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of links in a food web from its number of

species, taking into account biological
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THE BIGGER PICTURE Understanding the functions, stability, resilience, and dynamics of ecological com-
munities requires the investigation of the structure of their networks of interactions. Perhaps the most chal-
lenging issue in the study of such networks is that the sampling of ecological interactions is a strenuous
task, and as a result, the availability of empirical data is limited. In this contribution we derive a realistic
and performant statistical model to predict the number of interactions in a foodweb from its number of spe-
cies. Our model could be used as a first-order approximation of network structure. As such, it makes the
large-scale study and comparison of ecological networks more accurate and accessible. For instance,
the vulnerability of food webs to perturbations could be explored using our model at the regional, continen-
tal, or global scales.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Predicting the number of interactions among species in a food web is an important task. These trophic inter-
actions underlie many ecological and evolutionary processes, ranging from biomass fluxes, ecosystem sta-
bility, resilience to extinction, and resistance against novel species. We investigate and compare several
ways to predict the number of interactions in foodwebs.We conclude that a simple beta-binomial model out-
performs other models, with the added desirable property of respecting biological constraints. We show how
this simple relationship gives rise to apredicteddistribution of several quantities related to link number in food
webs, including the scaling of network structure with space and the probability that a network will be stable.
INTRODUCTION

Community ecologists are fascinated by counting things. It is

therefore no surprise that early food web research paid so much

attention to counting species, counting trophic links, and uncover-

ing the relationship that binds them, and it is undeniable that these

inquiries kick-started what is now one of the most rapidly growing

fields of ecology.1 More species (S) always means more links (L);

this scaling is universal and appears both in observed food webs

and under purely neutral models of food web structure.2 In fact,

these numbers underlie most measures used to describe food

webs.3 The structure of a food web, in turn, is almost always

required to understand how the community functions, develops,

and responds tochanges,4,5 to the pointwhere someauthors sug-

gested that describing food webs was a necessity for community

ecology.6,7 To this end, a first step is to come up with an estimate
This is an open access article und
for the number of existing trophic links, through sampling or other-

wise. Although both L and S can be counted in nature, the mea-

surement of links is orders of magnitude more difficult than the

observationof species.8,9Asa result,wehave farmore information

about values of S. In fact, the distribution of species richness

across the world is probably the most frequently observed and

modeled ecological phenomenon. Therefore, if we can predict L

from S in an ecologically realistic way, we would be in a position

to make first-order approximations of food web structure at large

scales, even under our current data-limited regime.

Measures of food web structure react most strongly to a hand-

ful of important quantities. The first andmost straightforward is L,

the number of trophic links among species. This quantity can be

large, especially in species-rich habitats, but it cannot be arbi-

trarily large. It is clear to any observer of nature that of all imagin-

able trophic links, only a fraction actually occur. If an ecological
Patterns 1, 100079, October 9, 2020 ª 2020 The Authors. 1
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community contains S species, then the maximum number of

links in its food web is S2: a community of omnivorous cannibals.

This leads to the second quantity: a ratio called connectance,

defined by ecologists as Co = L=S2. Connectance has become

a fundamental quantity for nearly all other measures of food web

structure and dynamics.10 The third important quantity is another

ratio, linkage density, LD = L=S. This value represents the num-

ber of links added to the network for every additional species in

the ecological system. A closely related quantity is LD 3 2, which

is the average degree: the average number of species with which

any taxa is expected to interact, either as predator or prey. These

quantities capture ecologically important aspects of a network,

and all can be derived from the observation or prediction of L

links among S species.

Because L represents such a fundamental quantity, many pre-

dictive models have been considered over the years. Here, we

describe three popular approaches before describing our own

proposed model. Link-species scaling (LSSL)11 assumes that

all networks have the same average degree; that is,most species

should have the same number of links. Links are modeled as the

number of species times a constant:

LLSSL = b 3S; (Equation 1)

with bz2. This model imagines that every species added to a

community increases the number of links by 2—for example, an

animal that consumes one resource and is consumed by one

predator. This model started to show its deficiencies when data

on larger food webs became available: in these larger webs, L

increased faster than a linear function of S. Perhaps then all net-

works have the same connectance?12 In other words, a foodweb

is always equally filled, regardless of whether it has 5 or 5,000

species. Under the so-called constant connectance model, the

number of links is proportional to the richness squared,

LCC = b3S2; (Equation 2)

where b is a constant in �0;1½ representing the expected value of

connectance. The assumption of a scaling exponent of 2 can be

relaxed,12 so that L is not in direct proportion to the maximum

number of links:

LPL = b3Sa: (Equation 3)

This ‘‘power law’’ model can be parameterized in many ways,

including spatial scaling and species area relationships.13 It is

also a general case of the previous two models, encompassing

both link-speciesscaling (a = 1; bz2) and thestrictconstantcon-

nectance (a = 2; 0<b<1) depending on which parameters are

fixed. Power laws are very flexible, and indeed this function

matches empirical data well—so well that it is often treated as a

‘‘true’’ model that captures the scaling of link number with species

richness,14–16 and from which we should draw ecological infer-

ences about what shapes food webs. However, this approach is

limited, because the parameters of a power law relationship can

arise from many mechanisms and are difficult to reason about

ecologically.

