prognostic
factors. An approach described by Cox was used to investigate
various ways of classifying women into five prognostic groups
(the same number often used for the NPI) on the basis of this PI
(Cox, 1957; Blamey, 1996). Cox suggested that depending on the
distributional form of a random variable, groupings be constructed
to minimise the loss of information (L) about differences between
individuals. L is calculated as the weighted average of the variance
of the PI across the chosen groups divided by the variance of the
PI for the whole sample. Having identified the method of grouping
which minimised L, we then graphed the Kaplan—Meier
recurrence-free survival curves for each group and assessed the
degree of separation between them.

External validation

To determine the model’s transferability, we performed an external
validation exercise using data collected from a sub-sample of
patients recruited to the Adjuvant Breast Cancer (ABC) Trial, an
international study designed to assess whether adjuvant chemo-
therapy and/or ovarian suppression add to the benefits of 5 years
of tamoxifen for early breast cancer patients (The Adjuvant
Breast Cancer Trials Collaborative Group, 2007a, b). The trial
recruited 3854 women from 10 countries between 1992 and 2000.
From this wider cohort, we selected UK patients with invasive
ductal carcinoma and with the potential for at least 5 years of
follow-up at 30 June 2004 when the trial data set was frozen for
analysis. This sub-sample comprised 1789 patients from 70 UK
hospitals, 588 of whom suffered a first recurrent event. Data were
missing on time to event for two patients suffering local
recurrences. These patients were excluded, leaving a cohort of
1787 patients with 586 first recurrent events. A small number of
metastatic recurrences (n¼ 27) that resulted in death were only
discovered postmortem. For the purpose of this study, the date of
recurrence for these patients was assumed to be 1 day before death.
Recurrence status at 5 years was unobservable for 245/1787
patients. In all, 10 women had died from causes unrelated to breast
cancer before 5 years and 235 women, recruited during 1998 and
1999 were awaiting a 5 year follow-up at the time the trial data set
was frozen for analysis. All were recurrence free at the time of
censoring.

Data on established markers were routinely recorded by UK
clinicians participating in the trial. The level of missing data across
these variables was low, with the exception of ER status, missing
for 484/1787 (27%) women, the majority of whom were recruited
between 1993 and 1995 when ER evaluation was often not integral
to local practice. Multiple imputation (using data from ABC

patients only) was used to impute three values for each missing
data point.

The performance of the model in each of the resulting three
MI data sets was examined using the techniques described above.
For calibration, the whole cohort was used. For accuracy and
discrimination, the 245 patients, for whom recurrence status at
5 years was unobservable, were excluded. Analyses were conducted
on predictions made using the prognostic factor data and adjuvant
therapies of ABC patients. Published treatment effects for radio-
therapy, hormone therapy, and chemotherapy (here, cyclophos-
phamide, methotrexate, fluorouracil (CMF)) however were used
instead of the treatment effects in the model, for which the
indicator variables were set to zero (Early Breast Cancer Trialists’
Collaborative Group, 2005a, b). The published treatment effects
were applied to each patient’s baseline risk of recurrence as
predicted using the five prognostic factors in the model. From this
adjusted hazard, the corresponding recurrence-free survival
function was then derived. We chose not to use the treatment
effects from the model because they were estimated from
observational data, which are known to suffer from selection
biases in this regard. Indeed the potential exists for treatment
effects estimated from observational data to contradict what is
widely known and accepted (as discussed below). Also, much more
robust estimates are now available from published meta-analyses.
An assessment of how well the model predicted for ABC patients
on the basis of their prognostic factors alone was also made.

Comparison with other prognostic tools

Finally, we attempted to compare the performance of our
prognostic model with that of the NPI and Adjuvant! Online. A
direct comparison with the NPI proved difficult as the 10-year
individualized prognosis predictions that one can generate using
the new NPI algorithm are of breast cancer-specific survival rather
than recurrence-free survival, as has been modelled here. We did,
however, investigate the ability of frequently used NPI cut-point
values to separate patients in the Churchill and ABC Trial data sets
into five prognostic groups. Kaplan– Meier recurrence-free survi-
val curves were computed for each NPI group and the degree of
separation between the curves was compared with that seen when
grouping patients on the basis of the PI from our model.

