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ABSTRACT
◥

Tumor outcome is determined not only by cancer cell–
intrinsic features but also by the interaction between cancer cells
and their microenvironment. There is great interest in tumor-
infiltrating immune cells, yet mast cells have been less studied.
Recent work has highlighted the impact of mast cells on the
features and aggressiveness of cancer cells, but the eventual effect

of mast cell infiltration is still controversial. Here, we review
multifaceted findings regarding the role of mast cells in cancer,
with a particular focus on breast cancer, which is further
complicated because of its classification into subtypes charac-
terized by different biological features, outcome, and therapeutic
strategies.

Introduction
Mast cells (MC) belong to the innate arm of the immune system,

they derive fromCD34þCD117þ pluripotent hematopoietic stem cells
within the bone marrow (BM) and complete their differentiation in
tissues (1). On the basis of their role, MCs are differentially located in
human tissues although they are predominantly abundant in close
proximity to vessels (2), epithelia, fibroblasts (3), and nerves (4). MCs
store many small secretory granules, whose content allows the clas-
sification of MCs in two major types: MC(T) and MC(TC). The former
are characterized by granules that are particularly rich in tryptase, they
play mainly a role in the immune response and can be found near the
external mucosa of the gastrointestinal and respiratory apparatus-
es (5, 6). Conversely, MC(TC) display secretory granules with tryptase
together with chymase and carboxypeptidase, contribute to tissue
repair and are sited in the submucosa and connective tissues in
close proximity to blood and lymphatic vessels (6). The specific
signals responsible for progenitor recruitment and the mechanisms
underlying MC differentiation are still poorly understood. MC
biology is often studied by employing mouse models, although MC
features are not fully conserved between human and mice (7).
Hence, in this review, we will indicate whether findings were
obtained in mouse models.

MC function is well characterized in allergic reactions and parasite
responses, but their role in cancer is less understood and it is still a
matter of debate. MCs can be detected both at the margins or
infiltrating the tumor and have been reported to be endowed with
both protumor or antitumor (8) properties depending on their abun-
dance and localization, the type of stimuli and tumor context. Upon
activation, MCs release a wide range of soluble mediators with either
proinflammatory (e.g., TNF) or anti-inflammatory (including IL10

and TGFb) effects (9). Moreover, MCs can differentially promote an
inflammatory or immunosuppressive tumor microenvironment
(TME) by modulating the functions of diverse immune popula-
tions (10), such as CD8þ T cells (11). Moreover, in mouse models,
MCs have been shown to regulate myeloid-derived suppressor cells
(MDSC; ref. 12), tumor-associated macrophages (13), and regulatory
T cells (Treg; ref. 14).MCs can sense environmental modifications and
influence stromal (15) and immune components of the TME (16) in a
bidirectional cross-talk, which enables them to finely tune the host
responses in the presence of developing tumors, ultimately influencing
their outcome (17).

The Ambiguous Role of MCs in Cancer
MC presence has been shown to be associated with poor prognosis

and aggressive disease in diverse cancer types including Hodgkin
lymphoma (18), pancreatic adenocarcinoma (19, 20), hepatocellular
carcinoma (HCC, ref. 21), and cholangiocarcinoma (22). In patients
with Hodgkin lymphoma, MC infiltration is predictive of worse
relapse-free survival rates (18). The same effect has been reported in
pancreatic cancers, where presence of tumor-infiltrating MCs is
associated with higher grade and reduced survival. Notably, through
in vitro experiments, it was shown that pancreatic tumor cells could
promote MC infiltration, which, in turn, favors cancer cell growth and
invasion, and in this manner worsens the outcome of the disease (20).
MC number also increases along with carcinogenesis in HCC and
intrahepatic cholangiocarcinoma (21). In these tumors, MCs could
promote cancer fibrosis and immune response, negatively affecting
patients’ survival rate. In cholangiocarcinoma, a vicious circle has
been described between cholangiocytes and MCs. By employing
both in vitro and mouse models, it was proposed that MC-derived
histamine promotes cholangiocyte proliferation, thus favoring
cholangiocarcinoma progression and angiogenesis. Simultaneously,
cholangiocytes secrete stem cell factor (SCF), which stimulates MCs
via c-Kit (23).

