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AB-DB: Force-Field parameters, 
MD trajectories, QM-based data, 
and Descriptors of Antimicrobials
Silvia Gervasoni   1, Giuliano Malloci   1 ✉, Andrea Bosin   1, Attilio V. Vargiu   1, 
Helen I. Zgurskaya2 & Paolo Ruggerone   1

Antibiotic resistance is a major threat to public health. The development of chemo-informatic tools 
to guide medicinal chemistry campaigns in the efficint design of antibacterial libraries is urgently 
needed. We present AB-DB, an open database of all-atom force-field parameters, molecular 
dynamics trajectories, quantum-mechanical properties, and curated physico-chemical descriptors 
of antimicrobial compounds. We considered more than 300 molecules belonging to 25 families that 
include the most relevant antibiotic classes in clinical use, such as β-lactams and (fluoro)quinolones, 
as well as inhibitors of key bacterial proteins. We provide traditional descriptors together with 
properties obtained with Density Functional Theory calculations. Noteworthy, AB-DB contains less 
conventional descriptors extracted from μs-long molecular dynamics simulations in explicit solvent. In 
addition, for each compound we make available force-field parameters for the major micro-species at 
physiological pH. With the rise of multi-drug-resistant pathogens and the consequent need for novel 
antibiotics, inhibitors, and drug re-purposing strategies, curated databases containing reliable and not 
straightforward properties facilitate the integration of data mining and statistics into the discovery of 
new antimicrobials.

Background & Summary
The increasing spread of antibiotic resistance in clinics is causing a global health crisis. Mobile genetic element 
encoding for resistance genes can be transferred among bacterial populations, leading to the need to make more 
efficient the discovery of new antibiotics and molecules able to improve their efficacy1,2. Gram-negative bacteria, 
such as Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, are particularly challenging 
due to the presence of an outer membrane which reduces the permeability of antimicrobials and therefore their 
efficacy3–5. A major obstacle is represented by efflux pumps that act in synergy with the outer membrane ejecting 
a plethora of compounds with various chemical-physical properties, among which are different classes of antibi-
otics6–8. In addition, inactivating enzymes such as β-lactamases9 contribute to exacerbate the problem. To date, 
both academia and industry struggle to identify new antibiotic classes and optimize available compounds10–15. 
Although several strategies have been adopted (e.g., drug repurposing16 or systematic exploitation of natural 
compounds17), holistic approaches able to take into account multiple factors contributing to antimicrobial resist-
ance are lacking18. Previous works focused primarily on the role of chemical-physical properties of antimicrobial 
molecules in their accumulation profile, searching for general “rules”19,20. For example, O’Shea and Moser19 
found that antibiotics effective towards Gram-negative bacteria are generally characterized by high molecular 
weight (MW, around 600 Da) and high polarity (as expressed by cLogD7.4 below 0). More recently, Richter et al.21 
identified the presence of a primary amine, flexible bond number (5 or less) and globularity (describing molecu-
lar shape), as key features to predict the accumulation of antibiotics in Gram-negative bacteria22. Predictive rules 
of efflux inhibition and avoidance were also identified23. This latter study combined standard molecular descrip-
tors to properties derived from structure-based analyses (e.g., interaction descriptors extracted from molecular 
docking), allowing for a more complete and multi-factorial view. Definition of general rules able to predict 
both the permeability and the activity of antimicrobial compounds can greatly benefit from the application of 
machine learning approaches able to speed up the drug discovery process24,25. The application of these methods 
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requires collection of data for the learning phase26,27, that highlights the need for curated molecular databases 
providing ready-to-use features.

In this regards, over the years, several molecular databases containing standard descriptors (e.g., PubChem28, 
DrugBank29, ChEMBL30, ZINC1531) or quantum-mechanical (QM) properties32–36 have been reported. These 
data have been extensively used in quantitative-structure-activity-relationships (QSAR) studies37,38, and recent 
works exploited additional information coming from molecular dynamics (MD) simulations39–43, that represent 
an effective tool to address key structural and kinetic features of biological systems44–47. However, although freely 
available servers for the automatic generation of force-field (FF) parameters are available48–52, small molecule 
parameterization remains often a non-trivial task53.