When comparing our prognostic model with Adjuvant! Online
(which does report event (recurrence)-free survival), it was not
possible to use ABC Trial data as only a handful of women had
been followed up for 10 years. We therefore identified patients
from the Churchill Hospital data set with the potential for at least
10 years of follow-up data (those treated between 1986 and 1996)
and who met Adjuvant! eligibility criteria (they had undergone
‘definitive’ local treatment with either mastectomy, or breast
conserving surgery and radiotherapy). This gave a sample of
1127 patients. Within this cohort were 252 patients for whom
recurrence status at 10 years was unknown. A total of 100 of these
women had died from causes unrelated to breast cancer before
10 years (all were recurrence free at the time of death), and 152
patients were recurrence free at their last contact, but had been
lost to follow-up before 10 years. Excluding these patients left 875
women, 426 of whom had suffered a recurrent event. The
prognostic factors and treatments of each of these patients were
run through our prognostic model and Adjuvant! Online, and
using the resulting predictions, we performed comparisons of
calibration, accuracy, and discrimination. For consistency with
Adjuvant!, which draws its treatment effect estimates for adjuvant
therapy from the Early Breast Cancer Trialists’ Collaborative
Group (EBCTCG) overviews, we adjusted the model’s baseline risk
predictions using estimates from the same source (Early Breast
Cancer Trialists’ Collaborative Group, 2005a, b).

In addition, we performed analyses comparing the performance
of the two tools when using only prognostic factors to predict
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outcome. As Adjuvant!’s baseline prognosis predictions (i.e., its
predictions ‘without adjuvant systemic treatment’) already appear
to account for the impact of local radiotherapy, when performing
this analysis and to ensure consistency between the two tools,
predictions from the prognostic model had to be made by entering
information not only on the prognostic factors of each patient, but
also on radiotherapy received.

RESULTS

Table 2 presents the aggregated prognostic model. Based on the
AIC statistics, a gamma distribution offered the most appropriate
functional form. Quantile– Quantile plots (not shown) also
confirmed the suitability of the AFT class of model.

The regression coefficients in Table 2 have been exponentiated to
give time ratios. As the number of positive axillary lymph nodes
increased, recurrence-free survival decreased. This relationship was
non-linear however, with a log transformation of the covariate offering a
significantly better fit. As illustrated by Figure 2A, such a transformation
implies that recurrence-free survival decreases with each additional
positive node, but at a declining rather than a constant rate.

Tumour size was also an independent predictor of recurrence
(see Table 2). Analyses suggested that the variable should be
included in the model as follows: yb (tumoursize)2þ b (tumour-
size)2� ln(tumoursize) y (where the bs are the estimated coeffi-
cients and ln is the natural logarithm). As shown in Figure 2B,
this implies that for successively larger tumours, recurrence-free
survival declines until a tumour diameter of B7 cm is reached.
After this point, increasingly larger tumours appear to be
associated with better prognoses.

Table 2 shows that the tumour grade was an independent
predictor of shorter time to recurrence and that prognosis
improved with increasing patient age. Women with ER-positive
tumours also seemed to do slightly better than their ER-negative
counterparts. The time ratios estimated from the actual treatments
received showed (as one would expect) that for Churchill Hospital
patients both radiotherapy and hormone therapy had a protective
effect. Interpretation of the chemotherapy coefficient is difficult on

account of the inclusion of various interaction terms within the
model (chemotherapy and age, and chemotherapy and number of
positive nodes). For patients identical in all respects other than the
receipt of chemotherapy however, the model always predicted
prognosis with treatment to be better than without it. This is
expected, as chemotherapy was targeted at women in the Churchill
data set with the poorest prognoses (i.e., those most likely to
benefit).

In line with the published literature, coefficients estimated for
the treatment interactions suggested that for women in the
Churchill data set, ER status modified the effect of adjuvant
hormone therapy (those with ER-positive tumours gaining the
greatest benefit, as expected; Early Breast Cancer Trialists’
Collaborative Group, 2005a). Age was also found to modify the
effect of adjuvant chemotherapy however, the established inverse
relationship (where treatment effectiveness declines with increas-
ing age) was not observed. Instead, in the Churchill data set,
chemotherapy appeared to be more effective for older women.
Finally, the number of positive nodes modified the effect of
adjuvant chemotherapy, with women with more positive nodes
gaining more benefit.