However, the question of how informative parameters of a po-

wer law can be is moot. Indeed, both the general model and its

variants share an important shortcoming: they cannot be used
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for prediction while remaining within the bounds set by ecolog-

ical principles. This has two causes. First, models that are varia-

tions of Lzb3Sa have no constraints, with the exception of the

‘‘constant connectance’’ model, in which Lcc has a maximum

value of S2. However, we know that the number of links within

a food web is both lower and upper bounded:12,17 there can be

nomore thanS2 links, and there can be no fewer thanS� 1 links.

This minimum of S� 1 holds for food webs in which all species

interact—for example, a community of plants and herbivores

where no plants are inedible and all herbivores must eat.12

Numerous simple food webs could have this minimal number

of links—for example, a linear food chain wherein each trophic

level consists of a single species, each of which consumes

only the species below it; or a grazing herbivore that feeds on

every plant in a field. Thus the number of links is constrained

by ecological principles to be between S� 1 and S2, something

which no present model includes. Secondly, accurate predic-

tions of L from S are often difficult because of how parameters

are estimated. This is usually done using a Gaussian likelihood

for L, often after log transformation of both L and S. While this

approach ensures that predicted values of L are always positive,

it does nothing to ensure that they stay below S2 and above S�
1. Thus, a good model for L should meet these two needs: a

bounded expression for the average number of links as well as

a bounded distribution for its likelihood.

Here we suggest a new perspective for a model of L as a

function of S that respects ecological bounds and has a

bounded distribution of the likelihood. We include the minimum

constraint by modeling not the total number of links but the

number in excess of the minimum. We include the maximum

constraint in a similar fashion to the constant connectance

model described above by modeling the proportion of flexible

links realized in a community.
Interlude: Deriving a Process-Based Model for the
Number of Links
Based on the ecological constraints discussed earlier, we know

that the number of links L is an integer such that S� 1%L%S2.

Because we know that there are at least S� 1 links, there can

be at most S2 � ðS�1Þ links in excess of this quantity. The

S� 1 minimum links do not need to be modeled, because their

existence is guaranteed as a precondition of observing the

network. The question our model should address is, therefore,

how many of these S2 � ðS�1Þ ‘‘flexible’’ links are actually pre-

sent? A second key piece of information is that the presence of a

link can be viewed as the outcome of a discrete stochastic event,

with the alternative outcome that the link is absent. We assume

that all of these flexible links have the same chance of being real-

ized, which we call p. Then, if we aggregate across all possible

species pairs, the expected number of links is

LFL = p3
h
S2 �ðS� 1Þ

i
+ ðS� 1Þ; (Equation 4)

where p˛½0;1�. When p = 1, L is at its maximum (S2), and when

p= 0 it is at the minimum value (S� 1). We use the notation LFL to

represent that our model considers the number of ‘‘flexible’’ links

in a food web; that is, the number of links in excess of the mini-

mum but below the maximum.



Table 1. Comparison of the Four Different Models

Model Equation PSIS-LOO DELPD SEDELPD

Flexible links Equation 4 2,520.5 ± 44.4 0 0

Power law (Brose et al.13) Equation 3 2,564.3 ± 46.6 �21.9 6.5

Constant (Martinez12) Equation 2 2,811.0 ± 68.3 �145.3 21.1

Link-species scaling (Cohen and Briand11) Equation 1 39,840.1 ± 2,795.1 �18,659.8 1,381.7

The table shows Pareto-smoothed importance sampling values leave-one-out (PSIS-LOO) and their standard deviation. PSIS-LOO is similar to infor-

mation criteria in that smaller values indicate better predictive performance. Also shown are expected log predictive density (ELPD) differences to the

maximum for all models, along with the standard error (SE) of these differences.
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Because we assume that every flexible link is an independent

stochastic event with only two outcomes, we can follow recent

literature on probabilistic ecological networks18 and represent

them as independent Bernoulli trials with a probability of suc-

cess p. This approach does not capture ecological mecha-

nisms known to act on food webs,19 but rather captures that

any interaction is the outcome of many processes which can

overall be considered probabilistic events.20 The assumption

that flexible links can all be represented by Bernoulli events is

an appropriate trade-off between biological realism and

parameterization requirements.

Furthermore, the observation of L links in a food web repre-

sents an aggregation of S2 � ðS�1Þ such trials. If we then as-

sume that p is a constant for all links in a particular food web,

but may vary between food webs (a strong assumption that we

later show is actually more stringent than what data suggest),

we can model the distribution of links directly as a shifted

beta-binomial variable:

½LjS;m;f�=
 
S2 � ðS� 1Þ
L� ðS� 1Þ

!
B
�
L� ðS� 1Þ+mf;S2 � L+ ð1� mÞf

�
Bðmf; ð1� mÞf Þ ;

(Equation 5)

where B is the beta function, m is the average probability of a

flexible link being realized (i.e., the average value of p across

networks in the dataset), and f is the concentration around

this value. The support of this distribution is limited to only

ecologically realistic values of L: it has no probability mass

below S� 1 or above S2. This means that the problem of esti-

mating values for m and f is reduced to fitting the univariate dis-

tribution described in Equation 5. For a more detailed explana-

tion of the model derivation, fitting, and comparison, see

Experimental Procedures.