In other types of tumors, MC role is less clear and could depend on
their localization. This is the case of colorectal cancer where MC
infiltration has been defined as a favorable independent prognostic
factor (24), although the presence of a high number ofMCs localized in
the peritumoral is associated with poor prognosis (19, 25). Moreover,
MCs were shown to be crucial for the development of preneoplastic
polyps. In fact, it was reported that MCs are enriched in the polyp
masses of patients and, at least in mouse models, are necessary to
transform premalignant lesions in colon cancer (26). Also in prostate
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cancer preclinical models, MCs display a different effect depending on
their tissue compartment localization (27). Intratumor MCs inhibit
angiogenesis and tumor growth, whilst peritumor MCs promote the
expansion of human prostate tumors. During the onset of castrate-
resistant prostate tumors, MCs are mobilized to the peritumoral area
where they contribute to tumor relapse (27). Hence, their inhibition
could be exploited to enhance the effects of castration in this setting. In
melanoma, MCs have been associated with better patients’ surviv-
al (28), but also with poor prognosis (29) and resistance to immune
therapy (30) as shown in patients and throughmousemodels. In breast
carcinomas, the comprehension of the role of MCs is made even more
complicated by the high intertumor and intratumor heterogeneity and
by the diverse outcomes, which characterize the different breast
carcinoma subtypes (31).

Relation between MC Density and
Breast Carcinoma Subtypes

Breast carcinoma is currently the most common type of tumor in
women with about 2 million new cases every year (32). Breast
carcinoma is a highly heterogeneous disease in terms of phenotyp-
ical features and tumor aggressiveness, making patients’ outcome
and response to therapy extremely variable (33). In the clinical
practice, treatment decision is commonly based on histopathologic
markers that is, expression of hormone receptors (HR), HER2, and
Ki67, which define different breast carcinoma subtypes: luminal A
and B, HER2-positive, and triple-negative (TN) breast carcinomas.
Luminal breast carcinomas are usually characterized by better
prognosis, while HER2-positive breast carcinomas and TNBCs
show a more aggressive behavior and unfavorable prognosis (34).
The efficacy of the treatment is not only influenced by the expres-
sion levels of these receptors, but also by the quality and quantity of
immune infiltrate (35).

Recently, numerous studies have employed CIBERSORT (36) to
infer the proportions of 22 immune cell subsets and evaluate the
association between the abundance of the diverse immune subpopula-
tions and the clinical outcome of solid tumors (37). CIBERSORT was
employed to analyze the gene expression profiles of almost 11,000
tumors and verify whether differences in the immune infiltrate
depend on the molecular subtype (38). This work allowed to
evaluate the effect of innate immunity in cancer since, until then,
the association between immune infiltration and clinical outcome
was generally limited to adaptive immunity. Moreover, results
confirmed the complexity between MC infiltration, cancer cell
molecular profiles and clinical features.

Other studies aimed at determining whether specific molecular
profiles of breast carcinomas are characterized by a different density of
infiltrating MCs (39–42). MC abundance has been compared between
highly HR-positive (>50%) cancers versus tumors with low expression
ofHRs (<5%; ref. 41) finding an increased number ofMCs (detected by
Giemsa and Alcian blue staining) in the former group, mainly in the
peritumoral zone. Glajcar and coworkers investigated the density of
tryptase- and chymase-expressing MCs in different molecular sub-
types of breast carcinoma, according to the molecular classification of
St Gallen 2013 International Expert Consensus (43), to evaluate their
association with standard prognostic markers (39). This study showed
that low- and intermediate-grade breast carcinomas are characterized
by high density of MCs both infiltrating the tumor and at the invasive
margins. A statistically significant higher presence of both chymase-
and tryptase-positive MCs was observed in luminal (estrogen or
progesterone receptor positive; ERþ or PRþ) compared with non-

luminal (ER� and PR�) tumors (Fig. 1). The in silico analysis of gene
expression profiles of the molecular taxonomy of breast carcinoma
international consortium (METABRIC) database through CIBER-
SORT algorithm (36) confirmed that there is a significantly higher
infiltration of MCs in luminal tumors, particularly luminal A, com-
pared with more aggressive HER2-positive and TNBC subtypes (40).

