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A new threshold reveals 
the uncertainty about the effect 
of school opening on diffusion 
of Covid‑19
Alberto Gandolfi1*, Andrea Aspri2, Elena Beretta1, Khola Jamshad1 & Muyan Jiang1

Studies on the effects of school openings or closures during the Covid‑19 pandemic seem to reach 
contrasting conclusions even in similar contexts. We aim at clarifying this controversy. A mathematical 
analysis of compartmental models with subpopulations has been conducted, starting from the SIR 
model, and progressively adding features modeling outbreaks or upsurge of variants, lockdowns, 
and vaccinations. We find that in all cases, the in‑school transmission rates only affect the overall 
course of the pandemic above a certain context dependent threshold. We provide rigorous proofs 
and computations of the thresdhold through linearization. We then confirm our theoretical findings 
through simulations and the review of data‑driven studies that exhibit an often unnoticed phase 
transition. Specific implications are: awareness about the threshold could inform choice of data 
collection, analysis and release, such as in‑school transmission rates, and clarify the reason for 
divergent conclusions in similar studies; schools may remain open at any stage of the Covid‑19 
pandemic, including variants upsurge, given suitable containment rules; these rules would be 
extremely strict and hardly sustainable if only adults are vaccinated, making a compelling argument 
for vaccinating children whenever possible.

The question of keeping schools open or closing them has turned out to be one of the most debated issues of the 
Covid-19 pandemic. Schools have been closed at the early stages of the pandemic in almost every country, with 
classes held online for most of last  year1,2; but the, sometimes hurriedly arranged, remote teaching has created 
great difficulties for more than one billion students, their teachers and  communities3,4.

Many studies have been carried out trying to clarify the potential effects of school opening on the course of 
the Covid-19 outbreaks: they appear to be reaching different, and sometimes conflicting, conclusions. Several 
 works5–8 find that closing schools has little impact on the number of cases, while others conclude that it is very 
 effective9–11; a number of other studies determine that the influence of school opening on the course of the 
pandemic depends crucially on some implementation details, such as level of blending, use of masks etc.12–18. 
Even studies of the same situation reach opposite  conclusions19,20. When trying to analyze available Covid-19 
data using simulations of compartmental models, we observed a remarkable instability: the observed effect of 
school opening depended in a crucial way on small changes in the models parameters, and we kept oscillating 
between making the schools the culprits of the pandemic, or completely absolving them; see Fig. 3a–c below.

This situation raises the issue of understanding the mechanisms behind and the nature of a possible transition 
in the effect of school opening policies. Ideally, one would like to identify one or more parameters, measurable 
at least in some theoretical sense, summarizing the effects of school opening, with an explicitly, for as much as 
possible, known effect on the overall epidemiological indicators. A clearer understanding in this sense could 
inform data collection, analysis and release of information, and help providing guidelines for policy makers in 
concrete situations.

Our aim is to report of the identification of a mechanism which could explain the observed instability of 
effects and diversity of conclusions. To highlight the fundamental mechanisms at work, we started from the sim-
plest compartmental  models21,22 with two subpopulations, studying how changes in the transmission rate in one 
population affect the overall course of the infection. We first performed a theoretical study of the mathematical 
models, validating then the results using simulations with incrementally added more realistic features, and a 
comparative analysis of various data based studies.
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The outcome of our analysis has been the existence of a perhaps surprising threshold, below which further 
reduction of in-school transmission, for instance by school closure, has a minimal effect, but above which school 
opening becomes the leading factor driving infections. We observe the transition in all scenarios, albeit with 
different vales of the threshold. Of particular interest is the case of a vaccination campaign of adults, in which 
the threshold for in-school transmission rates turns out to be extremely small, giving a strong indication of the 
need of a children vaccination campaign. The presence of a threshold for the in-school transmission rate can 
explain the divergent conclusions of several statistical studies, as they might have been observing the two oppo-
site conditions. In addition, if in the situation under investigation school transmission is close to the threshold, 
epidemiological models, which necessarily rely on, often hard to estimate, parameters, might end up forecasting 
one or the other scenario depending on tiny changes in the calibration. Awareness of a threshold is crucial for 
modeling, data collection and analysis, and policies  determination23.

Let us clarify, though, that, to focus on our main objective, we disregard many other relevant epidemiologi-
cal issues concerning school opening, such as the possible role and availability of  teachers24; the sustainability 
of school  opening25; as well as psychological, cultural, educational aspects; that need then to be added when 
planning concrete policies.

In addition, variants, especially those which might be vaccine resistant, constitute a very challenging situation: 
from an abstract point of view, the situation is similar to that of an initial outbreak, as there are little awareness 
and immunization capabilities, so, broadly speaking, our first scenario below applies. On the other hand, the 
population has developed new individual and social responses, and therefore new assessment of various param-
eters of our investigation should be suitably modified. It is too early now to be able to make such adjustments, 
but the situation should be reevaluated should a resistant variant become prevalent.

Results
There is a phase transition in the effect of school transmission rates on the overall epidemic 
course during an outbreak (or a variant upsurge). The effect of the in-school transmission rate β11 on 
the course of the epidemic undergoes a phase transition with threshold

The total number of active cases is almost constant for all β11 ∈ [0,β∗
11] , and has a sharp increase for β11 > β∗

11 . 
An effective containment of the effect of a change of β11 is achieved if

while there is a substantial effect if

where α is generally chosen to be a small integer (smaller than β22S2(0)/S1(0)√
β12β21S2(0)/S1(0)

 to make sense of (2)), analogous 
to the number of deviations away from a mean, used to describe a transition as plotted in Fig. 4. We take α = 2 
in “Parameter calibration” section. Since in concrete cases, see “Parameter calibration” in "Methods" section, 
β12,β21 << β22 the right hand sides of (2) and (3) are close to β∗

11.
Calculations are done in a linear approximation of the SIR model, which applies to the Covid-19 pandemic as 

the numbers of active cases are kept relatively low by containment measures in the early stages of the  outbreaks26. 
In the linear approximation it is possible to formally compute the total number of cases up to a certain time t , 
which corresponds to when a lock down is imposed. If the target is to contain the increase in the number of total 
cases up to t to a given percentage ε , an explicit formula allows to compute the maximal allowed value of β11.

In a realistic example with total population and recovery rate γ  normalized to 1, setting 
S1(0) = 0.2, S2(0) ≈ 0.8,β12 = β21 = 0.5,β22 = 2 , see “Parameter calibration” in "Methods" section, the criti-
cal point is β∗

11 ≈ 8 . Assuming an initial fraction of 3× 10−5 of active cases in Subpopulation 2 and none in 
Subpopulation 1, a rescaled time frame of t = 5 (corresponding to approximately 50 days), and ε = 0.3 , a suitable 
value of α gives β11 ≤ 6.344.

The first part of Fig. 1, for t ∈ [0, 5] , shows a simulation of the active cases with the above values. One can see 
that school opening has a moderate effect for small values of β11 , and then the effect becomes dramatic as the 
values increase past the critical point.

It follows that closing schools, i.e. setting β11 = 0 , is of limited impact if the reproduction rate β11S1(0) in 
school is somewhat lower than β22S2(0) , the external reproduction rate, and of substantial impact otherwise. 
This provides harmless school opening options, assuming that one has access to the reproduction rates in the 
subpopulations.

The phase transition is preserved under lock‑down, albeit with a different critical point. An 
analogous effect takes place when a lockdown is imposed. If at some time t transmission rates are reduced to val-
ues β ij , corresponding to a subcritical reproduction number, then the effect of β11 on the total number of active 
cases undergoes the same phase transition as during the outbreak, but with critical point

More precisely, let

(1)β∗
11 = β22S2(0)/S1(0).