Goodness of fit

There was agreement as to the goodness of fit and performance of
the model in all three data sets generated by the MI. Results are
therefore presented for just one of these data sets (referred to from

Table 2 Exponentiated coefficients (time ratios) from the final
aggregated version of the prognostic model (estimated assuming survival
times follow a gamma distribution)

Coefficient P 95% CI

ln (positive nodes) 0.402 o0.001 0.333–0.485
Tumour size2 0.898 o0.001 0.854–0.944
Tumour size2� ln (tumour size) 1.045 o0.001 1.021–1.070
Tumour grade 0.647 o0.001 0.557–0.751
Age, years 1.015 0.005 1.004–1.026
Ercat 1.209 0.404 0.774–1.888
Adjrt 1.546 0.001 1.192–2.006
Adjhormones 1.230 0.234 0.875–1.730
Adjchemo 0.357 0.047 0.129–0.985
Ercat� adjhormones 1.226 0.481 0.696–2.160
Adjchemo� age 1.023 0.029 1.002–1.044
Ln (positive nodes)� adjchemo 1.418 0.015 1.070–1.878
Ancillary 1a 1.698 o0.001 1.572–1.835
Ancillary 2a 0.567 o0.001 0.411–0.782

Abbreviations: Adjchemo¼ adjuvant chemotherapy; Adjhormones¼ adjuvant
hormone therapy; Adjrt¼ adjuvant radiotherapy; CI¼ confidence intervals;
ER¼ oestrogen receptor; Ercat¼ ER status; ln¼ natural logarithm. aAncillary
parameters 1 and 2 determine the shape and scale of the hazard function of the
generalized gamma distribution. A literal interpretation of these parameter values is
difficult however, on their original scales, they are useful for ruling out models
with other functional forms nested within the gamma model. For example,
if ancillary 1¼ ancillary 2¼ 1, survival times follow an exponential distribution, and
if ancillary 2¼ 0 a log-normal model is appropriate.
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Figure 2 Graph showing for an average breast cancer patient, the
probability of remaining recurrence free at 5 years (with 95% confidence
intervals) as a function of the number of positive axillary lymph nodes (A)
and size of primary tumour (B). Based on the Churchill data, this patient is
B56.6 years of age, with 1.2 positive nodes, and a grade 2, ER-positive
tumour 2.2 cm in diameter.
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this point onwards as the Churchill Hospital data set). Figure 1B
plots the predicted hazard function from the gamma model. Next
to Figure 1A, it can be seen that the model’s hazard function has
the required uni-modal shape and peaks at a value not too
dissimilar to the observed data and at around the same time.
Results of the Hosmer and Lemeshow’s test were also favourable, a
P-value of P¼ 0.112 suggesting no evidence for rejecting the null
hypothesis that the model is of adequate fit.

Model performance

Taking the ratio of model predicted (77.5%) to observed (76.8%)
5-year recurrence-free survival produced a calibration score
of 101% (additional analyses by sub-groups are shown in
Table A1 of the Web appendix). The mean Brier accuracy score
was 0.15 (s.e.¼ 0.005). Discrimination, assessed as overall C, was
0.764 (95% CI, 0.736 –0.791). When prognostic factors only were
used to estimate risk, predicted 5-year recurrence-free survival was
63.7%, giving a calibration score of 83%. The mean Brier accuracy
score was 0.17 (s.e.¼ 0.004), and overall C was 0.745 (95% CI,
0.717–0.773).