Following a previous work54, we present a homogeneous database of accurate all-atom FF parameters of 
more than 300 antimicrobial compounds, together with μs-long MD trajectories and QM-related data (e.g., 
ground-state optimized geometries). We additionally provide molecular descriptors of different nature: i) classi-
cal parameters usually considered in QSAR studies (e.g., MW, atom/ring counts, LogP, …); ii) MD-derived prop-
erties (e.g., root-mean-square fluctuations, statistics of intra- and inter-molecular H-bonds, hydration-shells 
structure and dynamics, …); iii) QM-based parameters (e.g., energies of frontier molecular orbitals, electronic 
gap, electric dipole moment, …). The computational protocol adopted is schematically depicted in Fig. 1. The 
molecules considered, ranging in size from cycloserine (13 atoms, MW = 102.09 Da) to rifalazil (132 atoms, 
MW = 941.09 Da), cover 24 classes of antimicrobial compounds with different mechanisms of action, plus mis-
cellaneous compounds (e.g., fluorescent dyes such as rhodamine 6G and HT33342). In particular, about 30% 
of compounds in the whole dataset are β-lactams, and 10% are inhibitors of key bacterial proteins. High MW 
compounds (>~1000 Da) such as polymyxin, glycol- and lipo-peptides were omitted from the selection, due to 
the high computational costs/convergence issues associated to the QM calculation. A schematic depiction of 
representative compounds showing the overall chemical variability of the sample is given in Fig. 2. The complete 
set of antimicrobial families and compounds is reported in Table 1.

To the best of our knowledge AB-DB is unique in supplying homogeneously-derived properties of anti-
microbial compounds. The accurate FF parameters can be reused for further MD simulations of compounds 
either alone or interacting with their macromolecular target(s). The MD trajectories can be exploited for 
ligand- or structure-based studies, in particular for molecular docking. The successful application of this 
technique requires the knowledge of the bio-active conformation of ligands55–58, that is not always found by 
classical searching algorithms59,60. Our curated, homogeneous and not straightforward properties can feed 
machine learning models towards the discovery of new antimicrobials61,62. Input/output files are also supplied 
to ensure data reproducibility. In the near future we plan to update AB-DB including more compounds, covering 
additional antimicrobial classes.

Fig. 1  Schematic view of the computational protocol adopted to generate AB-DB. The different steps reporting 
some representative molecular descriptors are highlighted: molecular characterization, QM calculations,  
FF parameters generation, MD simulations. For further technical details see Methods section.

Fig. 2  Schematic representation of four representative antimicrobials belonging to different classes, namely 
(a) penicillins, (b) (fluoro)quinolones, (c) aminoglycosides, and (d) aminocoumarins. Graphics rendered with 
DiscoveryStudio101.
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Methods
For each antimicrobial compound we obtained the 3D structure data file (.sdf format) from the PubChem 
database, except for 13 compounds for which the 3D conformation is not available. In those cases, marked in 
italic in Table 1, the starting structure was taken from the ChEMBL database, or from available X-ray struc-
tures. We then used the ChemAxon’s Marvin suite of programs63 to calculate the dominant protonation states 
at physiological pH. For known uncertain cases (e.g., tetracyclines), for which several micro-species with sim-
ilar population were predicted, the choice has been driven by available experimental data on pKa values. The 
comparison between the experimental and calculated pKa values of the ionizable groups of a representative set 
of challenging molecules is reported in Table 2. The large relative errors (even exceeding 100%) were expected 
for these classes of antimicrobials since pKa determination in Marvin ChemAxon is based on molecular charge 
distribution, and these molecules are characterized by a complex electronic structure (e.g., with several possi-
ble resonance states). For each molecule we then proceeded with QM calculations and FF generation followed 
by all-atom MD simulations. Properties generated in each step will be referred to as QSAR, MD, and QM 

Family # Compounds

Aminocoumarins 8 chlorobiocin, novobiocin, declovanillobiocin, isovanillobiocin, novclobiocin 101, plazomicin, ribostamycin, 
vanillobiocin