In this paper wewill compare our flexible linksmodel with three

previousmodels for L.We estimate parameters and compare the

performance of all models using open data from the mangal.io

networks database.21 This online, open-access database col-

lects published information on all kinds of ecological networks,

including 255 food webs detailing interactions between con-

sumers and resources.22 We use these data to show how our

flexible links model not only outperforms existing efforts at pre-

dicting the number of links but also has numerous desirable

properties from which novel insights about the structure of

food webs can be derived.
RESULTS AND DISCUSSION

Flexible Links Model Fits Better and Makes a Plausible
Range of Predictions
When fit to the datasets archived onmangal.io, all four models fit

without any problematic warnings (see Experimental Proced-

ures), while our model for flexible links outperformed previous

solutions to the problem of modeling L. The flexible links model,

whichwe fit via a beta-binomial observationmodel, had themost

favorable values of Pareto-smoothed importance sampling

values leave-one-out (PSIS-LOO) information criterion (Table 1)

and of expected log predictive density (ELPD), relative to the

three competing models which used a negative binomial obser-

vation model. PSIS serves as a guide to model selection;23 and

like other information criteria it approximates the error in cross-

validation predictions. Smaller values indicate a model that

makes better predictions. The calculation of PSIS-LOO can

also provide some clues about potential model fits; in our case

the algorithm suggested that the constant connectance model

was sensitive to extreme observations. The ELPD, on the other

hand, measures the predictive performance of the model; here,

higher values indicate more reliable predictions.23 This suggests

that the flexible links model will make the best predictions of L.

To be useful to ecologists, predictions of L must stay within

realistic boundaries determined by ecological principles. We

generated posterior predictions for all models and visualized

them against these constraints (Figure 1). The LSSL model un-

derestimates the number of links, especially in large networks:

its predictions were frequently lower than the minimum S� 1.

The constant connectance and power law models also made

predictions below this value, especially for small values of S.

The flexible links model made roughly the same predictions

but within ecologically realistic values.
TheFlexible LinksModelMakesRealistic Predictions for
Small Communities
Constraints on food web structure are especially important for

small communities. This is emphasized in Figure 2, which

shows that all models other than the flexible links model fail

to stay within realistic ecological constraints when S is small.

The link-species scaling model made around 29% of unrealis-

tic predictions of link numbers for every value of S

(3%S%750). The constant connectance and power law

models, on the other hand, also produced unrealistic results

but for small networks only: more than 20% were unrealistic

for networks comprising less than 12 and 7 species, respec-

tively. Only the flexible links model, by design, never failed
Patterns 1, 100079, October 9, 2020 3
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Figure 1. The Flexible LinksModel Fits Better

and Makes a Plausible Range of Predictions

The number of links is plotted as a function of spe-

cies richness obtained from the posterior distribu-

tions of (A) the link-species scaling, (B) the constant

connectance, (C) the power law, and (D) the flexible

links models. In each panel, the colored line repre-

sents the median predicted link number and the

gray areas cover the 78% and 97% percentile in-

tervals. Empirical data from the mangal.io database

are plotted in each panel (gray dots), as well as the

minimal S � 1 and maximal S2 number of links

(thinner and bolder black lines, respectively). Pre-

dictions from the flexible links model are always

plausible: they stay within these biological

boundaries.
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to predict numbers of links between S� 1 and S2. It must be

noted that unrealistic predictions are most common in the

shaded area of Figure 2, which represents 90% of the empir-

ical data we used to fit the model; therefore, it matters little

that models agree for large S, since there are virtually no

such networks observed.

Parameter Estimates for All Models
Although we did not use the same approach to parameter esti-

mation as previous authors, our approach to fitting these models

recovered parameter estimates that are broadly congruent with

previous works. We found a value of 2.2 for b of the LSSL model

(Table 2), which is close to the original value of approximately

2.11 Similarly, we found a value of 0.12 for b of the constant con-

nectance model, which was consistent with original estimates of

0.14.12 Finally, the parameter values we found for the power law

were also comparable with earlier estimates.13 All of these

models were fit with a negative binomial observation model,

which has an additional parameter, k, which is sometimes called

a ‘‘concentration’’ parameter. This value increases from the top

of our table to the bottom, in the same sequence as predictive

performance improves in Table 1. This indicates that the model

predictions are more concentrated around the mean predicted

by the model (Table 2, column 1).

Our parameter estimates for the flexible links model are ecolog-

icallymeaningful. For large communities, ourmodel shouldbehave

similarly to the constant connectancemodel and so it is no surprise
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that m was about 0.09, which is close to our

value of 0.12 for constant connectance. In

addition, we obtained a rather large value

of 24.3 for f, which shrinks the variance

around the mean of p to approximately

0.003 (varðpÞ = mð1 � mÞ=ð1 +fÞ). This indi-
cates that food webs are largely similar in

their probability of flexible links being real-

ized (thus showing how our previous

assumption that p might vary between

food webs to be more conservative than

strictly required). The flexible links model

also uses fewer parameters than the power

lawmodel and makes slightly better predic-

tions, which accounts for its superior perfor-
mance in model comparison (Table 1). In Figure S1, we compare

themaximumaposteriori (MAP)estimatesofourmodelparameters

with their maximum likelihood estimates.

