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Abstract: Cancer is a challenging problem for the global health community, and its increasing burden
necessitates seeking novel and alternative therapies. Most cancers share six basic characteristics
known as “cancer hallmarks”, including uncontrolled proliferation, refractoriness to proliferation
blockers, escaping apoptosis, unlimited proliferation, enhanced angiogenesis, and metastatic spread.
Apoptosis, as one of the best-known programmed cell death processes, is generally promoted through
two signaling pathways, including the intrinsic and extrinsic cascades. These pathways comprise
several components that their alterations can render an apoptosis-resistance phenotype to the cell.
Therefore, targeting more than one molecule in apoptotic pathways can be a novel and efficient
approach for both identifying new anticancer therapeutics and preventing resistance to therapy. The
main purpose of this review is to summarize data showing that various plant extracts and plant-
derived molecules can activate both intrinsic and extrinsic apoptosis pathways in human cancer cells,
making them attractive candidates in cancer treatment.

Keywords: plant extracts; phytochemical; medicinal herb; apoptosis; cancer

1. Introduction

Cancer is a global health issue that brings many medical challenges for patients. It
was estimated in 2018 that 17 million new cases of cancer had been diagnosed and over
half of these patients ended up dying. In addition, the reports show that the new cases
would rise up to 27.5 million by 2040 [1]. World Health Organization (WHO) defines cancer
as the second leading cause of mortality, leading to one in six deaths worldwide. These
estimations rely on the recent advancements in biotechnology and diagnostic methods.
More recent progressions in the field of molecular biology and genetics have also allowed
for a better understanding of the disease. Therefore, today the word “cancer” could
be attributed to many disease types that have similar fundamental characteristics [2].
However, Hanahan and Weinberg defined cancer as a genetic disease caused by DNA
mutations leading to uncontrolled cell proliferation [3]. Their description of cancer relies on
the somatic mutation theory and its cell-based gene variations. According to their point of
view, cancers have some basic characteristics, which have called “hallmarks of cancer”’ [4].
These hallmarks include six biological properties that a tumor may acquire during its
developmental process. Indeed, the hallmarks are principles that help to rationalize
the intricate nature of neoplastic disease. They include continuous proliferative signals,
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insensitivity to proliferation inhibitors, escaping apoptosis, uncontrollable replicative
capability, increased angiogenesis, and metastatic propagation [3]. It is no clear that the
precise explanation of the cancer hallmarks may have translational benefits in the clinical
setting, and targeting one or more hallmarks may help to defeat cancer or increase patient
survival [5]. As mentioned before, cell death evasion is one of the major hallmarks of
cancer. The physiologic activity of apoptosis is to maintain a balance between cell death
and cell proliferation.

Apoptosis is a multistep process that involves two major pathways to trigger a cascade
of events leading to the fragmentation of chromatin and nuclear membrane. However,
when this physiological process tended to be dysregulated, many pathological transforma-
tions happen to develop cancer [6]. Thus, seeking a way to induce this process in cancer
cells may have beneficial effects in hampering cancer development and growth. Plant
extracts and plant-derived natural molecules are such promising candidates for use as
anticancer therapeutics. In some parts of the world, plant species have been reported to
treat some cancer types, such as prostate, pancreas, stomach, oral, cervix, breast, colon,
lung, hepatic, skin, and blood cell malignancies [7–10]. Further analysis of in vitro studies
illustrated that anticancer properties of the secondary metabolites in the plant extracts are
exerted through DNA damage and induction of apoptosis in cancer cells [10]. This review
article briefly describes various mechanisms of apoptosis and its deregulation during
malignant transformations and summarizes the plant materials with the capacity to target
both pathways of apoptosis in cancer cells.

2. Major Apoptotic Pathways

The term “apoptosis” is derived from a Greek word with the meaning of falling off of
the dead leaves from trees in autumn [11]. Kerr et al. first proposed this term to describe
morphological alterations of the cells during this process. These morphological changes
occur through two main steps. The early apoptosis events include pyknosis (i.e., decreased
cell volume), nuclear degradation, and chromatin condensation [12]. At the later step
of apoptosis, initial morphological changes in the cells include cell shrinkage, plasma
membrane blebbing, cytoplasmic organelles modification, loss of cell membrane integrity,
and production of apoptotic bodies [13]. The process of apoptosis was identified very
late in the history of cellular biology; because the apoptotic cells are usually engulfed by
phagocytes before the formation of apoptotic bodies. The presence of apoptotic bodies was
discovered in vitro under particular conditions. Under these conditions, the remnants of
apoptotic cells generally undergo degradation, which is known as secondary necrosis [14].

Early in apoptosis, phosphatidylserine (PS) molecules usually are flipped out to the
outer layer of the cell membrane. PS exposure to the cell surface displays an engulfment
signal, which attracts phagocytic cells to engulf apoptotic cells without the secretion of
inflammatory cytokines [15]. It has been clearly described that various endogenous and
exogenous agents trigger programmed cell death in a specific cell type. Physical stimulators
(such as radiation, trauma, and chemotherapeutics) and infectious pathogens (viruses
and bacterial toxins) are exogenous factors that affect most types of cells. Endogenous
activators of apoptosis include the absence of growth factors, trophic hormone deficiency,
glucocorticoid therapy, and ablation of matrix attachment [16]. Regardless of the type of
stimulators of apoptotic cell death, this process is usually triggered through two distinct
mechanisms and pathways that are completely explained in the next section. Figure 1
depicts major apoptotic pathways in relevant factors.
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Figure 1. Overview of the extrinsic and intrinsic apoptosis signaling pathways and their major role-players. FasL—Fas
ligand; TNF—tumor necrosis factor; TRAIL—TNF- related apoptosis-inducing ligand; TRADD—TNF receptor-associated
death domain; FADD—Fas-associated death domain; Bcl-2—B cell lymphoma-2; Cyt c—cytochrome c; Apaf-1—apoptotic
protease activating factor 1; AIF—apoptosis-inducing factor; Smac/DIABLO—second mitochondria-derived activator
of caspase/direct IAP binding protein with low pI; HtrA2—Omi/high-temperature requirement protein A; XIAP—X-
linked inhibitor of apoptosis protein; c-FLIP—cellular FADD-like IL-1β-converting enzyme (FLICE) inhibitory protein;
MPT—mitochondrial permeability transition; t-BID—truncated BH3 interacting-domain death agonist.