(2)β11 < β22S2(0)/S1(0)− α
√

β12β21S2(0)/S1(0),

(3)β11 > β22S2(0)/S1(0)+ α
√
β12β21S2(0)/S1(0),

(4)β
∗
11 =

1

S1(t)
− β12β21S1(t)S2(t)

S1(t)(1− β22S2(t))
.
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indicate the attack rate of the epidemic, i.e. the fraction of the initially susceptible population that is eventually 
infected by the disease in the course of the epidemic from t to complete eradication. It turns out that a sufficient 
condition to ensure that �S(β11) does not exceeds (1+ ε)�S(0) is

where F (see (26) below) is a function that depends on the proportions of active cases and susceptible individu-
als at time t.

In a realistic example continuing the one for the outbreak, with β12 = β21 = 0.25,β22 = 1, we get 
β
∗
11 ≈ 4.7630 . In addition, we take ε = 0.3 , see “Linear approximation during the initial phase of anoutbreak or 

new strain upsurge” in "Methods" section; in order to contain the increase in attack rate to no more than 30% 
one needs now to have

Although in a different scenario, this is smaller than the value 6.344 found in the outbreak, as there the aim 
was just to avoid producing an even more extended diffusion of the infection.

The second part of Fig. 1, for t ∈ [5, 18] , illustrates active cases in the lockdown scenario, with the above 
values of the model parameters.

When considering a complete outbreak-lockdown cycle, the attack rate undergoes a similar transition, 
depending on the values of the two transmission rates β11 and β11 . If the pair is sufficiently closed to (0, 0), then 
there is little change in �(S) , while there is a drastic change for larger values of the two transmission rates (see 
Fig. 7).

Success of widespread vaccination of non‑schooling individuals requires internal reproduction 
number in schools to be subcritical. If a vaccination campaign for not-in-school individuals is carried 
out, the total number of cases from a restart of the epidemic to the complete disappearance due to vaccination 
undergoes an analogous phase transition, with threshold

The attack rate is only moderately changed for β̃11 below the threshold, while the outcome of the vaccination 
process is substantially disrupted for larger values of β̃11.

Notice that if β̃11 < β̃∗
11 then the in-school reproduction number is RS = β̃11S1(0) < 1 i.e. RS is subcritical.

In a realistic case, continuing with the data from the example above, we now suppose a vaccination program 
is introduced targeted to a 60% coverage in about 3 months (Israel kept this pace at the time we are writing, with 
schools almost completely closed). In Fig. 1, this corresponds to t ∈ [18, 31] , and now S1(0) = 0.198872 is the 
susceptible at the start of this simulation, which is equal to the susceptible population calculated for the end of 
the previous simulation for lockdown (corresponding to t = 18 in Fig. 1). Then RS = 0.198872× β̃11 , and the 

A = �S(β11)

(S1(t)+ S2(t))
= (S1(∞)− S1(t)+ S2(∞)− S2(t))

(S1(t)+ S2(t))

(5)β11 < F(ε)

β11 < 2.9944.

(6)β̃∗
11 = 1/S1(0).

Figure 1.  Daily active cases I1(t)+ I2(t) for various scenarios: outbreak or new strain upsurge, lockdown, and 
vaccination. In each case, there is critical value for the in-school transmission rate β11 . Cyan curve is with closed 
schools, green for safe opening, orange for critical values, red for values above criticality.
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critical value for β̃11 is 5.02836. To achieve a sensible containment that limits the number of extra infections to 
no more than 30% one needs to take β̃11 < 3.03111 . See “Simulations of the phase transition during vaccination” 
in "Methods" section for further details on this simulation.

From the point of view of containing the epidemic, schools can be kept open at all times, with 
strict control measures. Taken together, the results obtained from simple SIR models with subpopula-
tions show that, although the values of the critical points are different, opening of schools would not seriously 
affect the course of the pandemic at all times, provided the internal transmission rate is kept low enough. On the 
other hand, if the control is released, then the effect of school opening becomes dramatic.

Figure 1 summarizes the numbers of active cases in the three scenarios we have analyzed: the cyan curve 
corresponds to closed schools, while the green one is a subcritical pattern; the red curves, instead, show the risk 
that the pandemic spirals out of control because of insufficiently controlled school opening.

Notice that the explicit values that we give in Formulas (1), (4) and (6) are relevant from the theoretical point 
of view, as they indicate that the critical thresholds are different. Their specific values, however, could be hard to 
estimate from these formulas. The initial fraction of infected in (1), for instance, is almost impossible to estimate, 
due to the initial absence of awareness and testing. Other methods and more details models would be needed 
for a careful estimation of the threshold in concrete cases.

An analogous behavior takes place in more elaborate and realistic models, involving presymptomatic, asymp-
tomatic, testing, isolation etc. Critical values appear for the in-school transmission rate, below which the effect of 
school opening on the epidemic trajectory is extremely contained. We provide simulations in “A SPIAR model” 
in section (see Fig. 10), and evidence from case studies here below.

Discussion
Evidence of phase transition appears in several data driven case studies. The effect of a phase 
transition seems to appear in all data driven studies (see “Other case studies” in section). Most studies reach a 
definite conclusion: in some cases, the data or the model after calibration correspond to a subcritical regime, so 
that the study ends up asserting the almost irrelevance of school opening on the pattern of the epidemic for all 
the analyzed cases; in other cases, the study determines a supercritical setting, and then comes to the opposite 
conclusion.

Some works include one or more parameters that can be modulated to envision the effect of school reopening. 
In these cases, one can see the effect of a sharp transition from a subcritical, acceptable reopening, to an exces-
sively impactful one. In España et al., Figs. 4 and 5, for instance, one can see that up to 50% capacity the effect 
of opening schools is almost negligible, while it becomes substantial above 75%; this is a likely indication of a 
critical point between these  values17. For convenience, their Fig. 4  is reproduced here in Fig. 2.

A very detailed study of school opening in The Netherlands is conducted in Rozhnova et al. , and their 
conclusions are a clear description of the phase  transition12. Using a data driven, elaborate model, Rozhnova 
et al. claim that their “analyses suggest that the impact of measures reducing school-based contacts depends 
on the remaining opportunities to reduce non-school-based  contacts12. If opportunities to reduce the effective 
reproduction number ( Re ) with non-school-based measures are exhausted or undesired and Re is still close to 1, 

Figure 2.  The impact of school reopening strategies in time as simulated  in17 from data from Bogotà, Colombia, 
for various values of the capacity, i.e. the percentage of students allowed back at school. Each column shows a 
different capacity level. Top panel shows the median daily incidence of deaths for each reopening strategy based 
on grades. Bottom panel shows the estimated attack rate for each of the reopening scenarios. Vertical black line 
shows the timing of school reopening (January 25, 2021). All scenarios were simulated up to August 31, 2021.
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the additional benefit of school-based measures may be considerable, particularly among older school children.” 
The first scenario of Rozhnova et al.  corresponds to a subcritical in-school transmission rate, so that the effect of 
closing schools would be very moderate. The second scenario seems to correspond to an in-school transmission 
rate around the critical value, so that both containment, in- or out-of-school, are  effective12.

Yuan et al. uses a detailed compartmental model and data from the second semester 2020 in Toronto, an out-
break context, to estimate the likely impact of school opening; with parameters estimated and collected from lit-
erature, the paper finds that opening school has little effect on the overall course of the pandemic: in all scenarios 
presented in their Figs. 2 and 4 the difference between school opening and closure is extremely  contained16. The 
findings of the research is then consistent with our phase transition scenario. In particular Yuan et al., find that 
“school reopening was not the key driver in virus resurgence, but rather it was community spread that determined 
the outbreak trajectory”; in other words, the parameters of the models, although not explicitly given in the paper, 
are such that the external transmission is  preponderant16. As an additional finding, it is observed in Yuan et al. 
that, according to their model, “brief school closures did reduce infections when transmission risk within the 
home was low”16: in this case, a reduced transmission rate outside makes the one in school likely supercritical.