Calculating the PI (hereafter referred to as the OPI – Oxford
Prognostic Index) from the model for each patient in the Churchill
Hospital data set generated a normally distributed variable ranging
from 4.08 (worst prognosis) to 9.59 (best prognosis). For such a
variable, Cox demonstrated that the loss of information from
grouping (L) would be minimised by selecting cut points which
place the following percentages of individuals into groups 1– 5,
respectively, 11, 23.7, 30.7, 23.7, 11%. Such grouping achieved a
clear separation of the Kaplan– Meier recurrence-free survival
curves (Figure 3A). The OPI cut points generated by grouping
women into these five categories were p6.42 (poor prognosis),
46.42, and p7.59 (moderate II prognosis), 47.59 and p8.32
(moderate I prognosis), 48.32 and p8.86 (good prognosis), and
48.86 (excellent prognosis).

External validation

External validation exercises were conducted in each of the three
ABC data sets generated using MI. Findings were consistent across
all three data sets and so are reported for one data set only
(referred to from this point onwards as the ABC data set).

Predicted 5-year recurrence-free survival was 71.1% and
observed 71.8%, giving a calibration score of 99% (additional
analyses by sub-group are shown in Table A2 of the Web
appendix). The mean Brier accuracy score was 0.19 (s.e.¼ 0.005),
and overall C was 0.720 (95% CI, 0.693 –0.746). When using the
model to forecast on the basis of prognostic factors only, predicted
5-year recurrence-free survival was 54.0%, and the resulting
calibration score 75%. The mean Brier accuracy score was
estimated to be 0.21 (s.e.¼ 0.004), and overall C, 0.697 (95% CI,
0.669–0.726).

Finally, the OPI from the model was calculated for each patient
in the ABC data set and the index cutoff values determined above
were used to categorize patients into five groups. Figure 3B
presents the Kaplan–Meier recurrence-free survival curves for
each of these groups. The 5-year recurrence-free survival
probabilities in each group were similar. In the Churchill and
ABC data sets, respectively, they were 0.376 (95% CI, 0.306– 0.445)
and 0.391 (95% CI, 0.329 –0.451) in the poor prognosis group,
0.688 (95% CI, 0.640–0.730) and 0.716 (95% CI, 0.682–0.745) in
the moderate II prognosis group, 0.809 (95% CI, 0.772 –0.840) and
0.810 (95% CI, 0.770– 0.839) in the moderate I prognosis group,
and 0.896 (95% CI, 0.861 –0.922) and 0.925 (95% CI, 0.865– 0.959)
in the good prognosis group. A comparison for the excellent
prognosis group is difficult on account of the small number of
patients in the ABC data set falling into this category (n¼ 13;
Figure 3B).

Comparison with other prognostic tools

Figure 4A and B show for the Churchill and ABC data sets,
respectively, Kaplan–Meier recurrence-free survival curves for
each of five prognostic groups constructed using cut-point values
for the NPI. Such values were: p2.4 (excellent prognosis), 2.41–3.4
(good prognosis), 3.41–4.4 (moderate prognosis I), 4.41– 5.4
(moderate prognosis II), and 45.4 (poor prognosis; Blamey,
1996). Although the NPI is able to discriminate between poor and
moderate prognosis groups in the first few years following surgery,
there is less separation between the recurrence-free survival curves
of women classified as having good and excellent prognoses.

Observed 10-year recurrence-free survival across the 875
patients in the Churchill Hospital data set with complete follow-up
data was 55.7%. Predicted 10-year recurrence-free survival
estimates from the prognostic model and Adjuvant! Online were
61.3 and 67.3%, respectively, giving calibration ratios of 111 and
121%. Mean accuracy scores from the prognostic model and
Adjuvant! Online were 0.22 (s.e.¼ 0.005) and 0.22 (s.e.¼ 0.007),
respectively, and overall C, 0.706 (95% CI, 0.671–0.740) and 0.719
(95% CI, 0.686 –0.754), respectively.

On the basis of prognostic factors only (yet also taking into
account local treatment with radiotherapy), predicted 10-year
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Figure 3 Kaplan–Meier recurrence-free survival curves for the Churchill
Hospital (A) and ABC (B) data sets for five prognostic groups. (OPI cutoff
values used to create groups are p6.42, 46.42 to p7.59, 47.59 to
p8.32, 48.32 to p8.86, and 48.86).
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recurrence-free survival estimates from the prognostic model and
Adjuvant! Online were 51.4 and 58.7%, respectively, giving
calibration ratios of 92 and 105%. Mean accuracy scores from
the prognostic model and Adjuvant! Online were 0.21 (s.e.¼ 0.005)
and 0.21 (s.e.¼ 0.006), respectively, and overall C, 0.720 (95% CI,
0.686–0.754) and 0.718 (95% CI, 0.684 –0.752), respectively.