2.1. Extrinsic Pathway of Apoptosis

The first pathway of apoptosis, named the extrinsic pathway, is triggered via cell-
surface proteins that are known as death receptors. Initiation of this pathway occurs
when death receptors, such as Fas, the tumor necrosis factor (TNF) receptors TNFR1
and TNFR2, and the TNF- related apoptosis-inducing ligand (TRAIL) receptors DR4 and
DR5 are occupied by Fas ligand, TRAIL, and TNF [17–20]. The intracellular parts of
the death receptors have a conserved protein–protein interaction domain known as the
death domain that is binding sites for adaptor proteins, such as TNF receptor-associated
death domain (TRADD) and Fas-associated death domain (FADD), as well as initiator
caspases like caspase 8 and 10 [21–23]. In this pathway of apoptosis, the cellular FADD-
like IL-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP) acts as an inhibitor by
negative regulation of the activation of these procaspase proteins [24]. Activated caspases
8 and 10 subsequently activate effector caspases (3, 6, and 7) and cleave BH3 interacting-
domain death agonist (BID) protein, which translocates to the mitochondria and causes
the release of cytochrome C into the cytoplasm [25]. Therefore, the extrinsic pathway
can trigger apoptosis through direct activation of effector caspases or by mitochondria-
dependent pathway.

This interesting activity of BID depends on the type of the cell; in type II cells (which
are mainly dependent on the intrinsic pathway), BID helps to fortify the apoptotic signal by
involving the mitochondria and causing more effective apoptosis in these cells., but in type
I cells (which mainly trigger the extrinsic pathway), BID action is not necessary, and death
receptors efficiently trigger apoptosis by activating downstream caspases [26]. In addition
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to FLIP protein, there are cell-surface proteins called decoy receptors (DcRs) that act as a
negative regulator of the extrinsic pathway of apoptosis. These receptors compete with the
death receptors to bind death ligands and thereby limit apoptosis signaling through death
receptors. DcR1 and DcR2 have been shown to bind TRAIL receptors and DcR3 acts as a
decoy receptor for FasL in several cancer cells [27].

2.2. Intrinsic Pathway of Apoptosis

As is implied from its name, the intrinsic pathway of apoptosis is triggered by the stim-
ulators from intracellular space. Furthermore, this pathway is known as intrinsic because
it is mediated mainly by mitochondria within the cell [28]. Many stimulators, such as ox-
idative stress, irradiation, cytotoxic drugs, DNA damage, and hypoxia, are involved in the
activation of the intrinsic pathway of apoptosis [29–31]. Regardless of the cause, the pivotal
element for the intrinsic pathway’s initiation is augmented mitochondrial outer membrane
permeability and the release of cytochrome C from the mitochondrial intermembrane space
into the cytoplasm [32]. The release of cytochrome C from mitochondria occurs via several
possible mechanisms, including the induction of mitochondrial permeability transition
(MPT), proapoptotic B-cell lymphoma protein 2 (Bcl-2) family proteins (like Bax/Bak), and
decreased hypotonicity of cytoplasm due to ionic effluxes [33]. In the cytosol, the released
cytochrome C forms a multiprotein complex structure with apoptotic protease activating
factor-1 (Apaf-1) and procaspase-9, which is known as the apoptosome.

Apoptosome complex plays an important role in converting procaspase-9 to active
caspase-9, which in turn contributes to the activation of effector caspases signaling, leading
to the destruction of the cell by the apoptosis process [34]. As mentioned before, the Bcl-2
family members are the major regulators of the intrinsic pathway of apoptotic cell death.
This family is comprised of two groups of proteins with opposite activities in the apoptosis
process. For example, Bax, Bak, Bad, Bcl-Xs, Bid, Bik, Bim, and Hrk play proapoptotic
activity, but Bcl-2, Bcl-xL, Bcl-W, Bfl-1, and Mcl-1 have an antiapoptotic role [35]. Proapop-
totic proteins act by forming mitochondrial membrane pores to release cytochrome C, but
antiapoptotic ones function oppositely to block their action [36]. Apoptosis-inducing factor
(AIF), the second mitochondria-derived activator of caspase (Smac)/direct IAP binding
protein with low pI (DIABLO), and Omi/high-temperature requirement protein A (HtrA2)
are other apoptotic proteins that are released from the mitochondria during cytochrome
C efflux. These three proteins act by binding to the inhibitor of apoptosis proteins (IAPs)
and prevent them from interacting with and inhibit caspase-9 and -3 during the apoptosis
process [37].