The role of phase transitions. Phase transitions, like the one occurring at R0 = 1 or the one we detect 
for in-schoool transmission rates, are fundamental in  epidemiology23. They consist of the fact that changes in 
one parameter, the in-school transmission rate in our case, produce almost no effects except when the threshold 
is crossed; at that point, however, a small change in the parameter determines completely different behaviors.

The presence of a threshold for the in-school transmission rate can explain the divergent conclusions of data 
driven studies, as they might have been observing two different phases. The presence of a phase transition can 
also dramatically disrupt forecasts based on calibrated compartmental models: one calibration might lead to a 
subcritical phase, in which the transmission in school is irrelevant, and another, based on possibly similar data, 
might lead to a supercritical phase, in which in-school transmission is the driving factor of the pandemic. This 
phenomenon is known to affect epidemic  forecasts27, and we think it might be the reason beyond the mentioned 
conflicting conclusions of several studies.

(a) Synthetic data of daily active cases in the two different scenarios,
one with subcritical and one with supercritical in-school transmission
rates, and slightly different initial number of cases. Gaussian noise
has been added to make the example more realistic.

(b) Reduction in daily cases due to
school closure in the first scenario

(c) Reduction in daily cases due to
school closure in the second sce-
nario

Figure 3.  Active cases in two different scenarios.
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To make things worse, even retrospective studies trying to evaluate the role of school openings or closures 
on the evolution of the pandemic run the risk of being completely untrustworthy. Covid-19 data are affected 
by enormous errors, due to the presence of asymptomatic, lack and partial reliability of testing, difficulty in 
assessing close contacts etc. It follows that estimation of parameters for both statistical and model based studies 
are affected by large errors. In the presence of a threshold, even small errors can lead to incorrect attribution of 
the situation under observation to one phase, or to conflicting attributions to two opposite phases by different 
studies. In such scenario, a retrospective study could misclassify the effect of school opening or closure; and 
different studies even based on almost the same data might end up reaching opposite conclusions. We explicitly 
illustrate this phenomenon with a simulation in the next section.

Finally, awareness about the presence of a phase transition suggests the type of measurements that could be 
carried out, analyzed and finally released to the public. In our case, for instance, one could consider adapting 
our model to specific local situations, and then measuring in-school transmission rates; these can then be used 
as basis for local policies about school opening, and also as a possible public indicator of the potential risk of 
interventions on schools. The information that the in-school transmission rate is approaching a critical level 
would certainly stimulate and justify the reinforcement of containment measures. The findings about vaccination 
strongly support vaccinating children as well.

Confounding effects on retrospective studies. In the noisy, synthetic data in Fig. 3a, the number of 
daily infected in a population have been generated with the same parameters, except that

In school transmission rates are supercritical in the first case, and subcritical in the second. But the different 
number of initial cases, a value that is subject to errors of various order of magnitudes and is quite arbitrarily 
assigned in the various studies, makes the two trajectory basically indistinguishable.

In a retrospective study one is forced to assign an initial value to the number of infected, and then estimate 
other parameters from the observations. Both scenarios are then plausible, depending on the chosen initial values. 
As Fig. 3b confirms, the research would conclude in the first scenario, that closing schools would have been basi-
cally useless. In the second scenario, however, the opposite conclusion would be drawn, as illustrated by Fig. 3c.

Conclusions
We have identified the presence of different phases for the effect of the in-school transmission rates on the course 
of a Covid-19 like epidemic.

Such results provide evidence in favor of keeping the schools open when specific epidemiological conditions 
are met and preventive measures are respected: the key condition is that the transmission rate in schools must be 
kept below a certain threshold that depends on the situation. As the threshold might not be easily determinable 
nor achievable, however, there can be contingent motives for school closure if policy makers, as it happened in 
most locations during the Covid-19 pandemic, are not aware or able to exploit the critical threshold. Awareness 
about the critical threshold can in any case suggest directions for the analysis of locally adapted models, data 
collection and exploration, and public release, and can give policy makers sound instruments for containing 
school closures.

In addition, the presence of a threshold is the likely cause of the opposing views that many studies have 
presented, some asserting almost irrelevance of school opening, and others pointing to its significant effects. 
Minimal changes in the overall conditions, or in values of the estimated parameters may determine one phase 
of the other; this may result in different attributions of responsibility to school opening, and creates the pos-
sibility of an arbitrary identification of the phase due to parameter estimation in the presence of very noisy data.

(7)first scenario: β11 = 10,β2,2 = 2, I2(0) = 3× 10−5

(8)second scenario: β11 = 6,β2,2 = 2.57, I2(0) = 5.5× 10−6.

Figure 4.  Derivative of the largest eigenvalue of A = (aij) with respect to a11 , with a12 = a21 = 0.5 and a22 = 8.
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Finally, we have seen that with a vaccination campaign being carried out largely for out-of-school individu-
als only, there is a threshold below which schools can still be opened; it corresponds, however, to an internal 
reproduction number that would eradicate the virus if schools were completely isolated. As measure to achieve 
such a low reproduction number are highly demanding, this level of containment seems to be sustainable for 
brief periods only, after which vaccination for children becomes the only viable possibility to return to normality.

Limitations, related and future works
Although the presence of a phase transition in the effect of the school transmission rate in the overall course of 
the epidemic seems to have been unnoticed so far in the literature, there are many works related to ours.

For a different perspective, focused on the sustainability of opening from the point of containing the number 
of cases of a single school, one can  see25.

Compartmental models with two subpopulations are discussed in many works in general  terms28; and then 
applied to the school opening issue in data driven  analyses7,11,16,17: we discuss the relation of some of these results 
with our work in “Other case studies” in "Methods" section.

Finally, other  papers6–8 make a purely statistical evaluation of the effect of school opening (see  “Other case 
studies” in "Methods" section).

Our work has several limitations. Our results are based on abstract, simplified models, and, although they 
seem to be stable when more detailed features are included, we cannot ensure that they always take place in 
more complex models.

Even when a critical value can be estimated, ensuring that the transmission rates are below their relative 
thresholds is clearly a matter of distancing, testing, and other  measures29. We do not elaborate here on how to 
develop a set of possible interventions, and on how to measure their success in containing the transmission 
rates in schools.

There are several directions for future work and research.
From the practical point of view, our analysis needs to be adapted to local and contingent situations adding 

specific details to the model, and collecting and analyzing appropriate data before becoming a viable tool for 
policy makers.

From the mathematical point of view, it would be interesting to ascertain the presence and behavior of the 
phase transition in the non linear models. Also, it would be relevant to explore the analogous phenomenon 
when the cross terms are not small with respect to those in the main diagonal, a situation which could explain 
the dynamics of vaccinated vs. unvaccinated population. Finally, one could evaluate the presence of similar 
phenomena with more than two subpopulations, in order to detect which combinations drive the pandemic, 
and which internal transmissions can be disregarded up to a certain threshold.

Methods
Compartmental models. In order to evaluate the effect of school opening on the course of the epi-
demic we use compartmental models, as they proved capable of predicting the courses of outbreaks in many 
 instances30. We start with the simplest SIR model with unit total population, and two subpopulations i = 1, 2 
where Subpopulation 1 refers to students (in-school) while Subpopulation 2 includes the remaining population 
including teachers and staff. The size of Subpopulation i is ni ; we indicate by Si , Ii ,Ri the susceptible, infected, 
and recovered individuals, respectively, within Subpopulation i. By definition, Subpopulations 1 and 2 are com-
plementary, so we avoid any double counting. The transmission rate from Subpopulation j to i is indicated by βij . 
More features are added later on.

We make a sequence of theoretical claims concerning the effect of the contact rate in the subclass representing 
schools. Most of the claims are verified in suitable linear approximations of the SIR model; each result is then 
complemented with numerical simulations.