Different Breast Carcinoma Molecular
Subtypes, Diverse Prognostic/
Predictive Value of MCs?
Luminal/HR-positive

Immune infiltrate is differently associated with survival probabil-
ity (44) based on the expression of HRs. Because MCs are more
abundant in HR-positive breast carcinoma tumors, which are char-
acterized by a better prognosis, it has been hypothesized that MCs
could be endowed with a favorable prognostic value (Table 1).
Accordingly, MCs are negatively associated with the proliferation
rate, identified by a lower expression of Ki67 (39). The positive
correlation between MC presence and expression of ER, or the ER-
target geneBCL2, was confirmed also showing a negative correlation of
MCs with the TNBC marker EGFR (45). In accordance to this, we
found that in vitro MCs reduce the activation of EGFR and cMET
receptors (40), which are both regulators of the basal program and are
highly expressed in TNBCs. MCs were shown to inhibit cMET also by
cleaving its ligand, HGF, into an NK4-like inhibitory molecule (46).
Altogether these findings support the hypothesis that MCs could not
only be recruited more efficiently by ER-positive breast carcinoma
cells, but could also promote their luminal phenotype by favoring the
expression and activity of ER, while simultaneously inhibiting the
function of basal receptors such as cMET and EGFR (Fig. 1). In
preclinical settings, MC presence has been associated to increased
aggressiveness in luminal B models. In fact, breast carcinoma growth
andmetastasis formation were increased in a C57BL/6MMTV-PyMT
mouse model, when compared with C57BL/6-KitW-sh/W-sh (Wsh)
mice, which lack MCs due to an inversion of the c-Kit promoter (47).

HER2-positive
In HR-positive luminal tumors, the expression of ER is obviously a

positive predictive marker of responsiveness to hormonal-based inter-
ventions, but recent data from neoadiuvant studies suggest that ER
status displays an opposite effect in patients withHER2-positive breast
carcinoma treated with anti-HER2 therapy (48, 49). Trastuzumab, the
standard of care for the treatment of HER2-positive breast carcino-
mas (34), is often effective in combination with chemotherapy, but
some patients do not respond and eventually progress (50). To
overcome resistance to trastuzumab, several novel HER2-targeting
agents have been developed, including the tyrosine kinase inhibitor
(TKI) lapatinib, and the mAb pertuzumab (51). However, ER activa-
tion could represent an escape pathway that promotes cell survival and
resistance to therapy (52, 53). Because ER expression hampers the
efficacy of anti–HER2-based therapy and given the capacity of MCs to
increase ER level and activity (40), MCs may negatively affect the
response to anti-HER2 therapy also via ER stimulation. The analysis of
breast carcinoma transcriptomes confirmed that the presence of a high
fraction of MCs correlates with worse disease-free survival (DFS) (54)
and overall survival (OS). These observations have been confirmed by
independent works that highlighted a negative effect of MCs in HER2-
positive breast carcinoma patients’ outcome (38, 54, 55). Patients
treated with trastuzumab and displaying a high risk of relapse
[trastuzumab risk model (TRAR)-high] (56) express higher levels of
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genes associated to MCs. Furthermore, the MC-related gene carboxy-
peptidase A (CPA3) correlates with ER expression (ESR1) and ER-
activated genes, for example, PGR, BCL2, and SCUBE2, unveiling a
novel possible link betweenMCs and clinical resistance to trastuzumab
therapy (40).

TNBC/basal-like
In contrast with data obtained from HER2-positive tumors, Bense

and colleagues reported that activatedMCs are associatedwith a higher
pathologic complete response (pCR) rate in TNBC patients, thus
supporting the role of MCs as favorable predictive markers in this
breast carcinoma histotype (54). It has been shown that MCs are
recruited by tumors, and TNBC cells then stimulate their activation
and degranulation (57). In this scenario, activatedMCs appear tomold
a tumor stroma characterized by antitumor rather than supportive
features (57). In accordance to the potential positive prognostic value
of MCs in breast carcinomas, other studies depict the possible asso-
ciation between MC infiltrates and low tumor grade (41, 45, 58). The