2.3. The Mechanisms of Apoptosis Evasion in Cancer

One of the main hallmarks of cancer is cell death evasion [3]. Several stressor stimuli
induced by cancerous conditions compel cancer cells to avoid apoptosis, leading to the
development of a tumor and resistance to therapy [38]. Cancer cells elaborate several
mechanisms to dysregulate intrinsic or extrinsic pathways to evade apoptosis (Figure 2).

The first molecules that are impaired in the extrinsic pathway are death receptors. For
instance, downregulated CD95, as a death receptor, has been attributed to the resistance of
leukemia and neuroblastoma cell lines to treatment approaches [39]. Furthermore, defective
molecules that act downstream of the death receptors may contribute to the development
of apoptosis-resistance in tumors.

Tourneur et al. found that downregulation or loss of expression of the FADD protein
in leukemic cells was a predictor of resistance to chemotherapy and a poor prognostic
factor [40]. Treatment modalities targeting TRAIL receptors revealed that the main cause
of apoptosis resistance in colon cancer cell lines is the inappropriate transport of DR-4
and DR-5 receptors from intracellular sources to the cell surface [41]. Further, epigenetic
mechanisms like CpG-island hypermethylation can hamper the expression of death re-
ceptors and lead to the decreased levels of the receptors in the cell membrane [42]. The
DcRs are another way for cancers to evade apoptosis. For example, DcR3, which binds
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Fas ligand by a competitive mechanism and blocks Fas ligand-mediated apoptosis, was
identified to be upregulated in glioblastoma and carcinomas of lung and colon [43]. In the
meantime, upregulation of c-FLIP, an antiapoptotic factor, has been shown in numerous
cancers [44–46]. caspase-8 is another target molecule modified in a variety of cancers.
Neuroblastoma and carcinomas of colorectal and head and neck tissues harbor inactivating
genetic mutations of caspase-8 [47–49].

Figure 2. A schematic representation of the different mechanisms of apoptosis evasion used by cancers.

Epigenetic mechanisms are also implicated in the inactivation of caspase-8 during
tumor development and progression [50,51]. A number of potential mechanisms have
also been proposed for cancer cells to evade apoptosis through targeting the intrinsic path-
way. Overexpression of the antiapoptotic BCL-2 family proteins and underexpression of
proapoptotic factors, such as Bax, has been numerously reported in various cancers [52,53].
This is the predominant mechanism for the escape of cancer cells from apoptosis. Limiting
the release of cytochrome C is another method to circumvent programmed cell death during
cancer development. Neuroglobin (NGB) is an oxygen-binding globin protein that forms a
complex with cytochrome C, preventing its release into the cytosol and activation of the
caspase 9 [54]. NGB has been reported to be overexpressed in cancer cells rendering them
chemo- and radiotherapy resistance [55]. Apaf-1 is another target with altered expression
or activity in some types of cancer cells. These alterations have been described to block
apoptosis cascade and give the ability to a cancer cell to survive and resist treatment [56,57].
Aberrant expression or function of IAP proteins is also a way used by cancer cells to avoid
programmed cell death. For example, the X-linked inhibitor of apoptosis protein (XIAP)
is frequently upregulated in many cancer tissues and cells and has been recognized to be
responsible for the cancer cell’s resistance to various apoptotic stimuli [58].

2.4. Plant Materials That Simultaneously Target Both Intrinsic and Extrinsic Pathways
2.4.1. Plant Extracts

According to their ancestral use in traditional medicine, various plant extracts have
been shown to activate apoptosis in human cancer cells (see Table 1).
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Table 1. Plant extracts with the capacity to trigger both pathways of apoptosis.

Plant Botanicalname Extraction
Solvent

Plant Part
Used Concentration Cell lines or Animal

Model Used Altered Factors

Azadirachta indica Ethanol Leaf 200 mg/kg BW squamous cell carcinoma
in a hamster model

Increased: Bim; activation of
caspase-3 and -8
Decreased: Bcl-2

Brucea javanica Ethanol Fruit Different
concentrations for
each assay (25, 50,
and 100 µg/mL)

HT29 Increased: Fas; TNFR1; TNF2;
DR6; CD40; Bid; caspase-8;

caspse-9; TRAIL-4; Bax; Bad;
cytochrome c release

Decreased: Bcl-2

Camellia sinensis Water Leaf IC50 = 86.68 ±
0.73 µg/mL

HT-29 Increased: activation of
caspase-3, -9, and
-8Decreased: NR

Camellia sinensis Water Leaf 15 × 105 µg/day Clinical trial, patients
with colorectal cancer

Increased: NR
Decreased: incidence of

metachronous adenomas; size
of relapsed adenomas

Camellia sinensis Water Leaf 9 × 105 µg/day Clinical trial, patients
with metachronous
colorectal adenoma

and cancer

Increased: NR
Decreased: incidence of

metachronous adenomas;
the number of

relapsed adenomas

Cinnamomum
kanehirai Hayata

Ethanol Leaf Different
concentrations for

each assay
(0.25–1.0 mg/mL)

HepG2 and
HA22T/VGH

Increased: activation of
caspase-3, -9, and -8; Bax

Decreased: Bcl-2

Corni Fructus Water Whole plant 2500 µg/mL U-2OS Increased: Bax; cytochrome c
release; AIF, Fas, TRAIL;

activity and protein level of
caspase-3, -9, and -8

Decreased: MMP

Cucurbita ficifolia chloroform Fruit IC50 = 90µg/mL MCF-7 Increased: FADD; BAK; BAX;
caspase-3, -9, and -8