The linear approximations give very close approximations of the non linear model as in the entire course 
of the current COVID-19 pandemic the proportion of active cases I = I1 + I2 is kept relatively low by either 
containment measures, lockdowns, or vaccinations: until the time of writing this work the average, taken from 
publicly available data, of the maximum number of active cases in the most exposed countries is around 1%, 

Figure 5.  The largest eigenvalue of A = (aij) as function of a11 , with a12 = a21 = 0.5 and a22 = 8.
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with an SD of about 0.8%. These values are compatible with our assumed hypothesis, and numbers were much 
lower for most of the time in most countries.

SIR model with two subclasses. We first consider the simplest model of interest, represented in terms 
of a coupled SIR system

Notice that the recovery rate is the same in the two subpopulations as for COVID-19 they seem to depend on 
the severity of the infection but not directly on  age31–33, and time is rescaled so that it is equal to 1. This makes 
time unit of about 10–14  days34. In addition, β12,β21 are generally smaller than β11,β2228,35. We intend to compare 
the attack rates �S(β11) = S1(ta)− S1(tb)+ S2(ta)− S2(tb) between two suitable times ta < tb , as function of 
the in-school transmission rate β11 ; here β11 = 0 corresponds to schools being closed, and β11 > 0 corresponds 
to schools being open with varying degrees of physical distancing and other containment measures in place.

Parameter calibration. Alongside the rigorous proofs for the linearized models, we perform several simu-
lations with realistic parameters, which are calibrated as follows.

Time is rescaled so that γ = 1 , a unit being approximately 10 days.
To calibrate transmission rates βi,j , we start from the ratio of contact rates as can be extracted from Prem 

et al.35. This is a pre Covid-19 accurate study of contact rates, and we assume that the ratios of contact rates has 
remained approximately the same during the pandemic, with absolute values modified by awareness and meas-
ures. There are no equivalent studies for the pandemic period, and the values identified in some local  studies28,36 
are in agreement with what we find.

According to this scheme, the cross transmissions rates β12 and β21 are calibrated in relation to β22 ; Soy-
oung et al. estimate β12/β22 ≈ 7/47 in the early times of the  pandemic28. A slightly larger value of this ratio is 
obtained by considering the typical social  contacts35,36, in which the cross contacts are about 1/2 of the contacts 
among adults, and the reduced susceptibility of children is estimated to be about 1/2 that of  adults37: this gives 
β12/β22 ≈ 1/4 . As our considerations work better with β12/β22 small, we use the last more conservative estimate. 
For β11 , it can be extracted from Prem et al.35 that β11 ≈ 6β22  can be taken as first reference value, to be later 
varied according to school opening policies.

Using the reproduction matrix A in (12) below, one can write its largest eigenvalue in terms of β22 . Since  the 
largest eigenvalue equals Rt , the overall reproduction number of the pandemic, one can use the estimated values of 
Rt to get an evaluation of β22 . With the reference values  above, it turns out that in fact β22 ≈ Rt ; this is another indi-
cation of the phase transition phenomenon, as for the above reference values  the school transmission rate is almost 
irrelevant. For the outbreak and vaccination scenarios we take β22 ≈ Rt ≈ 2 , and for the lockdown β22 ≈ Rt ≈ 1.

Linear approximation during the initial phase of an outbreak or new strain upsurge. A suitable 
linear approximation for the initial period of the first outbreak, or of any of the possible infection waves taking 
place after a successful lockdown, is the following

from which we extract the second and the fourth equations for I1, I2 . In vector form we have

where Id is the 2× 2 identity matrix and

is the reproduction  matrix38.

Lemma A.1 The solution of (11) is

where �max, �min are the positive eigenvalues of the matrix A, and �W > 0.

The proof is in Appendix A.

(9)





S′1 = −β11S1I1 − β12S1I2
I ′1 = β11S1I1 + β12S1I2 − I1
R′
1 = I1

S′2 = −β21S2I1 − β22S2I2
I ′2 = β21S2I1 + β22S2I2 − I2
R′
2 = I2

(10)





S′1 = −β11S1(0)I1 − β12S1(0)I2
I ′1 = (β11S1(0)− 1)I1 + β12S1(0)I2
S′2 = −β21S2(0)I1 − β22S2(0)I2
I ′2 = β21S2(0)I1 + (β22S2(0)− 1)I2

(11)�I ′ = (A− Id)�I

(12)A =
[
a11 a12
a21 a22

]
:=

[
β11S1(0) β12S1(0)
β21S2(0) β22S2(0)

]

(13)�I = e−t eAt�I0 = e−t(e�maxt �W + e�mint �V)
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The largest eigenvalue of A is the overall reproduction number R038, and the early evolution of the epidemics 
depends on the size of �max , and on the spectral gap �max − �min . This is the so-called slaved phase, in which the 
active cases of both populations are both lead by approximately the same exponential  growth38.

Dependence of the largest eigenvalue of 2× 2 matrices from the first entry. To get a first indica-
tion of a sudden change in the effect of the in-school transmission rate β11 , we study the behavior of the largest 
eigenvalue of a quite general 2× 2 matrix as function of its first entry. Let

then the following estimate holds:

Theorem A.2 Let A = (aij) be a 2× 2 matrix with positive entries and let �max(a11) > �min(a11) be its eigenvalues. 
We have that for any α ∈

(
0, a22√

a21a12

)

The proof is in Appendix B. Figure 4 shows an example of the change in derivatives.
As a consequence, if, for instance, α = 2 as we will assume from now on, then

Simple calculations in Appendix D show then that if 0 < a11 ≤ a22 − α
√
a12a21  , which is realistic since 

a222 >> a12a21,

The change in the largest eigenvalue is illustrated in Fig. 5.

A phase transition for school opening during an outbreak. We now want to see a similar behavior 
in the active cases I1 + I2 in the coupled SIR model (9). Let

and denote by �Wi = (Wi
1,W

i
2) and �Vi = (Vi

1,V
i
2) , for i = 0, 1, 2 , the vectors �W  and �V  in (13) corresponding 

to �0, �1, �2 , and �̃0, �̃1, �̃2 , respectively. Note that, without loss of generality, we can assume that Vi
1 > 0 , for 

i = 0, 1, 2.
Let �I�j (t), j = 0, 1, 2 denote the infected at time t corresponding to eigenvalues �j , j = 0, 1, 2 respectively.

Corollary A.3 For all k > 0 , there exists Tk > 0 such that for all t ≥ Tk

The proof is in Appendix C. This identifies a22 as the critical point for the effect of the coefficient a11 on the 
largest eigenvalue of A; by the relations in (12), the critical point for the effect of β11 on the overall pandemic is 
then β∗

11 = β22S2(0)/S1(0).

Containment of the effect of school opening during an outbreak. For i = 1, 2 and some t > 0 , let

Integrating the first and third equations of (10), we get

On the other hand, integrating the second and fourth equations of (10) in [0, t] , we get

�
′(a11) :=

d�max

da11

(14)

�
′
max(a22 + α

√
a12a21)− �

′
max(a22 − α

√
a12a21)

�′max(a22 − α
√
a12a21)− �′max(0)

=: �1

�0

= �1

�2

:= �
′
max(a22 + α

√
a12a21)− �

′
max(a22 − α

√
a12a21)

�′max(2a22)− �′max(a22 + α
√
a12a21)

≥ 2α√
4+ α2 − α

�1 ≥ 4.8�0 = 4.8�2.

�max(2a22)− �max(0) ≥ 4.8(�max(a11)− �max(0)).

�max(0) = �0, �min(0) = �̃0

�max(a22 − α
√
a12a21) = �1, �min(a22 − α

√
a12a21) = �̃1

�max(a22 + α
√
a12a21) = �2, �min(a22 + α

√
a12a21) = �̃2.

|�I�2(t)− �I�0(t)| ≥ k|�I�1(t)− �I�0(t)|.