Aminoglicosides 15 amikacin, apramycin, arbekacin, dibekacin, gentamicin C1, hygrovetine, isepamicin, kanamycin, 
neomycin, netilmicin, paromomycin, sisomicin, spectinomycin, streptomycin, tobramycin

Anthracenediones 2 mitoxantrone, pixantrone

Anthracyclines 4 daunorubicin, doxorubicin, epirubicin, idarubicin

β-lactamase inhibitors 11 avibactam, bal0029880, clavulanic acid, durlobactam, enmetazobactam, nacubactam, relebactam, sulbactam, 
tazobactam, thienamycin, zidebactam

Carbapenems 14 biapenem, doripenem, ertapenem, faropenem1, imipenem, LK-157, meropenem, olivanic acid, panipenem, 
razupenem, ritipenem, sanfetrinem, tebipenem, tomopenem

Cephalosporins 39

cefaclor, cefadroxil, cefalonium, cefamandole nafate, cefamandole sodium, cefazolin, cefdinir, cefditoren, 
cefepime, cefetamet, cefiderocol, cefixime, cefmenoxime, cefmetazole, cefonicid, cefoperazone, ceforanide, 
cefotaxime, cefotetan, cefoxitin, cefpiramide, cefpirome, cefpodoxime, cefprozil, cefsulodin, ceftaroline, 
ceftazidime, ceftibuten, ceftizoxime, ceftobiprole, ceftriaxone, cefuroxime, cephalexin, cephaloridine, 
cephalotin, cephapirin, cephradine, loracarbef, nitrocefin

DHFR inhibitors 7 brodimoprim, epiroprim, iclaprim (R), iclaprim (S), tetroxoprim, trimethoprim, triclosan

Efflux pumps inhibitors 9 D13-9001, MBX2319, MBX2931, MBX3132, MBX3135, NMP, PAβN, amitriptyline, chlorpromazine

Quinolones 36

cinoxacin, ciprofloxacin, clinafloxacin, danofloxacin, delafloxacin, difloxacin, DX-619, enoxacin, 
enrofloxacin, fleroxacin, flumequine, garenoxacin, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, 
lomefloxacin, marbofloxacin, moxifloxacin, nadifloxacin, nalidixic acid, norfloxacin, ofloxacin, orbifloxacin, 
oxolinic acid, pazufloxacin, pefloxacin, pipemidic acid, prulifloxacin, rosoxacin, rufloxacin, sarafloxacin, 
sitafloxacin, sparfloxacin, temafloxacin, trovafloxacin

Fusidanes 2 fusidica acid, helvolic acid

Lincosamides 4 clindamycin, desalicetin, lincomycin, pirlimycin

Macrolides 9 azithromycin, cethromycin, clarithromycin, dirithromycin, erythromycin, modithromycin, roxithromycin, 
spiramycin, telithromycin

Monobactams 10 aztreonam, BAL19764, BAL30072, carumonam, gloximonam, nacubactam, nocardicin, oximonam, 
pirazmonam, tigemonam

Nitrofurans 12 furazolidone, nifurfoline, nifurquinazol, nifurtoinol, nitrofurantoin, nitrovin, nifuratel, nifuroxazide, 
nifurtimox, nifurzide, nitrofurazone, tinidazole

Nucleosides 4 A-500359A, A-503083E, capuramycin, puromycin

Oxacephem 2 latamoxef, flomoxef

Oxazolidinones 8 contezolid, eperezolid, linezolid, posizolid, radezolid, ranbezolid, sutezolid, tedizolid

Penicillins 20
6-APA, amoxicillin, ampicillin, azlocillin, carbenicillin, cloxacillin, dicloxacillin, epicillin, flucloxacillin, 
hetacillin, methicillin, mezlocillin, nafcillin, oxacillin, penicillin G, penicillin V, piperacillin, sulbenicillin, 
temocillin, ticarcillin