presence of MCs in the peritumoral stroma improves the prognosis of
breast carcinomas with long-term follow-up, particularly in the node-
negative subset, supporting an important biological role for MCs in
mammary tumors (58). Moreover, the value of MC presence as an
independent prognostic factor of good prognosis in invasive breast
carcinomas was validated in a large tissue microarray study of 4,444
cases (45). Herein, Kaplan–Meier survival curves showed that MC
presence is a favorable prognostic marker in the entire set of analyzed
invasive breast carcinomas. Conversely, Okano and colleagues
described an association between Annexin A1, a protein that has been
reported in various studies to be predictive of a significantly shorter OS
in patients with TNBC (59), with MCs. Here, MCs have also been
linked with various aggressive phenotype features of TNBC, such as
epithelial-to-mesenchymal transition(EMT)andangiogenesis (60,61).
MCs were shown to negatively correlate with therapy efficacy in
inflammatory (I) breast carcinoma (11) and to be associated with
no-pCR in a durvalumab/olaparib/paclitaxel trial enrolling patients
with HER2-negative breast carcinoma, bothHR-positive and TN (62).

Figure 1.

Multiple roles of MCs in breast tumors. Diverse breast carcinoma subtypes are differently infiltrated by MCs with a higher presence in luminal compared with HER2-
positive tumors and TNBCs. The release of diverse factors for example, VEGFA, TNF, CXCL1, histamine, nitric oxide, and AREG together with the interaction with
various populations of the immune system, including CD8þ, DC, MDSC, and Tregs, lead MCs to mold the TME in a different manner and play both protumor and
antitumor roles according to the tumor context. Because of their capability to shape the TME with tryptases, chymases, and through the release of TGFb and MMPs,
MCs influence tumor aggressiveness. Finally, MCs also affect the therapeutic response by limiting the efficacy of anti-HER2 treatment through the stimulation of the
survival escape route favored by ER activity and reducing the activity of the basal markers EGFR (45) and cMET (40, 46). BC, breast carcinoma.
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Table 1. Role of MCs in the outcome of breast carcinoma.

Patients’ tumor type Prognosis Detection Localization Mechanism proposed

Basal-like Negative CIBERSORT NA MC associated with CAF-derived high-risk score (63)
HER2-negative
(TNBC and
luminal)

Negative 5 genes MC
signature (95)

NA MC associated with no-pCR in durvalumab with olaparib and
paclitaxel patients (62)

HER2-positive Negative CIBERSORT NA Activated MCs are reduced in TRAR-low patients of the
NeoALTTO trial (55)

Luminal B, HER2-
enriched and
basal-like BC

Negative CIBERSORT NA Activated MCs are included in a immunorisk score (IRS)
signature, which correlates with reduced OS (44)

TNBC Negative CIBERSORT NA ANXA1 is associated with activated MC and is predictive of
reduced OS (60)

Inflammatory breast
cancer

Negative Tryptase Intratumoral MC infiltration associated with poor response (pCR) to
neoadjuvant chemotherapy (11)

pan-BC Negative Tryptase Intratumoral/
peritumoral

MC distribution depends on HR and HER2 expression;
intratumor MC is associated with worse prognosis (97)

Ductal invasive
carcinomas

Negative Tryptase Interstitial/
periglandular

Periglandular MC position are more numerous in G3 compared
with G1/G2 tumors and control samples (102)

pan-BC Negative/
Positive

CIBERSORT NA Activated MCs are associated with worse DFS and OS in HER2-
positive BC, while MC are linked with pCR in TNBC (54)

pan-BC Negative MC-dependent
genes signature

NA A MC-dependent genes signature predicts recurrence-free
survival (98)

Nonspecified Negative Tryptase Metastases MC-richprimary tumors aremoreprone to formmetastases (71)
pan-BC Positive Tryptase- and

chymase
Intratumoral/
invasive margins

MCdensity is associatedwith lower tumor grade, higher ER and
PR expression, lower proliferation (39)

pan-BC Positive Toluidine blue NA MCs correlate with HR positivity and reduced Ki67 (42)
pan-BC Negative MCT NA MCs interact with HLA-Gþ BC cells favoring invasion and

metastasis (108)
pan-BC Negative Tryptase NA Role of MC tryptase in angiogenesis (103)
pan-BC Negative Tryptase Intratumoral/

peritumoral
MCs interact with lymphatic vessels favoring lymphovascular
invasion in a subtype-specific manner (101)

