Hala Taha^{1,2}, Shahenda El-naggar², and Mohamed El-beltagy^{5,2}; ¹National Cancer Institute, Cairo University, Cairo, Egypt, ²Children Cancer Hospital- Egypt (CCHE-57357), Cairo, Egypt, ³Faculty of Medicine, Aswan University, Aswan, Egypt, ⁴University Hospital of Geneva, Geneva, Switzerland, ⁵Kasr El-Ainy School of medicine, Cairo University, Cairo, Egypt

BACKGROUND: Data about high-grade glioma (HGG) in very young children (≤3 years old at diagnosis) is scarce. METHODS: 180 pedi-atric HGG patients were treated at the Children Cancer Hospital - Egypt (CCHE-57357) between July 2007 and June 2018, with 17 patients aged ≤3 years at diagnosis. Medical records were retrospectively reviewed for clinical, radiological and histopathological data, treatment received and survival outcome. RESULTS: Median age was 29.2 months (range: 2.4 -35.8 months; males = 9). Most frequent pathological diagnosis was Glioblastoma, WHO grade-IV (n = 11, 64.7%) and one patient had H3-mutant diffuse midline glioma. All patients underwent surgery (gross-total resection, n = 6, 35.3%; subtotal-resection, n = 5, 29.4%; biopsy, n = 6, 35.3%). One patient (age = 7 months) progressed and died before starting adjuvant therapy. All patients ≤ 1 year of age (n = 5) received adjuvant chemotherapy (CT) only, older children (n = 11) received adjuvant radiotherapy (RT) (total dose range: 54 - 60 Gy) and CT (CCG-945 protocol). The 1-year overall survival (OS) rate was 47.1%; and event-free survival (EFS) rate was 35.3%. EFS differed between those who received RT and those who did not (1-year EFS 54.5% and 0% respectively, p = 0.001). Compared to older children, anatomical distribution of tumors was significantly different with non-midline locations being the commonest in patients ≤3 years old (88.2% vs 46.4%, p=0.01). CONCLUSIONS: HGG in very young children arise predominantly in non-midline locations and usually lack the H3-mutation. RT seems crucial in the management of pHGG regardless of age subgroup.

HGG-18. CLINICAL EFFICACY OF ONC201 IN THALAMIC H3 K27M-MUTANT GLIOMA

<u>Abed Rahman Kawakibi</u>¹, Rohinton S. Tarapore², Sharon Gardner³, Andrew Chi³, Sylvia Kurz³, Patrick Y. Wen⁴, Isabel Arrillaga-Romany⁵, Tracy T. Batchelor⁶, Nicholas A. Butowski⁷, Ashley Sumrall⁸ Nicole Shonka⁹, Rebecca Harrison¹⁰, John DeGroot¹⁰, Minesh Mehta¹¹, Yazmin Odia¹¹, Matthew D. Hall¹¹, Doured Daghistani¹¹, Timothy F. Cloughesy¹², Benjamin M. Ellingson¹², Yoshie Umemura¹, Jonathan Schwartz¹³, Vivekanand Yadav¹, Rodrigo Cartaxo¹, Ruby Siada¹, Zachary Miklja¹, Amy Bruzek¹, Evan Cantor¹, Kyle Wierzbicki¹, Alyssa Paul¹, Ian Wolfe¹, Marcia Leaoard¹, Hugh Garton¹, Rajen Mody¹, Patricia L. Robertson¹, Guangrong Lu², Krystal Merdinger², Sriram Venneti¹, Wolfgang Oster², Joshua E. Allen², and Carl Koschmann¹; ¹University of Michigan, Ann Arbor, MI, USA, ²Oncoceutics Inc. Philadelphia, PA, USA, 3NYU Langone Health, New York, NY, USA, ⁴Dana-Farber Cancer Institute, Boston, MA, USA, ⁵Massachusetts General Hospital, Boston, MA, USA, 6Brigham and Women's Hospital, Boston, MA, USA, ⁷University of California San Francisco, San Francisco, CA, USA, ⁸Levine Cancer Institute, Charlotte, NC, USA, ⁹University of Nebraska Medical Center, Omaha, NE, USA, ¹⁰University of Texas MD Anderson Cancer Center, Houston, TX, USA, ¹¹Miami Cancer Institute, Miami, FL, USA, 12University of California Los Angeles, Los Angeles, CA, USA, 13 Mayo Clinic, Rochester, MN, USA