Phenicols 5 azidamfenicol, chloramphenicol, florfenicol, tevenel, thiamphenicol

Rifamycins 2 rifalazil, rifampicin

Streptogramins 1 dalfopristin

Sulphonamides 20
sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfadiazine, sulfadimethoxine, sulfaguanidine, 
sulfamerazine, sulfameter, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, 
sulfamonomethoxine, sulfamylon, sulfanitran, sulfaphenazole, sulfapyridine, sulfaquinoxaline, sulfathiazole, 
sulfisoxazole

Tetracyclines 10 chlortetracycline, demeclocycline, doxycycline, meclocycline, methacycline, minocycline, omadacycline, 
oxytetracycline, tetracycline, tigecycline

Others 20
acriflavine, cycloserine, dapsone, deoxycholate, enterobactin, ethambutol, ethidium, ethionamide, fosfomycin, 
halicin, HT33342, isoniazid, metronidazole, propidium, pseudomonic acid A, rhodamine 6G, taurocholate, 
tetraphenylphosphonium, WCK-4234

Table 1.  List of families and antimicrobial compounds included in AB-DB. Boldface labels identify molecules 
for which two protonation states were considered. Molecules for which the PubChem 3D structure is not 
available are highlighted in italic. Column “#“ reports the total number of compounds for each family. 
1Faropenem belongs to penems family, in AB-DB it is included in the carbapenems family.
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descriptors, respectively. The three types of analysis performed in this study are graphically exemplified in Fig. 3 
for a test-case molecule and described in details below.

Quantum-mechanical calculations and force-field generation.  The 3D structures of the molecules 
downloaded from the PubChem or ChEMBL databases (see above) underwent quantum-chemical calculations 
at the Density Functional Theory (DFT) level64, using the Gaussian16 package65. We employed the hybrid B3LYP 
functional66, in conjunction with the split-valence 6–31G** Gaussian basis-set67. The combination B3LYP/6–
31G** represents a good compromise between accuracy and computational cost and is widely used for small 
molecules68–70. In all cases we disabled molecular symmetry (Symmetry = None), adopted restrictive conver-
gence criteria for self-consistent-field iterations (10−8 Ha, SCF(Conver = 8)), and used a pruned (99,590) grid 

Quinolones

pKa 1 = carboxylic 
acid pKa 2 = piperazinyl amine

ciprofloxacin103 6.29, 5.6 (11.7%) 8.26, 8.8 (6.2%)

difloxacin103 5.98, 5.5 (7.7%) 7.75, 7.0 (9.8%)

enoxacin103 6.57, 5.3 (19.2%) 7.17, 8.7 (21.1%)

enrofloxacin103 6.01, 5.6 (7.7%) 7.93, 7.2 (8.7%)

fleroxacin103 5.78, 5.5 (5.7%) 7.86, 6.5 (17.5%)

lomefloxacin103 5.78, 5.5 (5.7%) 8.74, 8.8 (0.5%)

norfloxacin103 5.97, 5.6 (6.6%) 8.42, 8.8 (4.2%)

ofloxacin103 6.04, 5.3 (11.5%) 8.09, 6.7 (5.0%)

pefloxacin103 6.45, 5.6 (13.9%) 7.84, 7.0 (10.5%)

sarafloxacin [104] 5.99, 5.6 (7.4%) 7.84, 8.8 (2.7%)

levofloxacin104 5.6, 5.4 (3.95%) 7.9, 6.7 (15.2%)

Sulfonamides

pKa 1 = amine pKa 2 = amide

sulfamerazine103 2.15, 2.0 (7.0%) 6.82, 7.0 (2.4%)

sulfamethazine103 2.24, 2.0 (10.7%) 7.51, 7.0 (7.0%)

sulfathiazole103 2.05, 2.0 (0.2%) 7.14, 6.9 (2.9%)

Tetracyclines

pKa1 = OH(C3) pKa2 = OH(C12) pKa3 = OH(C12)

chlortetracycline103 3.64, 7.0 (92.6%) 6.57, 8.8 (33.6%) 8.64, 6.18 (28.4%)

demeclocycline103 3.37, 2.6 (22.6%) 7.36, 8.1 (9.5%) 9.44, 6.3 (32.9%)

doxycycline103 3.02, 7.3 (142.4%) 7.97, 8.2 (2.3%) 9.15, 5.8 (36.6%)

meclocycline103 4.05, 8.0 (97.3%) 6.87, 5.8 (15.7%) 9.59, 7.0 (26.8%)

oxytetracycline103 3.32, 7.3 (118.4%) 7.02, 8.1 (14.9%) 8.74, 7.0 (19.7%)

tetracycline103 3.17, 7.2 (127.5%) 6.79, 7.8 (29.9%) 9.07, 6.2 (31.4%)