Connectance and Linkage Density Can Be Derived from
a Model for Links
Of the three important quantities that describe networks (L, Co,

and LD), we have directly modeled L only. However, we can use

the parameter estimates from our model for L to parameterize a

distribution for connectance (L=S2) and linkage density (L=S). We

can derive this by noticing that Equation 4 can be rearranged to

show how Co and LD are linear transformations of p:

Co =
L

S2
=p

�
1�S� 1

S2

�
+
S� 1

S2
(Equation 6)

and

LD =
L

S
=p

�
S�S� 1

S

�
+
S� 1

S
: (Equation 7)

For food webs with many species, these equations simplify:
Equation 4 can be expressed as a second-degree polynomial,

LFL = p3 S2 + ð1 � pÞ3 S+ ðp � 1Þ, whose leading term is p3

S2. Therefore, when S is large, Equations 6 and 7 respectively

approachCo= L=S2zp and LD = L=SzpS. A study of Equations

6 and 7 also provides insight into the ecological interpretation of

the parameters in our equation. For example, Equation 7 implies
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Figure 2. Only the Flexible Links Model

Makes Realistic Predictions for Small Com-

munities

Here we show the proportion of posterior pre-

dictions from each of our four models that fall

outside ecologically realistic values. The proportion

of predictions in the correct range increases with

species richness for the constant connectance and

power law models. Shaded area shows the 5%,

50%, and 95% quantiles of the distribution of S,

demonstrating that many communities have

potentially incorrect predictions under previous

models.
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that adding n species should increase the linkage density by

approximately p3 n. The addition of 11 new species (p�1 ac-

cording to Table 2) should increase the linkage density in the

food web by roughly 1, meaning that each species in the original

network would be expected to develop two additional interac-

tions. Similarly, Equation 6 shows that whenS is large, we should

expect a connectance that is a constant. Thus, p has an inter-

esting ecological interpretation: it represents the average con-

nectance of networks large enough that the proportion ðS�1Þ=
S2 is negligible.

Applications of the Flexible Links Model to Key Food
Web Questions
Our model is generative, which is important and useful: we can

use this model to correctly generate predictions that look like

real data. This suggests that we can adapt themodel, using either

its parameters or predictions or both, to get a new perspective on

many questions in network ecology. Here, we show four possible

applications that we think are interesting, in that relying on our

model eliminates the need to speculate on the structure of net-

works or to introduce new hypotheses to account for it.

Probability Distributions for LD and Co
In a beta-binomial distribution, it is assumed that the prob-

ability of success p varies among groups of trials according

to a Betaðmf; ð1�mÞfÞ distribution. Since p has a beta distri-

bution, the linear transformations described by Equations 6

and 7 also describe beta distributions that have been shifted

and scaled according to the number of species S in a com-

munity. This shows that just as L must be within ecologically

meaningful bounds, Co (Equation 6) and LD (Equation 7)

must be as well. The connectance of a food web is

bounded by ðS�1Þ=S2 and 1, while the linkage density is

bounded by ðS�1Þ=S and S.

We can convert the beta distribution for p into one for Co by

replacing p with the transformation of Co as described above

(Equation 6), and rescaling by the new range:
½CojS;m;f� =

�
Co� S�1

S2

�mf�1

ð1� CoÞð1�mÞf�1

�
1� S�1

S2

�f�1

3Bðmf; ð1� mÞfÞ
: (Equation 8)

Similarly, we can convert the distribution for p into one for LD
by replacing pwith the transformation that gives LD (Equation 7):

½LDjS;m;f� =

�
LD � S�1

S

�mf�1

ð1� LDÞð1�mÞf�1

�
S� S�1

S

�f�1

3Bðmf; ð1� mÞfÞ
: (Equation 9)

In Figure 3, we show that the connectance and linkage density

obtained from the equations above fit the empirical data well.
An Analytic Alternative to Null-Model Testing
Ecologists are often faced with the issue of comparing several

networks. A common question is whether a given network has

an ‘‘unusual’’ number of links relative to some expectation.

Traditionally these comparisons have been done by simulating

a ‘‘null’’ distribution of random matrices.24,25 This is intended

to allow ecologists to compare food webs with a sort of stan-

dard, hopefully devoid of whatever biological process could alter

the number of links. Importantly, this approach assumes that (1)

connectance is a fixed property of the network, ignoring any sto-

chasticity, and (2) the simulated network distribution is an accu-

rate and unbiased description of the null distribution. Yet recent

advances in the study of probabilistic ecological networks show

that the existence of links, and connectance itself, is best

thought of as a probabilistic quantity.18 Given that connectance

drives most of the measures of food web structure,17 it is critical

to have a reliable means of measuring differences from the

expectation. We provide a way to assess whether the number

of links in a network (and therefore its connectance) is surprising.