DISCUSSION

This paper reports on the development and validation of a new
prognostic model for predicting recurrence-free survival in women
with early breast cancer. Recurrence was selected as the dependant
variable for two reasons. First, and although the aim of any treating
clinician is unequivocally the prevention of breast cancer death, this
cannot possibly be achieved without some consideration of an
individual’s risk of recurrence – the inevitable precursory event to
breast cancer death. There would appear to be some benefit,
therefore, from having access to a validated model, which can
simulate the baseline risk of disease progression and the potential
for adjuvant therapies to prevent this. Furthermore, alongside the
more frequently encountered models predicting survival for breast

cancer patients, those focussing on recurrence can help provide
clinicians with a more complete picture of the entire disease process.

Second, and given the potential for post-recurrence survival to be
influenced by a variety of factors (including the introduction of new
therapies such as herceptin and taxanes for the treatment of
advanced breast cancer), one could argue that first recurrence as an
end point is likely to be more robust (once the impact of adjuvant
therapy is taken into account) than breast cancer mortality.

We acknowledge that predictors of local and metastatic
recurrences, and second primary breast recurrences may not
necessarily be the same, however, the choice for our composite end
point was informed by the work conducted by the EBCTCG and
Ravdin and colleagues (Ravdin et al, 2001; Early Breast Cancer
Trialists’ Collaborative Group, 2005a). Both groups of researchers
classify recurrence in this way and utilizing the same system
allowed us to make use of the treatment effects reported in the
EBCTCG Overview papers, and to perform comparisons between
our prognostic model and Adjuvant! Online.

During the course of this study, we attempted to adhere to good
practice guidelines for prognostic modelling (Harrell et al, 1996;
Altman and Lyman, 1998; Altman and Royston, 2000; Bradburn
et al, 2003; McShane et al, 2005). Before commencing the work,
for example, checks were made to confirm that the study would
be adequately powered, given the available data (Peduzzi et al,
1995; Harrell et al, 1996; Altman and Lyman, 1998). Also, we
specifically utilized those modelling techniques, which would
facilitate long-term patient-level prognosis prediction. We did not
consider the Cox PH model, as its ‘distributional free’ form makes
is difficult to describe the baseline hazard function (the key
component required for patient level prediction) and to extra-
polate outcomes beyond available observational data.

When selecting an appropriate distribution to model survival
times, we followed published recommendations to graph the
observed hazard and consider only those distributions that would
give the same or a similar-shaped function (Bradburn et al, 2003).
Additionally, so as to estimate a clinically meaningful model, a
decision was made to force all five established prognostic factors
into the model. We chose not to use stepwise variable selection
techniques, which have been criticized for selecting variables for
inclusion in a model based on statistical rather than clinical
significance (Williams et al, 2006).

We retained continuous prognostic variables on their original
scales and for each of these variables, we investigated the
appropriateness of assuming a linear relationship with time to a
first recurrent event. Transformations were indicated for the
number of involved axillary lymph nodes and tumour size. The
non-linear relationship seen between lymph nodes and recurrence
has been observed previously, however, the relationship between
tumour size and recurrence has not to our knowledge been
reported elsewhere (it was though also observed in the ABC data;
Sauerbrei and Royston, 1999; Sauerbrei et al, 1999). A number of
researchers have investigated the relationship between tumour size
and patient prognosis and found it to be non-linear, with the risk
increasing with tumour size before eventually plateauing out
(Jonat et al, 2002; Sauerbrei et al, 2003; Verschraegen et al, 2005).
None of the patients in these studies, however, appear to have had
tumours 45 cm in diameter, and so they provide no data on
prognosis patterns of larger tumours. One possible explanation for
the trend observed here is that patients in the Churchill data set
who presented with the largest tumours may have had less
proliferative and invasive disease, which had been slowly growing
for many years before diagnosis. Indeed, a study looking at the
effect of delays in diagnosis and treatment on outcomes in early
breast cancer showed that women presenting early had poorer
prognoses than women with far longer delays (Sainsbury et al,
1999). The authors suggested that more aggressive tumours that
exhibit rapid growth or changes in size are more likely to prompt
earlier presentation. Women with larger but very slow growing
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Figure 4 Kaplan–Meier recurrence-free survival curves for the Churchill
Hospital (A) and ABC (B) data sets for five prognostic groups. (NPI cutoff
values used to create groups are p2.4, 2.41 to 3.4, 3.41 to 4.4, 4.41 to 5.4,
and 45.4).
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tumours which appear to change very little over time may be less
likely to seek medical help.