(15)Ii =
∫ t

0
Ii(τ )dτ .

(16)

�Si =Si(0)− Si(t) = −
∫ t

0
S′i(τ )dτ

=
∫ t

0
(I ′i (τ )+ Ii(τ ))dτ

=Ii(t)− Ii(0)+ Ii .
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whose solution is

The attack rate is then

Notice that, to the contrary of what happens in the next section for the lockdown case, the value of β11 for 
which the denominator is zero does not correspond to a singularity: this is to be expected as it differs from β∗

11 in 
(1), and we confirmed it numerically.

Taking �I as in (13), we get an explicit expression for �S(β11) . For a fixed ε , representing the allowed fractional 
increment in the number of cases when the school is open, the allowed bound for β11 is given by

With the parameters used in “There is a phase transition in the effect of school transmissionrates on the 
overall epidemic course during anoutbreak (or a variant upsurge)” in "Results" section, this gives the mentioned 
value β11 ≤ 6.344.

SIR for lockdown and its linear approximation. System (9) is suitable to model lockdown as well, 
provided that the reproduction rate, which is the largest eigenvalue of (12), satisfies R0 < 1 , and that initial 
conditions taken at time t have a more substantial number of cases and recovered. A linear approximation of the 
system is possible as the overall number of active cases is never allowed to grow beyond relatively small fractions 
of the population, never more than 1% in most countries.

With these conditions, a linear approximation is

with S1(t)+ S2(t)+ I1(t)+ I2(t) < 1.
F i g u r e   6  i l l u s t r a t e s  v i a  a  s i m u l a t i o n  f o r 

S1(t) = 0.15 < 0.2, S2(t) = 0.7 < 0.8, I1(t) = I2(t) = 10−2,β12 = β21 = 0.25,β22 = 1 , and β11 = 0, 2, 4 , the 
closeness of the linear approximation. The total number of cases simulated from the differential system and 
the linear approximation are almost indistinguishable in the figure for all values of β11 ; the same holds for each 
subpopulation.

Allowed level of school transmission for a successful lockdown. Let us assume that a lockdown is 
applied from time t to t̃ that successfully eradicates the virus; hence with Ii(t̃) ≈ 0 for i = 1, 2 . From the mathe-
matical point of view, we can take the eradication time to be +∞ as the dynamical system reaches an equilibrium 
with no active cases and does not change afterwards. Hence we consider �Si = Si(∞)− Si(t̃) ≈ Si(t)− Si(t̃) . 
Formulas (16) -(19) apply, with 0 and t replaced by t and ∞ , respectively; the quantities Ii ,βi,j , for i, j = 1, 2 , 
decorated by an overscore; and I1(∞) = I2(∞) = 0.

The denominator of (19) with the above changes is singular for

The numerator at β11 = β
∗
11 , on the other hand, is not identically zero; this is seen by substituting the value 

(22) for β11 in (19), with the adaptations listed above: after some algebra, carried out in  MathematicaTM, the 
numerator is seen to equal

(17)
{
I1(t)− I1(0) = (β11S1(0)− 1)I1 + β12S1(0)I2
I2(t)− I2(0) = β21S2(0)I1 + (β22S2(0)− 1)I2,

(18)

{
I1 = − I1(0)−I1(t)+β12(I2(0)−I2(t))S1(0)−β22(I1(0)−I1(t))S2(0)

−1+β11S1(0)(1−β22S2(0))+β22S2(0)+β12β21S1(0)S2(0)

I2 = − I2(0)−I2(t)−β11(I2(0)−I2(t))S1(0)+β21(I1(0)−I1(t))S2(0)
−1+β11S1(0)(1−β22S2(0))+β22S2(0)+β12β21S1(0)S2(0)

.

(19)

A(β11) :=
1

S1(0)+ S2(0)
(�S1 +�S2)

= 1

S1(0)+ S2(0)
(I1(t)− I1(0)+ I1 + I2(t)− I2(0)+ I2)

= 1

S1(0)+ S2(0)

{(
β11β22S1(0)S2(0)

− β12β21S1(0)S2(0)
)[
I1(t)− I1(0)+ I2(t)− I2(0)

]

+
(
β21S2(0)+ β11S1(0)

)[
I1(0)− I1(t)

]

+
(
β12S1(0)+ β22S2(0)

)[
I2(0)− I2(t)

]}

×
{
1− β11S1(0)(1− β22S2(0))− β22S2(0)− β12β21S1(0)S2(0)

}−1

.

(20)A(β11)/A(0) ≤ 1+ ε.

(21)





I ′1 = β11S1(t)I1 + β12S1(t)I2 − I1
I ′2 = β21S2(t)I1 + β22S2(t)I2 − I2
I1(t), I2(t) > 0,

(22)β
∗
11 =

1

S1(t)
− β12β21S2(t)

(1− β22S2(t))
.
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the numerical value is computed with the values indicated in “The phase transition is preserved under lock-
down, albeit with a different critical point” in "Results" section, namely that

and choosing as initial condition at t = t̄ = 5 the total number of susceptible and infected obtained from the 
outbreak scenario, that is

This indicates that the value in (22) is where the linear approximation breaks down, indicating a transition 
of phases at β∗

11 ≈ 4.7630.
In addition, if we require that school opening does not affect more than a certain percentage the overall 

incidence proportion by asking that

(23)
(1+ β21S2(t))(β12I2(t)S1(t)+ I1(t)(1− β22S2(t)))

(1− β22S2(t))
≈ −1.6× 10−5;

(24)β12 = β21 = 0.25,β22 = 1, ε = 0.3

(25)S1(t) ≈ 0.1996, S2(t) ≈ 0.7981, I1(t) ≈ 1.601× 10−4, I2(t) ≈ 7.9555× 10−4.

A(β11) ≤ (1+ ε)A(0)

Figure 6.  Effectiveness of the linear approximation of the SIR model for lockdown; the figure shows the total 
active cases numerically simulated with realistic parameters and varying β11 : in each test, simulations from the 
differential system and from its linear approximation are indistinguishable.

Figure 7.  Total number of cases at resolution of outbreak for varying values of β11 and β11.
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for some ε > 0 , then after some algebra, carried out in  MathematicaTM,we get that

With the values as in (24) and (25) we get F(0.3) ≈ 2.9944.
We compare this expression with the bound in (2), in some numerical examples.

A complete outbreak‑lockdown cycle. A confirmation of the behavior of the effect of school opening 
on one outbreak-lockdown cycle is shown here via a direct simulation.

Continuing the numerical example of “The phase transition is preserved under lock-down, albeit with a differ-
ent critical point” in "Results" section, suppose a lockdown is imposed starting from t = 5 , and a 50% reduction 
is achieved in the transmission rates different from β11 ; Fig. 7 shows that as the outbreak is resolved after the 
lockdown, the cumulative number of cases is close to that at β11 = 0 when β11 and β11 are close enough to the 
origin, and sharply deviates otherwise.

SIR with two subpopulations and vaccination. Adult vaccination can be analyzed with a SVIR model, 
in which susceptible and recovered of the adult population are vaccinated at a constant rate v39,40:

 Here, V2 are the vaccinated in the second population, and β̃♯
22 is the transmission rate of the virus for vaccinated 

individuals. According to data related to the efficacy of vaccines, we can approximately take β̃♯
22 = 0.1× β̃22.

It turns out, however, that we can make a great simplification to (27) in order to ease the mathematical analysis 
of the upcoming sections. Instead of assuming, as realistic, that individuals, who are vaccinated at rate v , are 
still partly susceptible, we can introduce a fictitious smaller vaccination rate v which gives complete immunity. 
Consider, in fact, the system

It turns out that if v = v̄(1− β̃
♯
22

β̃22
) , and β̃♯

22 and I(t) are small (for all t), then the curves of infected 
I(t) = I1(t)+ I2(t) in (27) and in (28) are very close.