Aminoglycosides

pKa1 = N1 pKa2 = N3 pKa3 = N2’ pKa4 = N6’ pKa5 = N3”

amikacin105 9.89, 9.6 (2.8%) 7.64, 9.0 (17.5%) — 8.81, 8.2 
(6.9%)

8.05, 8.4 
(4.6%)

gentamicin C1106 7.67, 9.5 (23.9%) 6.19, 9.0 (45.4%) 7.4, 10.1 
(36.5%)

9.86, 8.5 
(13.8%)

8.78, 7.41 
(15.6%)

netilmicin105 8.15, 9.2 (12.9%) 6.52, 8.3 (27.3%) 8.15, 7.2 
(11.7%)

9.32, 8.8 
(5.6%)

8.48, 9.7 
(14.4%)

sisomicin105 7.43, 9.2 (23.8%) 6.21, 8.3 (33.7%) 8.01, 7.4 
(7.6%)

9.31, 8.8 
(5.5%)

8.50, 9.6 
(11.5%)

tobramycin105 7.56, 9.5 (25.7%) 6.70, 7.4 (9.9%) 7.75, 8.1 
(5.0%)

9.11, 9.0 
(1.0%)

7.71, 8.6 
(11.7%)

Cephalosporins

pKa = Amine

loracarbef107 6.84, 7.2 (5.4%)

DHFR inhibitors

pKa = diaminopyrimidine

trimethoprim108 7.50, 7.2 (4.5%)

Rifamycins

pKa1= 4-hydroxy pKa2= 3-piperazine nitrogen

rifampicin109 1.7, 10.0 (485.9%) 7.9, 7.1 (9.8%)

Table 2.  Average experimental and predicted (boldface) pKa values. Relative percentage error of computed pKa 
value is reported in parentheses.

https://doi.org/10.1038/s41597-022-01261-1


5Scientific Data |           (2022) 9:148  | https://doi.org/10.1038/s41597-022-01261-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

(Int = UltraFine) for numerical integration. For the few cases for which convergence criteria were not reached, 
geometry optimization was first performed with a smaller basis-set (6–31G) and converged geometry and molec-
ular orbitals were used as a starting point for the subsequent B3LYP/6–31G** step. For each compound we 
optimized the ground-state structure employing the Polarizable Continuum Model71 to mimic the effect of water 
solvent (SCRF = (PCM,Solvent = Water)), particularly to avoid formation of strong intra-molecular H-bonds. We 
then performed full vibrational analyses obtaining real frequencies in all cases, thus confirming the geometries 
obtained to be global minima. We processed the output of Gaussian16 with GaussSum72 to extract molecular 
orbital data. On the optimized geometry we then performed B3LYP/6–31G** single-point energy calculations 
in vacuum to generate the atomic partial charges fitting the molecular electrostatic potential. We used the 
Merz-Kollman scheme73 to construct a grid of points around the molecule under the constraint of reproducing 
the overall electric dipole moment of the molecule (Pop = (ESP,Dipole,Regular)). The two-step restrained electro-
static potential (RESP) method74 implemented in the Antechamber package75 was used to generate atomic partial 
charges at the DFT level, instead of the automatic AM1-BCC charges76. This step enabled the generation of the 
FF files using the General Amber Force Field 2 (GAFF2)77. In a single case, namely the siderophore enterobactin 
loaded with Fe(III)78, FF files were obtained using the metal center parameter builder module79 of the Amber18 
package80, slightly modified accordingly to the QM settings described above.