As expected, higher grade tumours were associated with shorter
recurrence-free survival times, and in line with the published
literature, younger women had poorer prognoses than older
women (de la Rochefordiere et al, 1993; Albain et al, 1994; Nixon
et al, 1994). With respect to ER status, a factor for which the
evidence of independent prognostic ability is mixed, the model
suggested that the ER positivity afforded a small protective effect.
The factor’s clinical significance in routine practice is well
established. Survey data from the UK show that ER status has
been routinely used by clinicians alongside other established
factors for patient level prognosis prediction (Williams et al, 2006).
The widespread acceptance of Adjuvant! Online, a program in
which ER status is a prognostic factor, provides a further
indication of the importance placed on the factor by the clinical
community (Ravdin et al, 2001). Any clinically credible prognostic
tool would need to include ER status and so it was retained within
the model.

The coefficient estimated for adjuvant hormone therapy
exceeded one, suggesting that this treatment has some protective
effect, regardless of ER status. Given the overwhelming evidence to
show that hormone therapy is ineffective in ER-negative patients,
this finding is interesting (Early Breast Cancer Trialists’
Collaborative Group, 2005a). One possible explanation is that
when using MI to deal with the issue of missing data, some women
who were really ER positive, may have been imputed as ER
negative. A further contributory factor may be the way in which a
tumour’s ER status is determined. Women whose assay results fall
just short of the threshold value for positivity may still have some
capacity to benefit from hormone therapy. Finally, and as with
any diagnostic test, one would expect a number of false negative
classifications.

Because the effects of adjuvant systemic therapy may be
modified by certain prognostic characteristics, a number of
treatment interaction terms were included in the model. The
exponentiated coefficients for ER status and hormone therapy, and
the number of positive axillary lymph nodes and chemotherapy,
were in line with expectation. Based on the published literature
however, which shows that older women receive less benefit from
chemotherapy than younger women, one would have expected the
time ratio for the age and chemotherapy interaction to have been
o1 (Early Breast Cancer Trialists’ Collaborative Group, 2005a).
A closer inspection of the Churchill Hospital data set revealed
that although the majority of women treated with chemo-
therapy received CMF, a slightly higher proportion of women
over the age of 50 received anthracycline-based regimens. This is
possibly an artefact of changes to clinical practice over time. Older
women only started to receive chemotherapy routinely from the
mid to late 1990s, when anthracycline use is likely to have been
increasing. With evidence to suggest that these regimens are on
average 11% more effective than CMF, this may well explain
why the value for the time ratio for the age and chemo-
therapy interaction exceeded one (Early Breast Cancer Trialists’
Collaborative Group, 2005a).

It is helpful to bear in mind that radiotherapy, hormone therapy,
chemotherapy, and their interactions were included in the model
not to estimate treatment effects (which are better estimated from
large-scale meta-analyses). Rather the purpose was to adjust for
the therapy administered to patients in order to have a model
capable of generating predictions of recurrence-free survival on
the basis of prognostic factors only. The increasingly widespread
use of adjuvant systemic therapy is challenging for analysts
developing new prognostic models. It is now no longer possible to
study the relationship between prognostic factors and outcomes in
cohorts of untreated breast cancer patients. Therapy is in routine
use and so attempts should be made to isolate and adjust for its
impact on prognosis.