Decreased: NR

Cucurbita ficifolia Ethanol Seed 32 × 104 µg/day Clinical trial, patients
with symptomatic benign

prostatic hyperplasia

Increased: quality of life score;
maximal urinary flow rate
Decreased: international

prostate symptom
score; Serum

prostate-specific antigen

Cyperus rotundus L. Ethanol Rhizome 200 µg/mL MDA-MB-231 Increased: Bax; DR5;
activation of Bid; activation of

caspase-3, -9, and -8
Decreased: Bcl-2;
survivin; MMP

Euphorbia hirta L. Methanol Whole plant IC50 = 25.26µg/mL MCF-7 Increased: activation of
caspase-2, -6, -8, -9, and -3

Decreased: NR

Euphorbia lunulata n-hexane Aerial parts IC50 = 20 µg/mL SGC7901/ADR Increased: Bax; activation of
caspase-3, -9, and -8;
cytochrome c release

Decreased: Bcl-2

Hibiscus sabdariffa Water Leaf 50 and 100 µg/mL LNCaP and LNCaP
xenograft nude mice

Increased: Bax; cytochrome c
release; activation of
caspase-3, -9, and -8;

activation of Bid; FasL
Decreased: Bcl-2; MMP

Hwang-Heuk-San
(HHS)

Water Polyplant
formula

Different
concentrations for

each assay
(0–6.1 mg/mL)

HCT116 Increased: Bax; cytochrome c
release; activation of
caspase-3, -9, and -8;

activation of Bid; FasL;
DR4; DR5

Decreased: Bcl-2; MMP
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Table 1. Cont.

Plant Botanicalname Extraction
Solvent

Plant Part
Used Concentration Cell lines or Animal

Model Used Altered Factors

Inula racemosa Hook.f. Ethanol Root IC50 = 16.70 mg/mL
for n-hexane fraction

HL-60 Increased: activation of
caspase-3, -9, and -8;
cytochrome c release;

Bax translocation
Decreased: MMP

Leonurus sibiricus Methanol Root IC50 = 1 mg/mL Grades (I-III) of human
glioma cells derived

from patients

Increased: Bax; p53;
caspase-3, -8, and -9

Decreased: Bcl-2; MMP

Mangifera indica Ethanol Fruit peel Different
concentrations for

each assay
(0–400 µg/mL)

HeLa Increased: activation of
caspase-3, -9, and -8

Decreased: Bcl-2

Narcissus tazetta var.
chinensis

Chloroform Stem and leaf 5.0 µg/mL HL-60 Increased: Bax; cytochrome c
release; activation of
caspase-3, -9, and -8

Decreased: Bcl-2

Oldenlandia diffusa Methanol and
butanol

Whole plant Different
concentrations for

each assay
(0–20 µg/mL)

Oldenlandia diffusa

MCF-7 Increased: Bax; activation of
caspase-8 and -7
Decreased: Bcl-2

Psidium cattleianum
Sabine

Chloroform Leaf Different
concentrations for

each assay
(0–200 µg/mL)

Oldenlandia diffusa

SNU-16 Increased:
Bax; PARP; caspase-3 and -8

Decreased: Bcl-2

Qingjie Fuzheng
granule (QFG)

Water Polyplant
formula

Different
concentrations for

each assay
(0–1500 µg/mL) for

cell lines;
0.75 g/kg and

1.5 g/kg for mice

SK-Hep-1, Bel-7402,
HCT-116, and HCT-8;

mouse xenograft model

Increased: Fas; FasL; Bax;
activation of caspase-3, -9,
and -8 Decreased: Bcl-2;
tumor weight in mice

Solanum lyratum Chloroform Whole plant 40 µg/mL HSC-3, SAS, and CAL-27 Increased: Bax and Bad;
activation of caspase-3,

-9, and -8
Decreased: Bcl-2 and

Bcl-xl; MMP

So-Cheong-Ryong-
Tang

Water Polyplant
formula

500 and 1000 µg/mL
for cell line;

157.5 mg/kg/day
for mice

AGS; mouse
xenograft model

Increased: activation of
caspase-3, -9, and -8

Decreased: tumor weight
in mice

Toddalia asiatica (L.)
Lam.

Dichloromethane Root IC50 = 18 µg/mL HT-29 Increased: activation of
caspase-3, -9, and -8

Decreased: NR

Uncaria tomentosa
(Wild.) DC.

Ethyl acetate Whole plant 100 µg/mL HL-60 Increased: Fas, activation of
caspase-3, -9, and -8; Bax;

cytochrome c release
Decreased: MMP; Bcl-XL

Uncaria tomentosa
(Wild.) DC.

Ethanol Bark 30 × 104 µg/day Clinical trial, patients
with breast cancer

Increased: Neutrophil count;
Superoxide dismutase activity

Decreased: DNA damage

MMP: Mitochondrial membrane potential; NR; Not reported.

The ethanolic extract from Azadirachta indica (known as neem) leaf has been discovered
to suppress the growth of squamous cell carcinoma in a hamster model of the disease. This
extract acted by the induction of apoptosis through elevating the expression of proapop-
totic factor Bim and caspase-8 and -3 as well as the downregulation of Bcl-2 expression,
suggesting the modulation of both intrinsic and extrinsic pathways due to the exposure
of the tumor to the extract [59]. Antiproliferative effects of Camellia sinensis (known as
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tea plant) on the colorectal cancer cell line, HT-29, was affirmed to be attributed to its
apoptosis-triggering capability, which is evidenced by activating caspase-3, -8, and -9 in
these cancer cells. This indicates that white tea leaves extract may act by orchestrating
both death receptor- and mitochondrial-mediated apoptosis in colon cancer [60]. Using
n-hexane fractionation prepared from ethanolic extract of the roots of Inula racemosa (known
as pushkarmool), Pal and colleagues showed that treating a human leukemia cell line,
HL-60, by this extract induced both pathways of apoptosis. This product enhanced the ac-
tivity of caspase-9, -3, and -8 but remarkably decreased mitochondrial membrane potential
(MMP), cytochrome C release, and Bax translocation to the mitochondrial membrane [61].