Molecular dynamics simulations.  All-atom MD simulations were performed in explicit water solution 
using Amber18. Systems were solvated within a box of TIP3P water model81 and K+/Cl− counter ions82, to reach 
an ionic concentration of 0.1 M, using the program tleap of Amber1880. GAFF2 parameters obtained as described 
above were adopted for antimicrobial compounds. All systems underwent an energy minimization, a heating 
followed by a cooling phase, and a short productive dynamics to relax the simulation box. Finally the produc-
tion 1 μs-long MD simulation was performed, under the NPT ensemble (1 Atm and 310 K) using the isotropic 
Berendsen barostat83 and the Langevin thermostat84. Further details on MD settings can be found in ref. 54.

Descriptors generation.  From the output of QM and MD simulations we extracted all molecular descrip-
tors (~80 in total for each compound, see list in Table S1). Most QSAR descriptors were computed on the QM 
optimzed geometries using the calculator plugin of the Marvin ChemAxon program63. Given the importance of 
octanol/water partition coefficient in drug design85, we provide an additional estimate of this parameter by means 
of the XLOGP3 program86. Furthermore, for each compound we derived the molecular properties associated 
with the “entry rules”, a series of guidelines that have been recently proposed to increase small-molecule accumu-
lation in Gram-negative bacteria21. QM-based properties were obtained from the Gaussian16 output files of the 
implicit-solvent geometry optimization. Isotropic and anisotropic polarizabilities were derived from the polariz-
ability tensor according to ref. 87. We additionally provided the molecular dipole moment in vacuum consistent 
with the atomic partial charges of the FF files, computed as described above. From the all-atom MD simulations 
we obtained structural and dynamical features by means of the CPPTRAJ program88. First and second water shells 
were extracted using a lower (upper) cutoff of 3.4 (5.0) Å. For the analysis of intra- and inter-molecular H-bonds 
we adopted angle and distance cutoffs of 135° (donor-hydrogen-acceptor angle) and 3.5 Å (donor-acceptor), 
respectively89. The number and population of structural clusters were determined using a hierarchical agglom-
erative algorithm90 and the molecule root-mean-squaredeviation (RMSD) value as a metric. To evaluate atomic 
root-mean-square fluctuations (RMSF) we used the utility g_rmsf of the GROMACS package91. During the MD 
runs we also monitored three morphology descriptors related to the gyration tensor, i.e., asphericity, acylindricity, 
and kappa2, as implemented in the PLUMED plugin92. Asphericity and acylindricity give a measure of the devia-
tion of the mass distribution from spherical and cylindrical symmetry, respectively; the relative shape anisotropy 
kappa2 is limited between 0 and 1 and reflects both symmetry and dimensionality93. The minimal projection 
area (MPA) is the minimum of the circular areas projected perpendicularly to the principal axes of inertia of the 
molecule, calculated based on the atomic van der Waals radii (Å). The dynamical evolution of the MPA have been 
determined with the combined use of Open Babel94 and ChemAxon’s calculator plugin63.

Data Records
AB-DB is available on figshare95. The computed molecular descriptors are given in the comma separated file 
all-descriptors.csv. A compressed TAR archive for each family is provided (e.g., carbapenems.tgz). In turn, every 
archive contains sub-folders named after the compound and the net charge considered in the calculations  

Fig. 3  Graphical exemplification of the three types of analysis performed to generate AB-DB. Puromycin 
molecule has been selected as a test-case. QSAR: number of rotatable bonds (left), QM and FF: atomic partial 
charges (center), from negative (red) to positive (blue) values, MD: conformations extracted from MD 
trajectories (right). Graphics rendered with PyMOL102.
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(e.g., carbapenems/ertapenem_-1/). For 34 molecules the two protonation states most populated at pH = 7.4 
were considered (see Methods section). In these cases two folders per compound are reported, with different 
values of the net charge (e.g., quinolones/ciprofloxacin_0/ where the compound is considered as zwitterionic, and 
quinolones/ciprofloxacin_-1/ where the nitrogen atom of the piperazine ring is considered in its neutral form). 
Each compound folder contains a 2D sketch of the molecule (2d.png), and a total of 20 files distributed into three 
sub-directories reporting QM (QM/), FF (FF/), and MD (MD/) data. Figure 4 shows a schematic representation 
of the database structure describing the path of all files provided.