In assessing the goodness of fit of the prognostic model,
we compared the hazard functions estimated on the Churchill
data and predicted by the model and saw the same uni-modal
shape in both figures. The sharp decline in the hazard observed
in the Churchill data at around 2 years, however, was not matched
by the model, which showed a more gradual decline. One
possible explanation is that the presentation of the observed
hazard may be sensitive to the kernel densities and band
widths used by STATA for hazard smoothing. Analyses performed
using alternative values of these parameters, however, showed
the impact on the function to be negligible, and despite
the difference between Figure 1A and B, the formal test by
Hosmer and Lemeshow still suggested that the model fitted the
data well.

In addition to the challenges it poses for analysts estimating
prognostic models, the widespread use of adjuvant therapy is
equally an issue when assessing the performance and validity of
these models. Indeed, in this study, the majority of patients in our
development data set and all of the patients in the external
validation data set had received some type of adjuvant therapy.
When evaluating the performance of the model for Churchill
hospital patients, assessments of calibration, accuracy, and
discrimination were made on the basis of predictions generated
with and without treatment. In each case, the model performed
well at both group and individual patient levels, the accuracy
and discriminative ability of the model decreasing only slightly
when predictions were made on the basis of prognostic factors
only. As discussed above, this perhaps reflects the suggestions
of others that variability in prognosis is attributable largely to
prognostic factors, rather than any particular therapy (Williams
et al, 2006).

The real strength of this study lies in the external validation
exercise performed. Patients in the ABC cohort differed from those
in the Churchill Hospital cohort (ABC patients on average tended
to have more positive nodes, and larger, higher grade tumours),
however, the model still retained reasonable levels of prognostic
and discriminative ability when applied to these patients,
suggesting that it contains the main factors that explain variability
in prognosis and is transferable to patients in other settings. In line
with the analyses performed using the Churchill Hospital data, the
performance of the model declined only slightly when predictions
were generated using prognostic factors only.

When compared with the NPI, the OPI from the prognostic
model appeared to be able to separate patients better (particularly
those with excellent and good prognoses) in both the Churchill
Hospital and ABC data sets into distinct prognostic groups. One
must bear in mind, however, that the NPI was developed to model
overall survival rather than recurrence-free survival as graphed
here.

The findings of the comparison with Adjuvant! require further
explanation. Although calibration ratios showed that Adjuvant!
overestimated recurrence free survival for the cohort to a greater
degree than the prognostic model, accuracy and discrimination
statistics suggested both tools predicted as well as each other at the
patient level. Further analyses of the accuracy scores generated
during this exercise helped in explaining these findings. For
women without recurrence at 10 years, accuracy scores appeared
superior with Adjuvant! because its predictions of recurrence-free
survival were generally higher than those of the prognostic model.
For women diagnosed with recurrence however, the opposite was
true – the prognostic model appeared to have superior accuracy as
its predictions of recurrence-free survival tended to be lower than
those of Adjuvant! When averaging across the whole cohort, the
effect of this was to generate mean accuracy scores for both tools
that were identical. Such findings are interesting and highlight the
importance of considering the absolute predictions from prog-
nostic models and tools in addition to performance-related
statistics.
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Although one could conclude that, on average, Adjuvant! over-
estimates recurrence-free survival compared with the prognostic
model, one must take into consideration that it was necessary
to perform this analysis using the Churchill Hospital data set,
which could have afforded the prognostic model an unfair
advantage. Further research using an independent data set with
sufficiently long follow-up should be conducted to confirm these
findings.

Although in the UK, the NPI and Adjuvant! Online are the two
most widely used prognostic tools in early breast cancer today, in
response to their apparent limitations, analysts continue to
develop new prognostic models. Most recently, a group of
researchers based in Cambridge, UK, published PREDICT, a new
prognostic model that predicts overall and breast cancer-specific
survival following surgery for invasive breast cancer (Wishart et al,
2010). PREDICT contains largely the same prognostic factors
as the model presented in this paper and likewise has been
externally validated with results suggesting good predictive and
discriminative ability. Unlike the model presented here, PREDICT
was estimated using Cox proportional hazards modelling
(which precludes long-term extrapolation), and comparisons with
Adjuvant! have yet to be published. PREDICT is not currently
available for use by third parties.