We verify this perhaps slightly counter intuitive statement via simulations for the coupled system, and in a 
Lemma in Appendix E stated for a single population for simplicity. Simulating the total number of infected I(t) 
in (27) and in (28), starting at t = 0 for simplicity, we see an almost perfect overlap in Fig. 8a. For comparison, 
we also simulated the case of β̃♯

22 = 0.5× β̃22 in Fig. 8b, which now shows a substantial divergence.
For these reasons, we adopt from now on model (28) to analyze vaccination.

A linear approximation to SIR with vaccination. In order to analyze (28) we develop a lineariza-
tion. Notice that in the linear approximation for the initial phase of an SIR model, the terms β̃i1SiI1 + β̃i2SiI2 
are taken to be zero for both i = 1, 2 . With the same assumption in the vaccination case, we get the equation 
S′2 = −vS2 : we therefore use the solution to this equation as linear approximation of S2(t) . This leads to the fol-
lowing linearization

(26)

β11 ≤ F(ε) =
[
ε

(
− 1+ β22S2(t)+ β12β21S1(t)S2(t)

)(
β12I2(t)S1(t)

+ β21I1(t)S2(t)+ β22I2(t)S2(t)+ β12β21I1(t)S1(t)S2(t)

+ β12β21I2(t)S1(t)S2(t)

)]
×

{
S1(t)

[
− I1(t)− β12I2(t)S1(t)

− εβ12I2(t)S1(t)− β21I1(t)S2(t)+ 2β22I1(t)S2(t)− εβ21I1(t)S2(t)

− εβ22I2(t)S2(t)− εβ12β21I1(t)S1(t)S2(t)− β12β21I2(t)S1(t)S2(t)

+ β12β22I2(t)S1(t)S2(t)− εβ12β21I2(t)S1(t)S2(t)

+ εβ12β22I2(t)S1(t)S2(t)+ β21β22I1(t)S
2
2(t)− β

2

22I1(t)S
2
2(t)

+ εβ21β22I1(t)S
2
2(t)+ εβ

2

22I2(t)S
2
2(t)

+ εβ12β21β22I1(t)S1(t)S
2
2(t)+ εβ12β21β22I2(t)S1(t)S

2
2(t)

]}−1

(27)





S′1 = −�β11S1I1 − �β12S1I2
I ′1 = �β11S1I1 + �β12S1I2 − I1
R′
1 = I1

S′2 = −�β21S2I1 − �β22S2I2 − vS2
V ′
2 = vS2 − �β♯

22V2I2 + vR2
I ′2 = �β21S2I1 + �β22S2I2 − I2 + �β♯

22V2I2
R′
2 = I2 − vR2,

(28)





S′1 = −�β11S1I1 − �β12S1I2
I ′1 = �β11S1I1 + �β12S1I2 − I1
R′
1 = I1

S′2 = −�β21S2I1 − �β22S2I2 − vS2
I ′2 = �β21S2I1 + �β22S2I2 − I2
R′
2 = I2 + vS2.
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From (29) we extract

Figure 9 shows one instance of the effectiveness of the linear approximation with realistic parameters.

Evidence of a phase transition in β̃
11

 with critical point 1/S
1
(0) during vaccination. We proceed 

by using the linear approximation to evaluate the attack rates as function of β̃11 ; in particular, we focus on the 
one for the external Population 2. Our calculation is done recursively, as shown in Appendix F. The following 
theorem summarizes the calculation.

Theorem A.4 Assume that I1, I2 are integrable in [0,+∞) and let

for k = 0, 1, . . . . We have that

The proof is in Appendix F, where we also give an explicit expression for Ĩ2 in terms of hypergeometric 
functions.

(29)





S′1 = −�β11S1(0)I1 − �β12S1(0)I2
I ′1 = �β11S1(0)I1 + �β12S1(0)I2 − I1
R′
1 = I1

S′2 = −�β21S2(0)e−vt I1 − �β22S2(0)e−vt I2 − vS2
I ′2 = �β21S2(0)e−vt I1 + �β22S2(0)e−vt I2 − I2
R′
2 = I2 + vS2.

(30)
{
I ′1 = β̃11S1(0)I1 + β̃12S1(0)I2 − I1
I ′2 = β̃21S2(0)e

−vt I1 + β̃22S2(0)e
−vt I2 − I2.

(31)Ĩ1 =Ĩ1(β̃11) =
∫ +∞

0
I1(t)dt, Ĩ2 = Ĩ2(β̃11) =

∫ +∞

0
I2(t)dt,

(32)pk+1 =I2(0)+
β̃21S2(0)I1(0)

(k + 1)v − β̃11S1(0)+ 1

(33)qk+1 =β̃22S2(0)+
β̃12β̃21S1(0)S2(0))

(k + 1)v − β̃11S1(0)+ 1

(34)Ĩ1 =Ĩ1(β̃11) =
β̃12S1(0)Ĩ2 + I1(0)

1− β̃11S1(0)

(35)Ĩ2 =Ĩ2(β̃11) =
∞∑

i=1

pi

( i−1∏

r=1

qr

rv + 1

)

(a) Total infected given by the cou-
pled SVIR model and the coupled SIR
model with unsusceptible vaccinated.
We have used the following parame-
ters: β11 = 3, β12 = β21 = 0.5, β22 =
2, β�

22 = 0.1 β22, and v = 0.1.

(b) Total infected given by the cou-
pled SVIR model and the coupled SIR
model with unsusceptible vaccinated.
We have used the following parame-
ters: β11 = 3, β12 = β21 = 0.5, β22 =
2, β�

22 = 0.5 β22, and v = 0.1.

Figure 8.  Comparison of the coupled SVIR model with the coupled SIR model with unsusceptible vaccinated. 
Initial conditions are those reported in “Simulations of the phase transition during vaccination” section.
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To compute the attack rate for the vaccination case observe that the change in active cases is given by I ′i , and 
the change in recovered cases is Ii , i = 1, 2 ; the change in infected is then I ′ + I , and the attack rate is

The attack rate A is divergent as β̃11 approaches β̃∗
11 = 1/S1(0) , see (34), which is an indication that the linear 

approximation breaks down, and that this value is likely to be the critical point.
In order to contain the increase in the total cases by no more than a proportion ε we need β̃11 satisfying

Estimate of the peak time during vaccination. A further evidence of the critical point is obtained by 
an estimate of the peak time of the infection from (30). Assuming that the active cases in the two subpopulations 
peak at approximately the same time t , we set I ′1(t) = I ′2(t) = 0 . The solution is

Hence, the peak time also diverges at β̃11 = β̃∗
11.

Simulations of the phase transition during vaccination. With the realistic values of the parameters 
used previously,

and

we have

Figure 1 for t > 18 illustrates a simulation of the differential system, where it is seen that β̃∗
11 = 5.02836 is the 

critical point for the influence of school opening on the overall epidemic.
To achieve a sensible containment take ε = 0.3 , in which case (37) gives β̃11 < 3.03111 , a bound also visible 

in Fig. 1 for t > 18.

A SPIAR model. To illustrate how a phase transition mechanism also appears in more elaborate and realistic 
models, we develop and simulate one example.

We introduce the compartments of susceptibles Si (not subjected to any virus transmission), presymptomatic 
Pi (infected in incubation period), asymptomatic Ai (infected not showing symptoms after incubation), infected 

(36)
A(β̃11) =

1

S1(0)+ S2(0))

∫ ∞

0
(I ′1 + I1 + I ′2 + I2)dt

= 1

S1(0)+ S2(0))
(−I1(0)+ Ĩ1 − I2(0)+ Ĩ2)

(37)A(β̃11) ≤ A(0)(1+ ε).