We do so using mathematics rather than simulations.
Patterns 1, 100079, October 9, 2020 5



Table 2. Parameter Estimates for all Models

Model Parameter Interpretation Value SD

bS (Cohen and Briand11) b links per species 2.2 0.047

k concentration of L around mean 1.4 0.12

bS2 (Martinez12) b proportion of links realized 0.12 0.0041

k concentration of L around mean 4.0 0.37

bSa (Brose et al.13) b proportion of relationship 0.37 0.054

a scaling of relationship 1.7 0.043

k concentration of L around mean 4.8 0.41

ðS2 � ðS � 1ÞÞp+ S� 1 m average value of p 0.086 0.0037

f concentration around value of m 24.3 2.4

Mean and standard deviation (SD) are given for each parameter.
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The shifted beta-binomial can be approximated by a normal

distribution with mean L and variance s2
L:

L � Normal
�
L;s2

L

�
L =

�
S2 �S + 1

�
m+S� 1

s2
L =

�
S2 �S + 1

�
mð1�mÞ

�
1 +

SðS� 1Þ
f+ 1

�
: (Equation 10)

This normal approximation is considered good whenever the

skewness of the target distribution is modest. In food webs,

this should be true whenever communities havemore than about

ten species (see Experimental Procedures). This result means

that given a network with observed species richness Sobs and

observed links Lobs, we can calculate its Z score, i.e., how

many standard deviations an observation is from the population

average, as

Z =
Lobs � Lffiffiffiffiffi

s2
L

p : (Equation 11)

A network where L= Lwill have a Z score of 0, and any network

with more (fewer) links will have a positive (negative) Z score.

Following this method, we computed the empirical Z scores for

the 255 food webs archived on mangal.io (Figure 4). We found

that 18 webs (7.1%) had a total number of observed links unusu-

ally higher than what was expected under the flexible linksmodel

(Z > 1.96). These networks are interesting candidates for the

study of mechanisms leading to high connectance.

Out of the 255 food webs, none was found to have an un-

usually low number of links (Z < 1.96). In fact, Z scores this

low are not possible in this dataset: food webs having the min-

imum value of S� 1 links are still within two standard devia-

tions of the mean for this sample. However, this sample con-

tains the full diversity of food webs found in the mangal.io

database. Hence, this does not mean that no food web will

ever have a Z score lower than �1.96. If the flexible links

model is fit to data from a specific system, food webs might

have a surprisingly low number of links when compared with

this population average. These networks would be interesting

candidates for the study of mechanisms leading to low con-

nectance or for the identification of undersampled webs. Ecol-
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ogists can thus use our method to assess the deviation of

their own food webs from their random expectations.

In Figure 5, we show that the predictions made by the normal

approximation (Figure 5B) are similar to those made by the beta

distribution parameterized with the MAP values of m and f (Fig-

ure 5A), although the former can undershoot the constraint on

the minimum number of links. This undershooting, however,

will not influence any actual Z scores, since no food webs have

fewer than S� 1 links and therefore no Z scores so low can

ever be observed.
We Should See Many Different Network-Area
Relationships
Our results bear important consequences for the nascent field of

studying network-area relationships.26 As it has long been

observed that not all species in a food web diffuse equally

through space,27 understanding how the shape of networks

varies when the area increases is an important goal, and in fact

underpins the development of a macroecological theory of

food webs.28 Using a power law as the acceptable relationship

between species and area,29,30 the core idea of studying

network-area relationships is to predict network structure as a

consequence of the effect of spatial scale on species richness.26

Drawing on these results, we provide in Figure 6 a simple illustra-

tion of the fact that, due to the dispersal of values of L, the rela-

tionship between L/S and area can have a really wide confidence

interval. While our posterior predictions generally match the

empirical results on this topic,31 they suggest that we will

observe many relationships between network structure and

space, and that picking out the signal of network-area relation-

ships might be difficult.

As of now not many network-area relationships have been

documented empirically; but after the arguments made by Gali-

ana et al.26 that tie the shape of these relationships tomacroeco-

logical processes, we fully expect these relationships to bemore

frequently described moving forward. Our results suggest that

our expectation of the amount of noise in these relationships

should be realistic; while it is clear that these relationships exist,

because of the scaling of dispersion in the number of links with

the number of species, they will necessarily be noisy. Any

described relationships will exist within extremely wide confi-

dence intervals, and it might require a large quantity of empirical

data to properly characterize them. As such, our model can help
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Figure 3. Connectance and Linkage Density

Can Be Derived from a Model for Links

(A and B) (A) Connectance and (B) linkage

density are plotted as a function of species rich-

ness, for the MAP estimates of the flexible links

model. In each panel, the colored line represents

the median predicted quantity and the gray areas

cover the 78% and 97% percentile intervals.

Empirical data from the mangal.io database are

plotted in each panel (gray dots). In (A), the minimal

(S � 1)/S2 connectance and in (B) the minimal (S �
1)/S and maximum S linkage density are plotted

(black lines).
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in assessing the difficulty of capturing some foundational rela-

tionships of food web structure.

Stability Imposes a Limit on Network Size
Can organisms really interact with an infinite number of partners?

According to Equation 7, at large values of S, the linkage density

scales according to p3S (which is supported by empirical data),

and so species are expected to have on average 23 p3 S inter-

actions. A useful concept in evolutionary biology is the

‘‘Darwinian demon,’’32 i.e., an organism that would have infinite

fitness in infinite environments. Our model seems to predict

the emergence of what we call Eltonian demons, which can

have an arbitrarily large number of interactions. Yet we know

that constraints on handling time of prey, for example, impose

hard limits on diet breadth.33 This result suggests that there

are other limitations to the size of food webs; indeed, the fact

that L/S increases to worryingly large values only matters if

ecological processes allow S to be large enough. It is known

that food webs can reach as high as energy transfer allows5
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and as wide as competition allows.34 Furthermore, in more spe-

cies-rich communities there is a greater diversity of functional

traits among the interacting organisms; this limits interactions,

because traits determine suitable interaction partners.35,36 In

short, and as Figure 2 suggests, since food webs are likely to

be constrained to remain within an acceptable richness, we

have no reason to anticipate that p3S will keep growing

infinitely.