pan-BC Negative Tryptase/Toluidine
blue

Intratumoral/
peritumoral

MCs contribute to stromal remodeling during BC
progression (15)

pan-BC Positive c-Kit NA MC infiltration is an independent good prognostic marker (45)
High and low ER Positive Alcian blue/Giemsa Peritumoral Mast cells exhibit cytolytic activity against tumor cells (41)
pan-BC Negative Tryptase Peritumoral MC tryptase in the peritumoral tissue may promote breast

cancer invasion (72)
pan-BC Negative Toluidine blue Peritumoral MCs could promote angiogenesis (104)
pan-BC Positive Tryptase Peritumoral MC heparin inhibits primary and metastatic tumors (8)

Preclinical tumor
model

Effect on
tumor Detection Localization Mechanism proposed

Luminal A, B, and
basal

Negative Toluidine blue Stromal MC degranulation responsible for antibiotic-dependent
increased growth (109)

Luminal B Negative Toluidine blue/
Real time on
MC genes

Peritumoral MCs favor primary tumor growth andmets formation in MMTV-
PyMT mice and tumor engraftment in NeuT-derived BC cell
line (40)

Normal mammary
tissue

NA Tryptase Ducts and
lymph nodes

MC infiltration increased in C57BL/6 mammary tissue upon
exposure to cigarette smoke (105)

Luminal B Negative Toluidine blue Peritumoral MMTV-PyMTmammary growth andmetastasis are increased in
the presence of MCs (47)

Luminal B and TNBC Negative Tryptase/
Toluidine blue

NA MCs remodel TME and metastatic niche to promote mets
through SCF/cKit interaction in BC with arthritis (113)

Basal and luminal Negative Toluidine blue Peritumoral,
tumor-stroma
interface

MCs secrete IL6-activating fibroblasts and promoting tumor
progression (16)

Basal Negative Tryptase NA MC tryptase protects tumors from blood clotting and
hypoxia (111)

Note: Both clinical and preclinical studies are listed togetherwith the subtype/model investigated, the effect, the detectionmethod and localization ofMC, and a brief
description of the mechanism/effect observed. Papers are listed in reverse chronological order.
Abbreviations: BC, breast carcinoma; CAF, cancer-associated fibroblast; NA, information not available/not specified.
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Moreover, by identifying a cancer-associated fibroblast signature
predictive of OS, it was shown that a high-risk score correlated to
increased MC infiltration in basal-like breast carcinomas (63).

Effects of MC-Released Soluble Factors
on Breast Carcinoma Outcome

MCs contain a large cargo of soluble factors whose release and
composition could determine the activity of MCs in tumors. For
instance, MC-related antitumor effect could be a consequence of ROS
induction (64) or caused by release in the TME of cytotoxic mediators,
as TNF (65). The expression of TNF is lower in cancer compared with
non-cancer tissues, indicating that tumor cells could negatively affect
MCs by reducing TNF and hence hindering their antitumor activi-
ties (66). The importance of MC-derived TNF is also supported by the
observation that TNF levels are increased in responder or stable
patients with lung cancer, compared with patients with progressive
disease (66). In contrast, MC-derived proangiogenic factor VEGFA,
whose abundance is positively correlated with microvessel densi-
ty (17, 29), is linked to the protumoral effect of MCs (67). The
expression of TNF and VEGFA in MCs is mutually exclusive and
their levels vary across different cancer types. This observation could
contribute to explain why MCs act in a different manner according to
the type of cancer cells (66). MCs expressing a high VEGFA:TNF ratio
appear to display a dominant proangiogenic effect in agreement with
the observed correlation between MC abundance and vessel forma-
tion (68). MCs release numerous other angiogenic factors, including
endothelin-1, GMCSF, CXCL8, and CCL2 (69). Barkaway and col-
leagues have recently described a new link between MCs and aged
vasculature in mouse models (70). They found that MC quantity
increases in aged organs and promotes tissue damage through the
production of high levels of the inflammatory chemoattractant
CXCL1, which stimulates the reverse transendothelial migration of
neutrophils. This effect still needs to be investigated in the context of
tumors, but could potentially impact cancer outcome by favoring the
accumulation of MDSC.