Evaluation of the effect of ethyl acetate extract of Uncaria tomentosa (known as Cat’s
Claw plant) on HL-60 cells demonstrated that this plant extract act not only by triggering
intrinsic apoptotic pathway through collapsing MMP, decreasing Bcl-XL, and increasing
Bax, cytochrome C efflux, and caspase-9 activation, but also by elevating the membrane-
bound Fas in addition to the activation of caspase-8 and cleavage of Bid [62]. Treating
human hepatoma cell lines (HepG2 and HA22T/VGH cells) with ethanolic extract of
Cinnamomum kanehirai (known as small-flowered camphor tree, or stout camphor tree)
leaves unraveled its apoptosis-inducing activity, which exerted by targeting the cleavage of
caspase-3 and enhancement of caspase-8 and caspase-9 activity. Additionally, this treatment
significantly elevated the ratio of Bax to Bcl-2 [63]. Human cervical carcinoma HeLa cell
death has been reported to be induced by exposing them to ethanolic extract prepared from
mango peels (Mangifera indica). This extract inhibited the expression of Bcl-2 and thereby
caused the activation of caspase-3, 7, 8, and 9 in these cancer cells [64]. Chloroform extract
prepared from the whole plant of Solanum lyratum (known as nightshades) has been shown
to stimulate both extrinsic and intrinsic pathways of apoptosis in three human oral cancer
cell lines (HSC-3, SAS, and CAL-27 cells). The extract acted by downregulating Bcl-2 and
Bcl-xl but upregulating Bax and Bad in these cell lines [65]. It also induced ROS formation,
decreased MMP, and activated caspase-8, -9, and -3 [65].

Dichloromethane extract of the roots of Toddalia asiatica (known as an orange climber)
has shown the strongest antiproliferative activity compared to other fractions. Treating
HT-29 human colon cancer cell line with this plant product promoted both intrinsic and ex-
trinsic pathways of apoptosis by enhancing the activity of caspases -8, -9, and -3. Moreover,
ROS generation appears to be the main reason for the cell cycle arrest in these cells fol-
lowing extract exposure [66]. Ethanolic extract of the rhizome of Cyperus rotundus (known
as coco-grass, Java grass, nutgrass, purple nutsedge or purple nutsedge, red nut sedge,
Khmer kravanh chruk) suppresses the proliferation of triple-negative human breast cancer
cell line, MDA-MB-231. This plant material mainly acts by simultaneous activation of both
pathways of apoptotic cell death in these cells. On one hand, the plant extract upregulates
DR5 and proapoptotic Bax but downregulates antiapoptotic Bcl-2 and survivin. On the
other hand, it acts by decreasing Bid expression and activating caspase-8 and -9, -3, but
increasing mitochondrial membrane depolarization [67]. MCF-7 breast cancer cell line
has been revealed to die due to the exposure to the methanolic extract of Euphorbia hirta
(known as asthma-plant) whole plant. The extract affected various components of intrinsic
and extrinsic pathways of apoptosis through reduction elevation of intracellular ROS,
fragmentation of DNA, and activation of caspase-2, -6, -8, -9, and -3 [68]. Exposing the
multidrug-resistant human gastric cancer SGC7901/ADR cell line to n-hexane extract of
the aerial parts of Euphorbia lunulata (known as crescent-shaped Euphorbia, leafy spurge or
cateye spurge) inhibited the proliferation and invasiveness of the cells. The effect of this
extract on the inhibition of proliferative capacity of SGC7901/ADR cells was accompanied
by the induction of apoptosis through increased activities of caspase-3, -8, and -9 as well as
the overexpression of Bax, underexpression of Bcl-2, and release of cytochrome C into the
cytoplasm of the cells [69].

The leaf extract of Hibiscus sabdariffa (known as Roselle) induced intrinsic and extrinsic
apoptosis in androgen-dependent prostate cancer cell lines (LNCaP cells). This medicinal
herb extract declined the expression of Bcl-2 and collapsed MMP but increased cytoplasmic
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cytochrome C, FasL, Bax, t-Bid levels and activities of caspase-3, -9, -8 [70]. In vivo data
from this study indicated that treating nude mice xenograft model of this cancer with
Roselle leaf extract (50 or 100 µg/mL) not only decreased tumor burden but also increased
the expressions of FasL, Bax, and cleaved caspase-3 in tumor tissues [70]. The chloroform
fraction of the extracts of the stems and leaves of Narcissus tazetta var. chinensis (known as
Chinese Sacred Lily) has been identified to trigger both intrinsic and extrinsic apoptosis
processes in the HL-60 cell line. This herbal product influenced apoptosis pathways via
upregulation of Bax, downregulation of Bcl-2, the subsequent release of cytochrome C into
the cytosol, and the activation of caspase-8, -9, and -3 enzymes [71]. Sitarek et al. used
methanolic root extract of Leonurus sibiricus (known as honeyweed or Siberian motherwort)
to evaluate its anticancer effects on human glioma primary cells. They experimentally
illustrated the apoptosis-inducing activity of the extract, which was confirmed by the
production of ROS, loss of MMP, and cell cycle arrest in these cells. Then, they found
that this treatment caused the elevation of the mRNA and protein levels of Bax, p53,
caspase-3, -8, and -9 while declining the expression of Bcl-2 [72]. Qingjie Fuzheng granule
(QFG) is comprised of four Chinese medicinal plants, including Hedyotis diffusa Willd,
Malt, Astragalus, and Scutellaria barbata D. Don. Zhong et al. conducted an investigation
to assess QFG effects on the growth of hepatocellular carcinoma (HCC) cells both in vivo
and in vitro. The results showed that QFG hampered cell proliferation by upregulating
Fas, FasL, and Bax and downregulating Bcl-2 protein. It also induced the activation of
caspase-8, -9, and -3. In vivo study of this poly-herbal formulation on HCC xenograft mice
showed an inhibitory effect of QFG on HCC tumor growth without any toxicity [73].