Network structure may itself prevent S from becoming large.

May37 suggested that a network of richness S and connectance

Co is stable as long as the criterion s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S3Co

p
<1 is satisfied, with

s being the standard deviation of the strengths of interactions.

Although this criterion is not necessarily stringent enough for

the stability of food webs,38,39 it still defines an approximate

maximum value s� which is the value above which the system

is expected to be unstable. This threshold is s� = 1=
ffiffiffiffiffiffi
LD

p
, where

LD is defined as in Equation 7. We illustrate this result in Figure 7,

which reveals that s� falls toward 0 for larger species richness.

The result in Figure 7 is in agreement with previous simulations,
4 5 6

Figure 4. Empirical Distribution of Food Web

Z scores

The Z scores of all food webs archived onmangal.io

have been computed using Equation 11. Foodwebs

with an absolute Z score above 1.96 are in pink. The

shaded region comprises all food webs with an

absolute Z score below 1.96 (i.e., 95% of predicted

webs according to our model).
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Figure 5. The Shifted Beta-Binomial Distri-

bution Can Be Approximated by a Normal

Distribution

The number of links is plotted as a function of

species richness obtained from (A) the MAP esti-

mates of the flexible links model and (B) its normal

approximation. In each panel, the colored line rep-

resents the median predicted link number and the

gray areas cover the 78% and 97% percentile in-

tervals. The minimal S� 1 and maximal S2 numbers

of links are plotted in each panel (thinner and bolder

black lines, respectively).
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placing the threshold for stability at about 1,200 species in food

webs. These results show how ecological limitations, for

example on connectance and the resulting stability of the sys-

tem, can limit the size of food webs.38,40 In Figure 7B, we show

that networks of increasing richness (thicker lines, varying on a

log scale from 101 to 103) have a lower probability of being sta-

ble, based on the proportion of stable networks in our posterior

samples.

Conclusions
Here we derived Equation 4, a model for the prediction of the

number of links in ecological networks using a beta-binomial

distribution for L, and show how it outperforms previous and

more commonly used models describing this relationship.

More importantly, we showed that our model has parameters

with a clear ecological interpretation (specifically, the value of

p in Equation 4 is the expected value of the connectance when

S is large), and makes predictions that remain within biological

boundaries. There are a variety of ‘‘structural’’ models for food

webs, such as the niche model,41 the cascade model,42 the

diet breadth model (DBM)35 and allometric DBM,19 the mini-

mum potential niche model,43 and the nested hierarchy

model,44 to name a few. All of these models make predictions

of food web structure: based on some parameters (usually S

and L, and sometimes vectors of species-level parameters)

they output an adjacency matrix AS3S, which contains either

the presence or strength of trophic interactions. Therefore,

these models require estimated values of L for a particular

value of S, with the additional result that
P

A = L. Our

approach can serve to improve the realism of these models

by imposing that the values of L they use are within realistic

boundaries. For example, a common use of structural models

is to generate a set of ‘‘null’’ predictions: possible values of A

and L in the absence of the mechanism of interest. Empirical

networks are then compared with this set of predictions and

are said to be significant if they are more extreme than 95%

of the observations.3 A challenge in this approach is that

structural models may generate a wide range of predictions,

including ecologically impossible values, leading a high

false-negative rate. This could be remedied by filtering this

set of predictions according to our flexible links model, result-

ing in a narrower set of null predictions and a lower false-
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negative rate. In general, our approach

is complementary to other attempts to

create ecologically realistic food web
models—for example, probabilistic models of the number of

links per species which stay within ecological values.45

This model also casts new light on previous results on the

structure of food webs: small and large food webs behave differ-

ently.15 Specifically, ecological networks most strongly deviate

from scale-free expectations when connectance is high.46 In

our model, this behavior emerges naturally: connectance in-

creases sharply as species richness decreases (Figure 3)—

that is, where the additive term ðS�1Þ=S2 in Equation 6 becomes

progressively larger. In a sense, small ecological networks are

different only due to the low values of S. Small networks have

only a very limited number of flexible links, and this drives con-

nectance to be greater. Connectance in turn has implications

for many ecological properties. Connectance is more than the

proportion of realized interactions. It has been associated with

some of the most commonly used network measures17 and

contains meaningful information on the stability46,47 and dy-

namics48 of ecological communities. A probability distribution

for connectance not only accounts for the variability between

networks but can be used to describe fundamental properties

of food webs and to identify ecological and evolutionary mecha-

nisms that shape communities. A recent research direction has

been to reveal its impact on resistance to invasion: denser

networks with a higher connectance are comparatively more

difficult to invade;49 different levels of connectance are also

associated with different combinations of primary producers,

consumers, and apex predators,41 which in turns determines

which kind of species will have more success invading the

network.50 Because we can infer connectance from the richness

of a community, our model also ties the invasion resistance of a

network to its species richness.