The protumoral effect of MCs could also be mediated by the release
of other factors such as TGFb, which stimulates EMT, several proteases
including matrix metalloproteinases (MMP; refs. 71, 72), for example,
MMP9, which contribute toMC-mediated shaping of the extracellular
matrix (ECM), as well as chymase and tryptase thatmodify pro-MMPs
to their active forms (73). Furthermore, MCs are the major source of
histamine, whose activity has been largely investigated in allergic
reactions (74). However, there is increasing evidence showing that
histamine is endowed also with immune modulating activities ulti-
mately affecting cancer outcome. Upon MC activation, the endoge-
nous production of histamine was shown to suppress the immune
response and to contribute to breast carcinoma growth in mouse
models (75). Moreover, the in vitro binding of histamine to H2
histamine receptors stimulated human monocyte-derived dendritic
cells (DC) to synthesize IL10 (76) and, in patient-derived xenograft
tumor models, prevented the production of IL12, which is responsible
for Th1 expansion (77). This event causes DC-driven polarization of
CD4þ T cells toward a Th2 phenotype (78). The protumoral effect of
histamine has also been reported in patients with cholangiocarcinoma
where it contributes to tumor growth (79). In this scenario, MC-
mediated release of histamine increases cancer progression and angio-
genesis by enhancing the expression of VEGF (23).

In breast carcinomas, MC-released IL4 has an ambiguous effect
because of its dual role both in promoting cancer cell dissemination or
induction of apoptosis of breast carcinoma cells. Specifically, an

increase of IL4, which depends on HR status, and its positive corre-
lation with resistance to apoptosis have been described supporting the
idea that IL4 is a negative prognostic factor in patients with breast
carcinoma (80). Conversely, it has been reported that IL4 inhibits
growth and induces apoptosis of human breast carcinoma cell lines,
such as MCF7 and MDA-MB-231 (81).

Cross-talk between MCs and Other
Immune Populations in Breast
Carcinoma and Beyond

Several studies reported the capability of tumor-infiltrating MCs to
shape the immune landscape (Fig. 1) either towards an antitumor or a
protumor microenvironment (82), thus modulating the response to
diverse therapeutic treatments. Because the composition of infiltrating
immune cells differs among breast carcinoma subtypes, this may
contribute to explain why MCs have a diverse impact in different
breast carcinoma types. In particular, Dudeck and colleagues described
the effect of MC TNF on T-cell priming. This mechanism could
eventually influence their antitumor activity in the context of cancer.
This work highlighted the potential of MC-derived TNF to amplify
CD8þ DC functionality and linked MCs with T-cell and DC modu-
lation (65). TNF is known to be beneficial for tumor shrinkage (83), to
sensitize breast carcinoma cells in vitro and in vivo to chemotherapy
and radiotherapy (84), and to play a critical role in mouse DC
functionality and T-cell priming (65). These observations indicate
that MCs promote a proinflammatory microenvironment through the
release of TNF, affecting the efficacy of immunotherapy and vacci-
nation strategies, at least in mouse models (65).

Collectively, these observations indicate thatMCs support CD8þT-
cell activity, in disagreement with what suggested in inflammatory (I)
breast carcinomas (11). In this context, MCs were shown to prevent
treatment efficacy through their interaction with other immune sub-
populations. More specifically, MCs, identified by tryptase staining,
resulted more abundant in nonresponders where they were found in
close proximity with CD8þ T cells, CD163þ macrophages, and tumor
cells (11).