Quantum-mechanical data.  QM/ folders contain files derived from QM calculations (see 
Quantum-mechanical calculations and force-field generation section). In details, the opt-freq.com and opt-freq.
log are the input and output files of the Gaussian16 geometry optimization and frequency analysis in implicit 
solvent. The minimization steps are collected in the optimization.xyz file and the final optimized structure is 
given in structure data file format as optimized.sdf. This file, generated with Open Babel94 from the corresponding 
.xyz file and carefully checked manually, is also provided for reproducibility purposes since it has been used to 
compute QSAR descriptors. We also collected the electronic structure and the harmonic vibrational frequencies 
into electronic.dat and vibrational.dat files, respectively. The elec-pot.com and elec-pot.log are respectively the input 
and output files of the Gaussian16 single-point energy calculation in vacuum, performed to derive atomic partial 
charges. The resulting electrostatic potential file is elec-pot.dat.

Force-field data.  For each compound we supply in the corresponding FF/ folder the mol.mol2 and Amber 
mol.prep files, containing the optimized structure of the molecule with RESP partial charges. The Amber 
force-field modification file mol.frcmod with all parameters not included in the GAFF2 is also provided. For 
reproducibility purposes we make available the Amber parameter/topology mol_solv.parm7, and coordinate/
restart mol_solv.rst7 files used to perform the MD simulation in explicit solvent. The corresponding mol_solv.pdb 
file generated using the ambpdb program80 is also provided.

Molecular dynamics data.  MD/ folders store the μs-long MD trajectories performed in explicit water solu-
tion (see Molecular dynamics simulations section) in the file trajectory.pdb (100000 frames). The representatives 
of the ten most populated clusters extracted from the trajectory are given in clusters.pdb, and their corresponding 
fraction in clusters.dat. The statistics of intra- and inter-molecular H-bonds are collected in hbonds-intra.dat and 
hbonds-inter.dat, respectively.

Technical Validation
AB-DB is built making use of the different computational steps detailed above: molecular characterization, QM 
calculations, FF generation, MD simulations, and extraction of physico-chemical descriptors. Concerning the 
starting configurations used for the subsequent steps, we carefully checked the protonation state of all com-
pounds at physiological pH, paying particular attention to uncertain cases with two major populated species 
(see Table 2 and Methods section for details). In details, for these ambiguous cases, we searched the literature 
for experimental values of pKa, that were consistently used as reference throughout the class. As for the QM 

Fig. 4  Schematic representation of the AB-DB structure reporting filenames of each sub-directory.
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calculations, the DFT level of theory adopted is routinely used and has proven to be reliable for small organic 
molecules, providing FF parameters compatible with available FFs for macromolecules50. B3LYP/6–31G** cal-
culations represent a good compromise between accuracy and computational cost96. Therefore, no further vali-
dation is here provided for QM calculations. In the following we present a thorough justification of the reliability 
of our data through the comparison with experiments.

Descriptors validation.  Calculation of classical parameters reporting the topological properties of mole-
cules, such as the number of atoms or the count of aliphatic bonds, is quite straightforward. Most popular data-
bases (e.g. PubChem, DrugBank) indeed employ ChemAxon’s tools to automatically compute these properties. 
In AB-DB, we likewise used the same programs to obtain the QSAR descriptors. However, for LogP, which is 
known to be a key feature for antimicrobial penetration kinetics61,97,98, we exploited another widely used method 
(XLOGP3, see Methods section). Note that accurate prediction of LogP is a well-known challenge in computa-
tional chemistry, and is also common to find severe disagreement through experimental results obtained for the 
same compound99,100. In order to assess the quality of our predictions, we collected available experimental LogP 
values for a subset of molecules. Table 3 compares the experimental data, falling in the range [−1.69, 5.15], with 
the computed ones, highlighting the differences between the two methods. In most cases the two predicted values 
are similar and agree with the experimental LogP. However, as expected, ambiguous situations were also found. 
Methicillin, for instance, was well predicted by XLOGP3 (computed 1.96 vs. experimental ~1.90) while cxcalc 
yielded a poor estimation (computed 0.79). On the contrary, the latter program agrees with experiments for lome-
floxacin (computed −0.43 vs. experimental −0.47), whereas the former failed (computed 0.27).