The relationship between L and S has underpinned most of the

literature on food web structure since the 1980s. Additional

generations of data have allowed us to progress from the link-spe-

cies scaling law, to constant connectance, tomore general formu-

lations based on a power law. Ourmodel breaks with this tradition

of iterating over the same family of relationships, and instead

draws from our knowledge of ecological processes and from

novel tools in probabilistic programming. As a result, we provide

predictions of the number of links that are closer to empirical

data, stimulate new ecological insights, and can be safely

assumed to always fall within realistic values. The results
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Figure 6. Many Different Network-Area Rela-

tionships Are Supported by the Data

Representing the species richness as S = kAz (A),

with A being the relative area size, k = 200 being the

maximal species richness, and z = 0.27, a scaling

exponent.26 We then use the posterior distribution

of L to predict how LD should scale with A. We

compare the predictions of our model with that of

the generally accepted power law (Equation 3).

While our model predicts a larger linkage density in

larger areas (B), the confidence intervals around this

prediction (gray areas covering the 78% and 97%

percentile intervals) are extremely large. In partic-

ular, our model scales faster than the power law, but

the confidence interval is high (due to the scaling of

variance with S, Equation 10). This suggests that we

may observe either very weak or very strong effects

of area on networks.
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presented in Figure 6 (which reproduces results from Galiana

et al.26) and Figure 7 (which reproduces results from Allesina

and Tang38) may seem largely confirmatory; in fact, the ability of

our model to reach the conclusions of previous milestone studies

in food web ecology is a strong confirmation of its validity. We

would like to point out that these approaches would usually

require ecologists to make inferences not only on the parameters

of interests but also on the properties of a network for a given spe-

cies richness. In contrast, our model allows a real economy of pa-

rameters and offers ecologists the ability to obtain several key el-

ements of network structure for free if only the species richness

is known.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and code should be directed

to and will be fulfilled by the Lead Contact, Arthur AndrewMeahanMacDonald

(a.a.m.macdonald@gmail.com).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All code and data to reproduce this article are available at the Open Science

Framework (https://doi.org/10.17605/OSF.IO/YGPZ2).

Bayesian Model Definitions

Generative models are flexible and powerful tools for understanding and pre-

dicting natural phenomena. These models aim to create simulated data with

the same properties as observations. Creating such a model involves two

key components: a mathematical expression, which represents the ecological

process being studied, and a distribution, which represents our observations

of this process. Both of these components can capture our ecological under-

standing of a system, including any constraints on the quantities studied.

Bayesianmodels are a common set of generativemodels, frequently used to

study ecological systems. Here, we define Bayesian models for all four of the

models described in Equations 1, 2, 3, and 4. We use notation fromHobbs and

Hooten,51 writing out both the likelihood and the prior as a product over all 255

food webs in the mangal.io database.

Link-Species Scaling Model

½b; kjL;S�f
Y255
i = 1

negative binomialðLi jb3Si ; e
kÞ3 normalðbj0:7; 0:02Þ

3 normalðkj2; 1Þ
Constant Connectance Model

½b; kjL;S�f
Y255
i = 1

negative binomial
�
Li jb3S2

i ; e
k
�
3betaðbj3; 7Þ

3 normalðkj2; 1Þ

Power Law Model

½b; a; kjL;S�f
Y255
i = 1

negative binomial
�
Li

		expðbÞ3Sa
i ; e

k
�
3 normalðbj � 3; 1Þ

3 normalðaj2; 0:6Þ3 normalðkj2;1Þ

Flexible Links Model

½m;fjL;S�f
Y255
i = 1

beta binomial
�
Li � Si + 1jS2

i � Si +1;m3 ef; ð1� mÞ3 ef
�

3betaðmj3; 7Þ3 normalðfj3;0:5Þ

Note that while ef is shown in these equations for clarity, in the text we use f

to refer to the parameter after exponentiation. In the above equations, bold

type indicates a vector of values; we use capital letters for L and S for consis-

tency with the main text.

Because we want to compare all our models using information criteria, we

were required to use a discrete likelihood to fit all models. Our model uses a

discrete likelihood by default, but the previous three models (LSSL, constant

connectance, and the power law) normally do not. Instead, these models

have typically been fit with Gaussian likelihoods, sometimes after log-trans-

forming L and S. For example, Equation 3 becomes a linear relationship be-

tween logðLÞ and logðSÞ. This ensures that predictions of L are always positive,

but allows otherwise unconstrained variation on both sides of the mean. To

keep this same spirit, we chose the negative binomial distribution for observa-

tions. This distribution is limited to positive integers and can vary on both sides

of the mean relationship.

We selected priors for our Bayesian models using a combination of literature

and domain expertise. For example, we chose our prior distribution for p based

on Martinez,12 who gave a value of constant connectance equal to 0.14. While

the prior we use is ‘‘informative,’’ it is weakly so; as Martinez12 did not provide

an estimate of the variance for his value, we chose a relatively large variation

around that mean. However, no information is available in the literature to

inform a choice of prior for concentration parameters k and f. For these values,

we followed the advice of Gabry et al.52 and performed prior predictive checks.