Several mouse studies described the engagement of MCs in the
regulation of T-cell activities, including their recruitment and activa-
tion (85), as well as the impact on Tregs (86), which is bidirection-
al (87, 88). Nonetheless, the influence ofMCs on T-cell functions is still
controversial. In some studies, MCs have been shown to hinder the
immune evasion mediated by Tregs in favor of the development of an
effective antitumor immunity (14). In particular, it has been demon-
strated that MCs are involved in the pathogenesis of diverse inflam-
matory conditions, for example, airway hyperreactivity and autoim-
mune encephalomyelitis, because they are able to counteract the
immune suppression mediated by Tregs through the release of IL6,
thus enabling their switch toward Th17 differentiation (14). In other
works, it was described an opposite effect and MCs were shown to
favor the immunosuppressive action of Tregs (86, 89). It has been
reported that the stimulation with EGF-like growth factor amphir-
egulin (AREG) markedly enhanced the functions and efficiency of
FOXP3þ Tregs, which express EGFR under inflammatory conditions
(89). Notably, AREG is a predictive marker of poor therapy efficacy,
particularly in patients with colorectal cancer bearing unmutated K-
Ras (89–91), and it is highly upregulated upon MC activation (92).
Therefore, MC-produced AREG may have a critical role for Treg
functions and its release may represent a possible mechanism linking
MCs and Tregs at the site of inflammation.
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Other findings describing the cross-talk between MCs and Tregs
support an effect of MCs on the response to anti-PD1 immune
checkpoint inhibitor in murine melanoma models (30). A higher
presence ofMCs colocalizing with FOXP3þTregs was found in tumor
tissue sections upon anti-PD-1 administration. By using the multi-
targeted receptor TKI sunitinib, able to deplete MCs and Tregs,
authors assessed a complete regression of tumors in combination with
anti-PD-1 therapy. MC infiltration in tumors was also confirmed by
CIBERSORT analysis of three independent RNA sequencing datasets
of patients with melanoma treated with anti-PD-1 or immune check-
point therapies. In another trial (93), MC presence was increased in
anti-PD-1 nonresponder patients (30). These results show that MC
infiltration is associated with the presence of FOXP3þ Tregs, along
with the downmodulation of HLA-class I on tumor cells, lack of CD8þ

T cells and subsequent ineffectiveness of the anti-PD-1 treatment.
AnothermechanismbywhichMCs could promote immune evasion

is constituted by their capability to interact withMDSC.MDSC are the
key regulators of immunesurveillance escape given their capability to
suppress T-cell responses (94). In colon carcinoma, MC presence
increases the recruitment and activity of MDSC, supported by
increased release of nitric oxide, which results in a proportional
inhibition of T-cell proliferation and consequent tumor-induced
tolerance (94). Concerning this aspect, it has been demonstrated that
MC and MDSC cross-talk is mediated by CD40L-CD40 and this axis
results in the suppression of tumor-specific T-cell response in prostate
cancer models (12).

Evaluating MC Infiltration in Human
Tumors

Tissue MCs can be detected in situ bymetachromatic staining, such
as toluidine blue, or by specific IHC to detect c-Kit (CD117) and
tryptases (7). Alternatively, MC density can be inferred by gene
expressing profile of whole tumors (95) exploiting deconvolution
software as CIBERSORT (36). In situ detection of MCs displays the
advantage that also the localization and the shape of MCs can be
appreciated providing crucial information on their effect (96). In fact,
several reports agree that MC predictive/prognostic value differs
according to their localization: around tumor margins (41) or infil-
trating the tumor mass (97). Moreover, the distance from other
immune cell populations also affects the local immune microenviron-
ment, possibly impacting on breast carcinoma response to thera-
py (11). MCs are endowed with immunomodulator activities in breast
carcinoma and other solid tumors modifying the TME by either direct
contact or secreting soluble factors. Therefore, the use of IHC or
metachromatic staining allows to evaluate the spatial distribution of
MCs, pending some limitations. In theory, the whole tumor should be
analyzed because the distribution of MCs within the tumor is hetero-
geneous, more than onemarker needs to be employed because no truly
specific marker for MCs (e.g., c-Kit) is available and, finally, degra-
nulated MCs are often difficult to detect.

On the other hand, MC signatures are increasingly used to quantify
the presence of MCs in tumor tissues (98) and their activation state.
CIBERSORT represents the most employed signature to estimate
tumor-infiltrating immune populations and includes about 50 genes
suitable to quantify the level of MC infiltration, also discriminating
between resting and activatedMCs (36). RestingMCs are generally less
abundant in breast tumors compared with normal tissues, vice versa
activated MCs are increased in breast carcinoma tissues. Nevertheless,
these two MC statuses are associated with different cancer out-
comes (38), sometimes even opposite, suggesting that the presence