(38)t = 1

v
log

−β̃12S1(0)β̃21S2(0)+ β̃22S2(0)(1− β̃11)S1(0)

1− β̃11S1(0)
.

S1(0) = 0.198872, S2(0) = 0.794451, I1(0) = 1.97281× 10−5, I2(0) = 9.55298× 10−5

β̃12 = β̃21 = 0.5, β̃22 = 2, v = 0.1,

β̃∗
11 = 1/S1(0) = 5.02836.

Figure 9.  Effectiveness of the linear approximation of the SIR model with vaccination; the figure shows the 
total active cases numerically simulated with realistic parameters, β̃11 = 3, β̃22 = 2 : simulations from the 
differential system and from its linear approximation are indistinguishable. Total active cases are small because 
the vaccinated period is assumed to start at the end of the lock-down period.
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Ii and recovered Ri for i = 1, 2 corresponding to the two subpopulations. A corresponding system could read 
as follows:

where the parameters s, ξ represent the fractions of asymptomatic encountered at school and of undetected 
infected individuals, respectively; ε1 , ε2 are the fractions of symptomatic in Subclass 1 and Subclass 2, respec-
tively; κ the rate of exit from latency period. The recovery rate γ is normalized to 1 as before, and v = 0 if there 
is no ongoing vaccination.

Parameters have been calibrated as given in Table 1 following standard estimations appearing in literature and 
data  studies37,41,42 of 2020 and an estimation of the percentage of asymptomatic and infected  people43.

Figure 10 shows how phase transitions appear also in the SPIAR model. Here, the active cases are given by the 
sum P(t)+ I(t)+ A(t) := P1(t)+ I1(t)+ A1(t)+ P2(t)+ I2(t)+ A2(t) , and three scenarios are considered, as 
before: outbreak, lockdown, and vaccination. In Fig. 10, the cyan curve corresponds to closed schools, while the 
green one is a subcritical pattern; the red curves, instead, show the risk that the pandemic spirals out of control 
because of insufficiently controlled school opening.

Other case studies. A survey of many detailed, data driven studies related to the effect of school opening 
during the pandemic shows traces of phases transition in all of them.

España et al. use a detailed compartmental model calibrated on mortality and other estimated and observed 
data in Bogotà, Colombia, during the whole  202017. The study develops various scenarios of school reopening, 
and evaluates its impact; the phase transition described in our work appears clearly in Figs. 4 and 5 their: one can 
see that up to 50% capacity the effect of opening schools is almost negligible, while it becomes substantial above 
75% capacity. This leads to the conclusion that there has to be a critical point between these values.

The appearance of a phase transition phenomenon in Rozhnova et al.12 has been discussed at length in “Evi-
dence of phase transition appears in several datadriven case studies” in "Discussion" section.

Yuan et al. use a detailed compartmental model and data from the second semester 2020 in Toronto, an out-
break context, to estimate the likely impact of school opening, also discussed in “Evidence of phase transition 
appears in several datadriven case studies” section 16.

Di Domenico at al. analyse French data for late Spring 2020 in order to predict the effect of various forms of 
school reopening after the end of the lockdown; the paper only makes predictions for short periods (see their 

dS1

dt
= − S1(β11(P1 + sA1)+ β12(P2 + A2 + ξ I2))

dP1

dt
= S1(β11(P1 + sA1)+ β12(P2 + A2 + ξ I2))− κP1

dI1

dt
= ε1κP1 − I1

dA1

dt
= (1− ε1)κP1 − A1

dR1

dt
= (I1 + A1)

dS2

dt
= − S2(β21(P1 + A1 + ξ I1)+ β22(I2 + P2 + A2)− v)

dP2

dt
= S2(β21(P1 + A1 + ξ I1)+ β22(I2 + P2 + A2))− κP2

dI2

dt
= ε2κP2 − I2

dA2

dt
= (1− ε2)κP2 − A2

dR2

dt
= (I2 + A2)+ vS2

Table 1.  Recap of the model parameters and their selected values for each scenario in SPIAR model.

Parameter Outbreak Lockdown Vaccination

β22 2 0.5 1.5

β12 = β21 0.25 0.1 0.25

s 0.9 0.9 0.9

ξ 0.3 0.3 0.3

k 1 1 1

ε1 0.75 0.75 0.75

ε2 0.9 0.9 0.9

v 0 0 0.05
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Figs. 3 and 5), and the exact details of the contacts and transmission rates, which are partially estimated and 
partly obtained from previous measurements, are not provided; still, one can see, especially in their Fig. 5, that 
the transmission rates are supercritical, and school opening determines a sharp increase in the overall epidemic 
 spreading11.

Among the statistical papers, Iwata et al. perform a Time-series analyses using the Bayesian method on Japa-
nese data collected during the initial lockdown, and suggests that school closure did not appear to decrease the 
incidence of COVID-196. Matzinger et al., on the other hand, use US data from the early stages of the outbreak, 
and regression analysis; the study finds empirical evidence suggesting that school closings dropped infection rate 
to half: we can interpret this as a sign that transmission rate in schools was supercritical at that  time10.

An analysis of data gathered by a surveillance of COVID-19 cases in students and staff after reopening of 
schools across England showed that in-school infections were much less influential than external  ones7; a study 
of Italian data from early Fall 2020, a period of low epidemic incidence, also showed very little transmission 
taking place in  schools8. These were typical examples of subcritical in-school transmission rate, probably due to 
the segmented or very controlled reopening of schools.

Appendix A: Proof of Lemma A.1
Proof Consider, first,

Then

with �H(0) = �I(0) := �I0 . Since

we get that

We, now, show that

where �W > 0 . Then, the assertion of the theorem, which is related to �I , follows immediately from (40).
The rate of growth in the initial exponential phase depends on the largest eigenvalue of the reproduction 

matrix (12). The result is an immediate consequence of the Perron Frobenius theorem. In fact, since all the ele-
ments of A are positive, then the eigenvector �ξ associated to �max has positive components while the eigenvector 
�η associated to �min has at least one negative component. Since

(39)�H = et�I .

d �H
dt

= et�I + et(A− Id)�I = etA�I = Aet�I = A �H

�H = eAt �H0 = eAt�I0

(40)�I = e−t eAt�I0.

(41)�H(t) = e�maxt �W + e�mint �V

Figure 10.  Daily cases for the three scenarios of outbreak, lockdown, and vaccination in an SPIAR model. In 
each case, there is critical values for the in-school transmission rate β11 , as for SIR model. Cyan curve is with 
closed schools, green for safe opening, orange for critical values, red for values above criticality.
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where

Then, if, for example, η1 < 0 we have η2 ≥ 0 hence α > 0 , that is

Analogously if η1 ≥ 0 , then η2 < 0 , hence α < 0 and again W1 > 0 and W2 > 0 .   �

Appendix B: Proof of Theorem A.2
Proof Note first that

since all the entries of the matrix A are positive. Therefore �max , �min > 0 . Furthermore

and

We have

and

Analogously

Finally

Observe now that

�H(t) = e�maxt

[
1
α
(η2ξ1I1(0)− η1ξ1I2(0))

1
α
(η2ξ2I1(0)− η1ξ2I2(0))

]
+ e�mint

[
1
α
(−η1ξ2I1(0)+ η1ξ1I2(0))

1
α
(−η2ξ2I1(0)+ η2ξ1I2(0))

]

α = det

[
ξ1 η1
ξ2 η2

]
= ξ1η2 − ξ2η1.

W1 =
1

α
(η2ξ1I1,0 − η1ξ1I2,0) > 0

W2 =
1

α
(η2ξ2I1,0 − η1ξ2I2,0) > 0.