Studies of Yong et al. on QFG anticancer activities against colorectal cancer cell
lines HCT-116 and HCT-8 also led to the same data [74]. The exposure of MCF-7 cells
to methanol and butanolic extracts of Oldenlandia diffusa (known as Oldenlandia diffusa
(Willd) Roxb) has been discovered to activate caspase-8, and caspase-7, while induced
Bax expression and reduced Bcl-2 level [75]. Hwang-Heuk-San (HHS) is a mixture of
some Korean medicinal herbs with anticancer activity against HCT116 human colorectal
cancer [76]. This herbal formula influenced the intrinsic pathway of apoptosis by inducing
ROS production, leading to the decreased MMP and increased cytochrome C levels in the
cytosol. The mixture also amplified Bax, reduced Bcl-2 levels, and activated caspase -9. It
also acted on the extrinsic pathway through the activation of Bid and caspase-8 together
with overexpression of FasL, DR4, and DR5. Finally, the effector caspase (caspase-3)
was stimulated to cleave and activate other components of the cascade [76]. So-Cheong-
Ryong-Tang is another polyherbal mixture whose fermented product induced apoptosis in
AGS gastric adenocarcinoma cell line by activating the caspase-3, -8, and -9. Testing this
polyplant mixture in murine models of gastric adenocarcinoma led to significant inhibition
of tumor weight 48.6% compared to control animals [77]. The positive staining for anti-
Bcl-2, -Bax, -PARP, -caspase-8, and -caspase-3 antibodies in SNU-16 gastric carcinoma
cells following their exposure to chloroform extract of guava leaves (Psidium cattleianum)
uncovered the involvement of intrinsic and extrinsic pathways in apoptosis-inducing
effects of this natural product [78].

The chloroform extract of Cucurbita ficifolia (known as fig-leaf gourd, Malabar gourd,
black seed squash and cidra) fruit acted on MCF-7 cells through targeting apoptotic path-
ways. It amplified the expressions of FADD, BAK, BAX, and caspase-8, -9, -3 [79]. U-2OS
human osteosarcoma cells underwent apoptotic cell death due to the exposure to crude
extract of Corni fructus (known as Shan Zhu Yu in China). This plant extract elevated both
activity and protein level of caspase-8, -9, and -3. The formation of ROS, overproduction of
intracellular Ca2+, reduction of MMP, and also increased levels of Bax, cytochrome C, AIF,
Fas, and TRAIL in the apoptotic cascade were observed following this treatment, indicating
the concurrent induction of both receptor and mitochondrial-mediated apoptosis in this
cell line [80]. Ethanolic extract of the fruits of Brucea javanica (known as Macassar kernels)
has been observed to have apoptogenic effects on HT29 colon cells. Its mechanism of
action involves both receptor- and mitochondria-mediated pathways. The extract ampli-
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fied some key factors in the extrinsic pathway, including Fas, TNFR1, TNF2, DR6, CD40,
Bid, caspase-8, and TRAIL-4. It also acted on the intrinsic pathway by upregulating Bax,
Bad, cytochrome-c, and downregulating Bcl-2 along with the activation of caspase-9 [81].
Overall, the literature contains a large number of studies about plant extracts able to induce
apoptosis in human cancer cells through activation of molecules of the intrinsic and/or
extrinsic apoptosis pathways. Importantly, some of these crude plant extracts were further
found active in vivo, causing cancer cell apoptosis and reducing cancer progression. Al-
though these observations conducted with crude plant extracts in vitro/in vivo support
the ancestral use of these plants in traditional medicine to fight cancer, occidental medicine
and science require confirmation of such effect with pure molecules isolated from plants.

2.4.2. Isolated Phytoconstituents

Numerous plant-derived molecules have been shown to activate apoptosis (Table 2
and Figure 3).

Table 2. Phytochemicals with the ability to induce both pathways of apoptosis.

Chemical Family Molecule Name Concentration (µM) Cell Line Altered Factors

Alkaloid (-)-Anonaine 100 µM HeLa Increased: Bax; cytochrome C
release; activation of caspase-3,

-7, -9, and -8
Decreased: MMP

Berberine IC50 = 75 µM SCC-4 Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8; AIF; Endo G
Decreased: MMP Bcl-2

30 × 104 µg/day Clinical trial, patients
with familial

adenomatous polyposis

Increased: NR
Decreased: polyp
size and number

Hemanthamine and
hemanthidine

Various concentrations
(5–20 µM)

Jurkat Increased: activation of
caspase-3, -7, -9, and -8

Decreased: MMP

Lycorine IC50 = 1 µM HL-60 Increased: Bax; activation of
caspase-3, -9, and -8

Decreased: Bcl-2

IC50 = 1.25 µM KM3 Increased: Bax; activation of
caspase-3, -9, and -8

Decreased: Bcl-2

Meisoindigo 20 µM HL-60 Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8; FasL
Decreased: Bcl-2