ONC201, a bitopic DRD2 antagonist and allosteric ClpP agonist, has shown encouraging efficacy in H3 K27M-mutant glioma. Given that the thalamus has the highest extra-striatal expression of DRD2, we performed an integrated preclinical and clinical analysis of ONC201 in thalamic H3 K27M-mutant glioma. ONC201 was effective in mouse intra-uterine electroporation (IUE)-generated H3 K27M-mutant gliomas, with an in vitro IC₅₀ of 500 nM and 50% prolongation of median survival *in vivo* (p=0.02, n=14). We analyzed thalamic H3 K27M-mutant glioma patients treated with ONC201 on active clinical trials as of 5/22/19 enrollment (n=19 recurrent and 10 post-radiation, non-recurrent; 5-70 years old). As of 12/18/2019, PFS6 and OS12 are 26.3% and 36.8%, respectively, in the recurrent group. For non-recurrent patients, with median follow up of 21.9 months (8.6-26.6) from diagnosis, median PFS or OS have not been reached. This surpasses historical OS of 13.5 months. Best response by RANO includes 1 CR, 3 PR, 4 SD, 8 PD for recurrent patients and 2 PR, 4 SD, 1 PD for nonrecurrent patients (4 on-trial patients experienced regressions that are yet unconfirmed responses). Median duration of response for recurrent patients is 14.0 months (2.0-33.1). Furthermore, H3 K27M cell-free tumor DNA in plasma and CSF correlated with MRI response. In summary, single agent ONC201 administered at recurrence, or adjuvantly following radiation, demonstrates promising clinical efficacy in thalamic H3 K27M-mutant glioma patients who currently have no effective treatments following radiation. Investigations are ongoing to assess whether micro-environmental DRD2 expression explains the early exceptional responses in thalamic H3 K27M-mutant glioma.

HGG-19. IDENTIFICATION OF NOVEL SUBGROUP-SPECIFIC MIRNA EXOSOMAL BIOMARKERS IN PEDIATRIC HIGH-GRADE GLIOMAS

Lucia Lisa Petrilli¹, Alessandro Paolini², Angela Galardi¹, Giulia Pericoli¹, Marta Colletti¹, Roberta Ferretti¹, Virginia Di Paolo¹, Luisa Pascucci³, Hector Peinado⁴, Chris Jones⁵, Antonella Cacchione¹, Luca De Palma⁶, Marta Alonso⁷, Andrew Moore⁸, Angel Montero Carcaboso⁹, Andrea Carai¹⁰, Angela Mastronuzzi¹¹, Franco Locatelli¹, Andrea Masotti², Angela Di Giannatale¹, and Maria Vinci¹; ¹Department of Oncohematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy, ²Multifactorial and Complex Phenotypes Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy, ³Department of Veterinary Medicine, University of Perugia, Perugia, Italy, ⁴Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain, ⁵Department of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom, 6Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy, Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain, 8The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia, 9Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Barcelona, Spain, ¹⁰Department of Neuroscience and Neuro-rehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy, ¹¹Neuro-oncology Unit, Department of Onco-hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy

Pediatric high-grade gliomas (pHGG) are heterogeneous brain tumors for which new specific diagnostic/prognostic biomarkers are needed. In this study, we aimed to identify new pHGG subgroup specific biomarkers by exploiting exosomes, known vehicles of oncogenic signals. We used plasma from 23 patients (including 6 controls) and conditioned medium from 12 patient-derived cell-lines, representing all locational and molecular subgroups. Upon exosome isolation, total RNA was extracted and miRNAs were assessed using a PCR Panel. Analysis of plasma miRNome showed that tumor exosomal samples were largely clustered together, independently from their locational and/or molecular subgroup. We identified 20 significantly upregulated and 25 downregulated miRNAs compared to controls. Interestingly, 27 miRNAs were expressed only in tumors. Furthermore, the unsupervised clustering showed a clear separation based on locational (hemispheric vs pontine) and mutational (WT vs H3.3G34R or H3.3G34R vs H3K27M) subgroup comparisons, with the identification of distinct miRNomes underlying the key role of location and mutations in defining the pHGG exosomal miRNA profile. This was further confirmed analyzing the miRNOme from cell-line derived exosomes. Moreover, we identified a pool of significantly differentially regulated miRNAs in diagnose vs relapse and biopsy vs autopsy cell-lines. Most importantly, when comparing hemispheric vs pontine and H3.3G34R vs H3.3K27M, we identified respectively four and three miRNas equally dysregulated and in common between plasma and cell-lines. Those were strongly associated mainly to transcriptional regulation and targeting TTC9, linked to cancer invasion and metastasis. Based on this, we suggest exosomal miRNAs as a powerful new pHGG diagnostic/ prognostic tool.

HGG-20. DIAGNOSTIC AND BIOLOGICAL ROLE OF METHYLATION PATTERNS IN REPLICATION REPAIR DEFICIENT HIGH GRADE GLIOMAS

Andrew Dodgshun^{1,2}, Kohei Fukuoka³, Melissa Edwards⁴, Vanessa Bianchi⁴, Alexandra Sexton-Oates⁵, Valerie Larouche⁶, Vanan Magimairajan7, Scott Lindhorst8, Michal Yalon9, Gary Mason10, Bruce Crooks¹¹, Shlomi Constantini¹², Maura Massimino¹³, Stefano Chiaravalli¹³, Jagadeesh Ramdas¹⁴, Warren Mason¹⁵ Ashraf Shamvil¹⁶, Roula Farah¹⁷, An Van Damme¹⁸, Enrico Opocher¹⁹, Syed Ahmer Hamid²⁰, David Ziegler²¹, David Samuel²², Kristina A Cole²³, Patrick Tomboc²⁴, Duncan Stearns²⁵, Gregory Thomas²⁶, Alexander Lossos²⁷, Michael Sullivan²⁸, Jordan R Hansford²⁸, David Jones²⁹, Alan Mackay³⁰, Chris Jones³⁰, Vijay Ramaswamy⁴, Cynthia Hawkins⁴, Eric Bouffet⁴, and Uri Tabori⁴; ¹Canterbury District Health Board, Christchurch, New Zealand, ²University of Otago, Christchurch, New Zealand, ³Jichi Medical University, Shimotsuke, Japan, ⁴The Hospital for Sick Children, Toronto, Canada, ⁵International Agency for Research on Cancer, Lyon, France, 6Universite Laval, Quebec, Canada, University of Manitoba, Winnipeg, Canada, ⁸Medical University of South Carolina, Charleston, SC, USA, ⁹Sheba Medical Center, Tel Hashomer, Israel, ¹⁰University of Pittsburgh, Pittsburgh, PA, USA, ¹¹Dalhousie University, Halifax, Canada, ¹²Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, ¹³Istituto Nazionale dei Tumori, Milan, Italy, ¹⁴Geisinger Medical Center, Danville, PA, USA, 15Princess Margaret Cancer Centre, Toronto, Canada, ¹⁶Children's Cancer Hospital, Karachi, Pakistan, ¹⁷Saint George Hospital University Medical Center, Beirut, Lebanon, ¹⁸Universite Catholique de Louvain, Brussels, Belgium, ¹⁹University of Padova, Padova,