Specifically, we chose priors that generated a wide range of values for Li but

which did not frequently predict webs of either maximum or minimum connec-

tance, neither of which are observed in nature.
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Figure 7. Stability Imposes a Limit on

Network Size

Using Equation 7, we can calculate the maximum

standard deviation in the strength of interactions that

should ensure food web stability, s* = 1/OLD (A). The

colored line represents themedian value ofmaximum

standard deviation, based on the posterior distribu-

tion of the flexible links model, and the gray areas

cover the 78% and 97% percentile intervals. The fine

and dark lines indicate the maximum and minimum

values of maximum standard deviation, respectively.

The dotted line shows the maximum for the average

LD, as given by Equation 7. The maximum standard

deviation falls sharply when the number of species

increases, which will limit the stability of large food

webs, and therefore explain why Eltonian demons

shouldnot emerge. In (B),weshow theprobability of a

network withS species being stable, based on draws

from the posterior distribution, for 10 % S % 1,000:

larger networks (thicker lines) are increasingly unlikely

to be stable.
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Explanation of Shifted Beta-Binomial Distribution

Equation 4 implies that LFL has a binomial distribution, withS2�S+ 1 trials and

a probability p of any flexible link being realized:

½LjS;p�=
 
S2 � ðS� 1Þ
L� ðS� 1Þ

!
pL�ðS�1Þð1� pÞS2�L

:

This is often termed a shifted binomial distribution.

We also note that ecological communities are different in many ways besides

their number of species (S). Although we assume p to be fixed within one com-

munity, the precise value of p will change from one community to another. With

this assumption, our likelihood becomes a shifted beta-binomial distribution:

½LjS;m;f�=
 
S2 � ðS� 1Þ
L� ðS� 1Þ

!
B
�
L� ðS� 1Þ+mf;S2 � L+ ð1� mÞf

�
Bðmf; ð1� mÞf Þ ;

(Equation 12)

where B is the beta function. Thus, the problem of fitting this model becomes

one of estimating the parameters of this univariate probability distribution.
Model Fitting: Data and Software

We evaluated our model against 255 empirical food webs, available in the

online database mangal.io.21 We queried metadata (number of nodes and

number of links) for all networks, and considered as food webs all networks

having interactions of predation and herbivory. We use Stan,53 which imple-

ments Bayesian inference using Hamiltonian Monte Carlo. We ran all models

using four chains and 2,000 iterations per chain. In our figures we use the

posterior predictive distribution, which is a distribution described by the

model after conditioning on the data. There are numerous ways to display

a probability distribution; here we have chosen to do so using the expecta-

tion (mean) and two arbitrary percentile intervals, 78% and 97%. These inter-

vals were chosen based on the recommendations of McElreath,54 and al-

lowed us to capture most of the probability density in the tails of the

posterior distributions.

Stan provides a number of diagnostics for samples from the posterior distri-

bution, including bR, effective sample size, andmeasures of effective tree depth

and divergent iterations. None of these indicated problems with the posterior

sampling. All models converged with no warnings; this indicates that is it safe

to make inferences about the parameter estimates and to compare the

models. However, the calculation of PSIS-LOO for the LSSL model warned

of problematic values of the Pareto-k diagnostic statistic. This indicates that

the model is heavily influenced by large values. Additionally, we had to drop

the largest observation (>50,000 links) from all datasets in order to calculate

PSIS-LOO for the LSSL model. Taken together, this suggests that the LSSL

model is insufficiently flexible to accurately reproduce the data.
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Normal Approximation and Analytic Z Scores

We propose using a normal approximation to the beta-binomial distribution to

calculate analytic Z scores. This is based on a well-known similarity between

the shape of a normal distribution and a binomial distribution. This approxima-

tion is considered good whenever the absolute skewness is less than 0.3,55

that is, whenever

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � S+ 1

p
 ffiffiffiffiffiffiffiffiffiffiffiffi

1� m

m

s
�

ffiffiffiffiffiffiffiffiffiffiffiffi
m

1� m

r !
<0:3:

The beta-binomial distribution is close to the binomial distribution. The error

in approximating the former with the latter is on the order of the inverse square
of the parameter f,56 which for our model is less than 0.0017.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
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Romanuk, T.N., Stouffer, D.B., Wood, S.A., and Gravel, D. (2016).

Mangal—making ecological network analysis simple. Ecography 39,

384–390.

22. Poisot, T., Bergeron, G., Cazelles, K., Dallas, T., Gravel, D., Macdonald, A.,

Mercier, B., Violet, C., and Vissault, S. (2020). Environmental biases in the

study of ecological networks at the planetary scale. bioRxiv. https://doi.

org/10.1101/2020.01.27.921429.
23. Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model

evaluation using leave-one-out cross-validation and WAIC. Stat.

Comput. 27, 1413–1432.

24. Fortuna, M.A., and Bascompte, J. (2006). Habitat loss and the structure of

plant-animal mutualistic networks: mutualistic networks and habitat loss.

Ecol. Lett. 9, 281–286.

25. Bascompte, J., Jordano, P., Melian, C.J., and Olesen, J.M. (2003). The

nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad.

Sci. U S A 100, 9383–9387.

26. Galiana, N., Lurgi, M., Claramunt-López, B., Fortin, M.-J., Leroux, S.,
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