75–150 × 103 µg/day Clinical trial phase II,
patients with chronic

myelogenous leukemia

Increased: Hematological
complete response (CR) and
partial response (PR) rates of
32.1% and 48.5%, respectively

Decreased: NR

100–150 × 103 µg/day Clinical trial phase III,
patients with chronic

myelogenous leukemia

Increased: hematological CR and
PR rates of 45.0% and 39.3% for
newly diagnosed patients and

35.9% and 41.4% for
pretreated patients

Decreased: NR

6-methoxydihy-
drosanguinarine

IC50 = 3.8 µM HepG2 Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8
Decreased: Bcl-2

Sanguinarine Various concentrations
(0.25–4 µM)

BC1, BC3, BCBL1, and HBL6 Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8; activation of Bid; DR4
Decreased: MMP
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Table 2. Cont.

Chemical Family Molecule Name Concentration (µM) Cell Line Altered Factors

Tetrandrine and
Cepharanthine

Various concentrations
(3–15 µM)

Jurkat Increased: Bax; activation of
caspase-3, -6, -9, and -8

Decreased: Bcl-2

Anthraquinone Emodin IC50 = 9.06 µM for
MDA-MB-453

cellsIC50 = 0.83 µM for
Calu-3 cells

MDA-MB-453 and Calu-3 Increased: cytochrome C release;
activation of caspase-3, -9, and

-8; activation of Bid
Decreased: MMP

40 mg/kg/once every
3 days

LS1034 colon cancer cells
xenografts into male

athymic BALB/c
nu/nu mice

Increased: NR
Decreased: tumor volume

Flavonoid Acacetin IC50 = 60 µM AGS Increased: Bax; cytochrome C
release; activation of caspase-3,
-9, and -8; activation of Bid and

Bad; FasL; Fas
Decreased: Bcl-2; MMP

Ampelopsin IC50 = 39.6 µM for
U251IC50 = 35.8 µM

for A172

U251 and A172 Increased: activation of
caspase-3, -9, and -8

Decreased: NR

50 and 100 mg/kg/day for
30 days

U251 bearing BALB/
c-nu mice

Increased: activation of
caspase-3, -9, and -8; PARP
Decreased: tumor volume

and progression

Anthocyanins Various concentrations
0–265.4 µM

U937 Increased: Bax; activation of
caspase-3, -9, and -8;

activation of Bid
Decreased: Bcl-2; XIAP;
cIAP-1; cIAP-2; MMP

Apigenin in
combination with

TRAIL

IC50 = 20µM A549 and H1299 Increased: Bax; Bad; DR4; DR5
Decreased: Bcl-2; Bcl-xL

10µg/mouse Tumor xenografts A549 Increased: DR4; DR5; apoptotic
and necrotic cell death

Decreased: tumor volume

Casticin IC50 = 0.85 µM HT-29, HCT-116, and SW480 Increased: Bax; activation of
caspase-3; DR5; activation of Bid

Decreased: Bcl-2; Bcl-xL;
XIAP; cFLIP

Catechins in green tea 6 × 105 µg/day Clinical trial, patients with
high-grade prostate

intraepithelial neoplasia

Increased: NR
Decreased: incidence of the

tumor, international prostate
symptom score, and quality of

life scores

Catechins in green tea 6 × 105 µg/day Clinical trial, patients with
high-grade prostate

intraepithelial neoplasia

Increased: NR
Decreased: prostate-specific

antigen (PSA)

Epigallocatechin gallate 3 × 105 µg/day Clinical trial, patients with
metachronous colon

adenomas

Increased: NR
Decreased: NR

Eupafolin IC50 = 26.75µM HeLa Increased: cytochrome C release;
activation of caspase-3, -6, -7,

-9, and -8
Decreased: Bcl-2; MMP

Fisetin Various concentrations
(0–100 µM)

MCF-7 Increased: activation of
caspase-7, -9, and -8

Decreased: MMP
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Table 2. Cont.

Chemical Family Molecule Name Concentration (µM) Cell Line Altered Factors

Flavonoid Fisetin Various concentrations
(0–100 µM)

MDA-MB-468 and
MDA-MB-231

Increased: activation of caspase
-9 and -8

Decreased: NR

Various concentrations
(10–60 µM)

LNCaP Increased: cytochrome C release;
activation of caspase-3, -9, and -8

Decreased: Bcl-2; XIAP

223 mg/kg/day for
two weeks

LLC bearing C57BL/6 J
female mice

Increased: NR
Decreased: tumor volume

and angiogenesis

Isoangustone A Various concentrations
(2.4–17.7 µM)

DU145 Increased: cytochrome C release;
activation of caspase-3, -7, -9,

and -8; activation of Bid;
Fas; DR4

Decreased: MMP

Kaempferol Various concentrations
(20–100 µM)

OVCAR-3 and SKOV-3 Increased: Bax; activation of
caspase-3, -9, and -8

Decreased: Bcl-2; Bcl-xL;
XIAP; cFLIP

Morusin IC50 = 6.1 µM HT-29 Increased: Smac/DIABLO;
cytochrome C release; activation

of caspase-3, -9, and -8
Decreased: XIAP; MMP

Wogonin IC50 = 75 µM U-2OS Increased: Bax; Bad; cytochrome
C release; activation of caspase-3,
-4, -9, and -8; AIF; Endo G; Fas

Decreased: NR

Lignin Arctigenin IC50 = 0.24 µM Hep G2 and SMMC7721 Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8; FasL; Fas
Decreased: Bcl-2; MMP