�max,min = tr(A)±
√
(tr(A))2 − 4det(A)

2
= a11 + a22 ±

√
(a11 − a22)2 + 4a12a21

2

>
a11 + a22 ± (a11 − a22)

2
> 0,

�
′(a11) =

1

2

(
1+ a11 − a22√

(a11 − a22)2 + 4a21a12

)
> 0

�
′′(a11) =

2a12a21

((a11 − a22)2 + 4a21a12)3/2
> 0.

�
′
max(0) =

1

2

(
1− a22√

a222 + 4a12a21

)

�
′
max(a22 − α

√
a12a21) =

1

2

(
1− α

√
a12a21√

α2a12a21 + 4a12a21

)

= 1

2

(
1− α

√
a12a21√

α2 + 4
√
a12a21

)
= 1

2

(
1− α√

α2 + 4

)
.

�
′
max(a22 + α

√
a12a21) =

1

2

(
1+ α√

α2 + 4

)
.

�
′
max(2a22) =

1

2

(
1+ a22√

a222 + 4a12a21

)
.
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Also note that

Then

Since 
√
a222 + 4a12a21 > a22 and

and the claim follows.   �

Appendix C: Proof of Corollary A.3
Proof We show the result for �H , which is defined in (39). Then, the result for �I follows straightforwardly using 
(40).

Note that �2 > �1 > �0 and �̃2 > �̃1 > �̃0 . We proceed componentwise. Since V0
1 > 0,V2

1 > 0,

and noticing that

we get

and setting W
0
1+V0

1

W2
1

=: Q1 we can pick up t such that 1− Q1e
−√

2a12a21t > 1
2 that is e

√
2a12a21t > 2Q1 hence 

t > 1√
2a12a21

ln(2Q1) =: t01 so that finally

On the other hand

Using the fact that �̃1 − �1 < 0 , �0 − �1 < 0 and �̃0 − �1 < �̃1 − �1 < 0 , from (43) we get

�
′
max

�
a22 − α

√
a12a21

�
− �

′
max(0) =

1

2

�
1− α√

α2 + 4

�
− 1

2


1− a22�

a
2
22 + 4a12a21




− α

2
√
α2 + 4

+ a22

2

�
a
2
22 + 4a12a21

=�
′
max(2a22)− �

′
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�
a22 + α

√
a12a21

�
.

�
′
max(a22 + α

√
a12a21)− �

′
max(a22 − α

√
a12a21) =

α√
4+ α2

.

�
′
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′
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√
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√
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√
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√
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4+α2

− α

2
√
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+ a22

2
√
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=
2α

√
a222 + 4a12a21

a22
√
α2 + 4− α

√
a222 + 4a12a21

≥ 2α√
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Hence, by (42) and (44) we then get

that is

hence

Therefore, for t ≥ max(t01 , t
1
1 )

Analogously one can show that

for t ≥ max(t02 , t
1
2 ) , where

So picking up t > max(t01 , t
1
1 , t

0
2 , t

1
2 ) and using (40), the claim follows.   �

Appendix D: An application of Theorem A.2
Inequality (14) indicates a phase transition. In fact from now on let a222 >> a12a21 and α = 2 . In this case

and so by (14) we have

Given

and

if �′max(0) << �
′
max(a22 − α

√
a12a21)/4.8 then from (14)
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Therefore

Hence ∀0 < a11 ≤ a22 − α
√
a12a21 , we have

Last inequality tells us that closing schools starting from a reproduction number 2a22 is much more effective 
than starting from a reproduction number around a22.

Appendix E: Substitution of susceptible vaccinated with unsusceptible
To give a mathematical justification of our statement consider the two systems (28) and (27) in the case of a single 
population. Hence, we will compare the two systems

and

Lemma F.1 If v = v̄(1− β̃
♯
22

β̃22
) and β̃♯

22

∫
t

0
I(τ )dτ << 1 then indicating with Î and I the infected in the solutions of 

the two systems respectively, we have that

is small for all t.

Proof Consider the auxiliary system

where VS denote the vaccinated susceptible while VI the vaccinated immune.
It is easy to see that if one takes Ŝ = S∗ , V̂ = V∗

S + V∗
I  , Î = I∗ and R̂ = R∗ , these variables satisfy (46) with 

the term β̃♯
22 Î V̂  replaced by β̃22I∗V∗

S  ; as initially V∗
S ≈ µ(V∗

S + V∗
I ) = µV̂  , the variables Ŝ = S∗ , V̂ = V∗

S + V∗
I  , 

Î = I∗ and R̂ = R∗ satisfy (46) for small t, provided that µ = β̃
♯
22/β̃22 . For later times, the difference between V∗

S  
and µ(V∗

S + V∗
I ) = µV̂  is only due the term −β̃22I

∗V∗
S  ; then

which is small by assumption.
On the other hand, S = S∗ + V∗

S  , I = I∗ and R = R∗ + V∗
I  is solution of (47) provided that v = v̄(1− β̃

♯
22

β̃22
).

Then (48) follows as I = I∗ ≈ Î .   �

4.8

(
�max(a22 − α

√
a12a21)− �max(0)
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√
a21a12).
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�max(2a22)− �max(0) ≥ 4.8(�max(a11)− �max(0)).
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22 Î V̂

Î ′ = �β22ŜÎ − Î + �β♯
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R̂′ = Î

Ŝ(0) = Ŝ0, V̂(0) = 0, Î(0) = Î0, R̂(0) = R̂0.
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S′ = −�β22SI − vS

I ′ = �β22SI − I
R′ = I + vS
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(48)|Î(t)− I(t)|

(49)





S∗′ = −�β22S∗I∗ − vS∗

V∗
S
′ = vµS∗ − �β22I∗V∗

S − v̄(1− �β♯
22
�β22

)V∗
S

V∗
I
′ = v(1− µ)S∗ + v̄(1− �β♯

22
�β22

)V∗
S

I∗′ = �β22S∗I∗ + �β22I∗V∗
S − I∗

R∗′ = I∗
S(0) = S0, I(0) = I0,VS(0) = VI (0) = 0,R(0) = R0

|V∗
S − µV̂ | ≤

∫ t

0
β̃22I

∗V∗
S dτ ≤ β̃22µ max

0≤τ≤t
V∗
S (τ )

∫ t

0
I(τ )dτ ≤ β̃22

β̃
♯
22

β̃22

∫ t

0
I(τ )dτ ,



21

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3012  | https://doi.org/10.1038/s41598-022-06540-w

www.nature.com/scientificreports/

Appendix F: Proof of Theorem A.4
Proof Let

Integrating the first equation in (30), we have

which implies

This proves (34) (note that Ĩ(0)
1 ≡ Ĩ1).

Integrating the second equation in (30) we get

which implies

Substituting in (53), we get

which in turn implies

For each k ≥ 1 , it follows from (30), and integration by parts that

which yields

and
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(0)
2

(53)Ĩ
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(1)
2 + I2(0))+ I1(0)

1− β̃11S1(0)

(57)

Ĩ
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(1)
2 q1.

(58)

Ĩ
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that gives

This implies

From (57) and (60)

This proves (35) (note that Ĩ(0)
2 ≡ Ĩ2 ). Using Wolfram Mathematica for symbolic calculations, we provide an 

explicit expression for Ĩ(0)
2 (β̃11) in terms of special functions

where pFq(�a; �b; z) is the generalized hypergeometric  function44.   �
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Ĩ
(k)
2 =

∫ +∞

0
I2e

−kvtdt =

= I2(0)

kv
+

∫ +∞

0

(
β̃21S1(0)e

−vt I1 + β̃22S1(0)e
−vt I2 − I2

) e−kvt

kv
dt

= 1

kv

(
I2(0)+ β̃21S2(0)Ĩ
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(k+1)
2 ) = 1

kv + 1

(
I2(0)+ β̃21S2(0)

I1(0)+ β̃12S1(0)Ĩ
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