Validation of force-field parameters and molecular dynamics trajectories.  To assess the reliability 
of the FF generated for all compounds we computed the RMSD between the QM B3LYP/6–31G** optimized 
geometry and the molecular mechanics minimum-energy structure obtained with the GAFF2 parameters of the 
database. Table 4 shows the good agreement between the two sets of structures, differing on average by less than 
1 Å, with an overall mean value of 0.5 ± 0.1 Å. The registered low RMSDs prove the accuracy of the FF parameters 
presented in AB-DB and used for the MD simulations.

To give a measure of the quality of MD simulations, we compared the representative conformations extracted 
from MD trajectories (cluster representatives) of selected compounds with their 3D experimental structure 
available on the Protein Data Bank, in complex with biological targets. When multiple experimental structures 
were available for the same compound, we considered the one with the highest resolution. The total number 
of 85 experimental structures collected are listed in Table S2, reporting the corresponding PDB code and the 
weighted average RMSDs (<RMDS>w), obtained using cluster populations as weights. The average values asso-
ciated to selected families are also given. The mean value of <RMDS>w considering all families is 1.8 ± 0.8 Å, 
with the highest and smallest value reached by aminocoumarins (3.6 ± 0.4 Å) and tetracyclines (0.9 ± 0.2 Å), 
respectively. As expected, bigger and more flexible molecules give rise to higher <RMDS>w, whereas smaller 
and more rigid compounds show lower values. Overall, the performed MD simulations based on GAFF2 
parameters appear to be able to sample molecular conformations found in available experimental structures.

Family Compound LogP exp XLOGP3 (%ERR) LogP cxcalc (%ERR)

aminocoumarins
chlorobiocin 5.15110 5.98 (16) 4.94 (4)

novobiocin 3.1111 3.96 (28) 3.26 (5)

streptogramins dalfopristin 2.5799 2.23 (13) 1.58 (39)

macrolides telithromycin 2.1112 4.16 (98) 5.05 (140)

penicillins

dicloxacill 2.91113 3.78 (30) 2.91 (0)

cloxacillin 2.43113 3.15 (30) 2.30 (5)

oxacillin 2.31113 2.53 (10) 1.70 (26)

penicillin G 1.70113 1.95 (15) 1.08 (36)

methicillin 1.896114 1.96 (3) 0.79 (58)

temocillin 1.3999 2.4 (73) 1.2 (14)

quinolones

delafloxacin 2.6399 2.76 (5) 2.56 (3)

difloxacin 0.84100 1.49 (77) 1.75 (108)

grepafloxacin 0.66115 0.72 (9) 0.07 (89)

sitafloxacin −0.16116 0.76 (575) −0.17 (6)

lomefloxacin −0.47117 0.27 (157) −0.43 (9)

cephalosporins

cefpiramide 0.9599 0.84 (12) −0.97 (202)

cefotetan 0.3199 0.64 (106) −0.38 (223)

ceforanide −1.3599 −1.87 (39) −3.18 (136)

lincosamides clindamycin 0.78118 1.76 (126) 1.04 (33)

β-lactamase inhibitors tazobactam −1.6999 −1.33 (21) −1.4 (17)

Table 3.  Experimental logP (LogP exp) and LogP values computed by XLOGP3 and cxcalc. Relative error (%) 
is reported in parentheses.
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As emphasized in previous works54,60, MD simulations enable to go beyond a static picture of molecules, 
providing ranges of properties accounting for their dynamical nature and their impact on biological activity. 
Prominent examples are represented by MD simulations performed to differentiate the most active inhibitors of 
ERK2 kinase39 and Ptch1 multidrug efflux transporter58.

Code availability
QSAR calculations were performed using the ChemAxon’s Marvin suite of programs, version 21.1463. For 
QM calculations we used the Gaussian16 package, revision A.0365. The Amber18 package80 was used for MD 
simulations and FF generation. We used simple bash scripts to iteratively extract descriptors from outputs and 
generate AB-DB data-files.
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