This study has several limitations, the most obvious being the
retrospective study design and the accompanying problem of
missing data. We used MI to generate values for missing data
points. This approach, which is favoured by analysts for its
statistical integrity, has previously been used by researchers to
handle the problem of missing data when conducting prognostic
modelling studies (Clark and Altman, 2003). Evidence is also
available to suggest that the technique remains valid under levels
of missingness that exceed those observed here (Shafer and
Olsen, 1998). Table 1 shows that with the exception of ER
status, the imputed data is consistent with the original Churchill
Hospital data for all prognostic and treatment variables. ER
negativity was greater in the imputed data sets because the
majority of patients with missing ER data were diagnosed in the
late 1980s, before the introduction of the NHS breast screening
programme and the consequent ability to diagnose greater
numbers of less invasive, ER-positive tumours (Cancer Research
UK, 2009).

A further and perhaps unavoidable limitation of this study and
indeed prognostic modelling studies in general, is that the practices
used to obtain prognostic factor data in a cohort have often been
superseded by the time sufficient patient follow-up has accrued and
the model is published. For example, over the 15-year period when
Churchill Hospital patients in this study presented for surgery,
techniques for assessing ER status changed (expensive LBAs were
replaced by cheaper and simpler IHC assays), and a trend towards
sampling increased numbers of axillary lymph nodes was also
observed. Immunohistochemical assays have been shown to be an
acceptable substitute for LBAs (similar levels of agreement have been
observed between the two techniques) and so this change in practice
is unlikely to impact on the prognostic modelling performed here. In
contrast however, and if understaging was an issue in the Churchill
Hospital data set (i.e., for women with fewer nodes sampled, the
number of positive nodes was underestimated), then this could
potentially bias the predictions from the prognostic model. To
investigate this, we graphed Kaplan–Meier survival curves for
women classified as having 0 positive nodes and 1–3 positive nodes
on the basis of p3, 4–6, 7–10, and 410 nodes sampled. We found
no significant differences in recurrence-free survival according to the
number of nodes sampled and therefore no evidence of under-
staging.

The model reported here has been estimated and validated for
use in predicting recurrence-free survival before adjuvant systemic
therapy. For readers wishing to use the model, a simple scoring
system, which can be used to predict a patient’s probability of

remaining disease-free at 5, 10, and 15 years post-surgery is
available in the online Web-appendix. In addition, an interactive
version of the model that allows the user to assess the potential
impact of proposed adjuvant therapy is available to download
from http://www.herc.ox.ac.uk.

Finally, although recurrence as the first sign of disease progres-
sion has been used as the dependant variable in the prognostic
model presented here, clinicians and patients ultimately want to
predict the likely impact of a disease and treatment on survival.
To this end, we are currently taking steps to build on the
work presented in this paper to develop a UK-specific prognosis-
based lifetime disease progression model for early breast cancer.
Following the success of Adjuvant! Online, this model will be
computer-based and will facilitate the prediction of lifetime
survival both with and without adjuvant therapy, as specified by
the user. In addition, given the potential side effects of adjuvant
therapy, the model will also adjust survival estimates for the impact
of the disease and its treatments on patient HRQoL. In this respect,
it will provide estimates of the net health benefit from adjuvant
therapy, and so could potentially identify patients for whom
treatment might on the whole be detrimental (i.e., the survival
benefit is outweighed by the reduction in HRQoL from treatment).
Given the increasing strain on already scarce health care resources,
the model will also be programmed to compute lifetime costs.
Interested users will then be able to determine the health economic
implications associated with decisions to treat particular types of
patient.

CONCLUSION

This paper presents a new parametric prognostic model for
predicting recurrence-free survival in UK patients with early breast
cancer. The model has been shown to perform well and appears
transportable to patients treated in other centres. Its parametric
form also means that it is useful for extrapolating long-term
predictions of the risk of recurrence in early breast cancer patients,
and that it is therefore likely to be useful for analysts developing
long-term disease progression models to assess the lifetime impact
of new adjuvant therapies. We hope that the model presented here
will prove complementary to similar models predicting breast
cancer mortality in the sense that together they might provide a
complete picture of the risk, first of disease progression and then
ultimately of death.
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