of MCs may not have a negative impact on tumors per se, but their
activation is somehow linked to amore aggressive phenotype. This was
first described in a pan-cancer analysis (37) and then applied specif-
ically to breast carcinoma. Notably, the negative impact on OS and
DFS of activated MCs is not observed in every breast carcinoma
subtype, but it is significant in HER2-positive tumors (54). The same
work supports the idea that activatedMCs display even a positive effect
on pCR in TNBC. As already mentioned, many genes, which are
commonly exploited to identify MCs, are not really MC-specific and
differently localized MCs are characterized by a diverse gene expres-
sion profile. Hence, a number of works tried to identify MC-specific
genes also able to identify their particular activation states/subsets (99).
As already mentioned, MC VEGFA:TNF ratio was shown to be
prognostic (66). MCs represent the only cell type able to store
preformed TNF in their granules (100), and hence display antitumor
activities, while being capable of protumor effects via angiogenesis
promotion (67, 101–105). Accordingly, different groups described the
prognostic values of MC-related signatures (106) in diverse tumor
types (12, 28, 107).

Pharmacologic Approaches to Target
MCs in Preclinical Models

BecauseMCs represent key components of immune tumor infiltrate
and have a crucial role in inflammation and angiogenesis (1), their
targeting represents a possible strategy for therapeutic purposes (108).
Several compounds for example, cromolyn sodium (109), nedocromil
and lodoxamide are able to stabilize MCs hereby preventing their
degranulation as well as the release of theirmediators (110). It has been
reported that the administration of cromolyn in TRAMP mice, a
murine model of prostate cancer, increased the development of
aggressive neuroendocrine areas, suggesting a protective effect of MCs
in this tumor type (17). In mouse models of breast carcinoma,
treatment with cromolyn induced an increase of blood clotting and
hypoxia in subcutaneous 4T1 mammary adenocarcinoma cell line
tumors supporting a role ofMCs in the inhibition of hypoxia and blood
clotting, which likely occurs via release of heparin, chymase, and
tryptase (111). The inhibition of MCs by cromolyn sodium in cho-
langiocarcinoma determines the block of histamine release and,
consequently, results in the reduction of tumor proliferation, angio-
genesis and expression of mesenchymal markers (23).

In an attempt to inhibit the activity ofMCs in angiogenesis, VEGFA
was blocked through the employment of FDA-approved anti-
angiogenic drugs that either target VEGF or its receptors (112). MC
presence negatively affects the efficacy of antiangiogenic therapy
(AAT) through the release of matrix-degrading granzyme B. By using
a pancreatic tumor model, authors found that the absence of MC
increased the antitumor efficacy of anti-VEGF-R2 antibody DC101,
hence indicating that MCs hinder the sensitivity of tumors toward
AAT. The mechanisms involved in this event are related to the
expression of ECM-degrading proteases, specifically granzyme B,
which is responsible for the release of proangiogenic factors, such
as FGF-1 and GMCSF from the ECM (112). Another potential
therapeutic approach to inhibit MCs in cancer is achievable through
the pharmacologic targeting of the c-Kit receptor tyrosine kinase (113),
which is essential for MC homeostasis, by the employment of TKI
compounds including imatinib, dasatinib, and sunitinib, which inhibit
the catalytic activity of both wild type and mutated, for example,
D816V (114), c-Kit. The targeting of c-Kit/SCF interaction is also
promising for the treatment of patients affected by cholangiocarci-
noma because it results in the disruption of the cross-talk betweenMCs
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and cholangiocarcinoma cells with consequent reduction of tumor
progression (23).

Conclusions
Initially neglected, MCs are progressively becoming crucial

players in cancer, because increasing evidence supports their capa-
bility to affect outcome and therapy efficacy. Nonetheless, despite
the many works that have been published in the last year, the
ultimate role of MCs in tumors is far from being understood.
Findings are characterized by apparently contradictory data, which
actually are consequent of the plastic nature of MCs that are
extremely sensitive to microenvironmental cues to which they
suddenly respond. Hence, the effect of MCs cannot be limited to
the dichotomy presence/absence, but it is caused, at least in breast
carcinoma, by their activation and degranulation state, localization,
secretion of cytokines and/or proteases, density, proximity to other

immune and cancer cells. MCs could so represent an important tool
to manipulate and predict cancer outcome, but, before they can be
employed as prognostic/predictive markers or even as targets for
novel therapeutic approaches, a deeper characterization of their
biology and the identification of specific profiles associated to their
activation and localization are still necessary.
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