Naphthoquinone Plumbagin IC50 = 9 µM NB4 Increased: Bax; Bak; activation of
caspase-3, -9, and -8

Decreased: Bcl-xL; MMP

2 mg/kg NB4 cell bearing male
NOD/SCID mice

Increased: NR
Decreased: tumor volume

Shikonin IC50 = 4 µM for Huh7
IC50 = 5.3 µM
for BEL7402

BEL7402 and Huh7 Increased: activation of
caspase-9 and -8;
activation of Bid

Decreased: Bcl-2; c-FLIP

5 or 10 mg/kg for 30 days Huh7 cell bearing male
BALB/c nude mice

Increased: activation of
caspase-9 and -8, and PARP
Decreased: tumor volume

IC50 = 32.5 µM Tca-8113 Increased: activation of
caspase-3, -9, and -8

Decreased: Bcl-2

5–10 (mg/kg/day) Clinical trial, patients with
later-stage lung cancer

Increased: immune system;
survival rate

Decreased: tumor growth;
remission rate

Organosulfur
derivative

Thiosulfinates IC50 = 10.07 µM PC-3 Increased: Bax; AIF; activation of
caspase-3, -9, and -8;

activation of Bid;
Decreased: Bcl-2

40 and 80 µM HT-29 Increased: Bax; AIF; activation of
caspase-3, -9, and -8;

activation of Bid;
Decreased: Bcl-2
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Table 2. Cont.

Chemical Family Molecule Name Concentration (µM) Cell Line Altered Factors

Eugenol ortho
dimer

Biseugenol B IC50 = 4 µM PC3 Increased: Bax; cytochrome C
release; activation of caspase-3,

-7, -9, and -8
Decreased: Bcl-2; MMP

Hydroxycinnamic
acids derivative

Methyl ferulate IC50 = 1.73–1.9 µM SW1116 and SW837 Increased: Bax; Bad; Apaf1; Bid;
Bim; Smac; caspase-2, -3, -6, -7,

-8, and -9
Decreased: Bcl-2; c-IAP-1;

c-IAP-2; FLIP

Phospholipid N, N-dimethyl
Phytosphingosine

Various concentrations
(0–7.5 µM)

HL-60 Increased: activation of
caspase-3, -9, and -8; cytochrome

C release
Decreased: Bcl-2; MMP

Phytosphingosine 15.8 or 31.5 µM Jurkat and NCI-H460 Increased: Bax translocation to
mitochondria; cytochrome C

release; activation of caspase-3,
-9, and -8

Decreased: MMP

Steroid Oleandrin Various concentrations
(0–0.05 µM)

U-2OS and SaOS-2 Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8; FasL; Fas
Decreased: Bcl-2; MMP

Ouabain IC50 = 5 µM U-2OS Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8; AIF; Endo G
Decreased: Bcl-2; MMP

2 mg/kg/day for 13 days Mouse model of xenografted
SH-SY5Yneuroblastoma cells

Increased: activation of
caspase-3

Decreased: tumor volume

Terpene Britannin Various concentrations
(0–80 µM)

SMMC-7721 and HepG2 Increased: activation of
caspase-3, -9, and -8

Decreased: Bcl-2

Various concentrations
(0–30 mg/kg/day for

21 days)

HepG2 bearing male
BALB/c nu/nu nude mice

Increased: p-AMPK, cleaved
caspase-3 and LC3 II

Decreased: p-mTOR; Ki-67;
tumor volume

Celastrol IC50 = 2.12 µM A549 Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8; FasL; Fas
Decreased: Bcl-2

IC50 = 2.55µM for HOS
IC50 = 1.97µM for MG-63

HOS and MG-63 Increased: activation of
caspase-3, -9, and -8; activation

of Bid; DR5
Decreased: MMP

4.5 mg/kg/day for
28 days

Xenografts of glioma SHG44
cells in female BALB/c mice

Increased: NR
Decreased: tumor growth

Corosolic acid IC50 = 28 µM HeLa Increased: Bax; cytochrome C
release; activation of caspase-3,

-9, and -8
Decreased: Bcl-2; MMP

Dehydrocostus lactone 8.7 µM DU145 Increased: Bax; Bak; Bok; Bik;
Bmf; t-Bid; activation of

caspase-3, -9, and -8
Decreased: Bcl-xL

Galbanic acid in
combination
with TRAIL

Various concentrations
(0–50 µM)

H460/R Increased: activation of
caspase-9 and -8; DR5;

activation of Bid
Decreased: Bcl-2; Bcl-xL; XIAP

Lambertianic acid in
combination
with TRAIL

IC50 = 20 µM A549 and H1299 Increased: activation of
caspase-3, -9, and -8; DR4;

activation of Bid
Decreased: Bcl-2; XIAP; cFLIP
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Table 2. Cont.

Chemical Family Molecule Name Concentration (µM) Cell Line Altered Factors

Terpene Myriadenolide IC50 = 30 µM Jurkat and THP-1 Increased: activation of
caspase-3, -9, and -8;

activation of Bid
Decreased: MMP

Nimbolide IC50 = 5 µM DU-145, PC-3, A-549 Increased: activation of
caspase-3, -9, and -8

Decreased: NR

Raddeanin A IC50 = 5.34 µM for
BGC-823, IC50 = 6.61 µM

for SGC-7901, and
IC50 = 4.98 µM for

MKN-28

BGC-823, SGC-7901,
and MKN-28

Increased: Bax; activation of
caspase-3, -9, and -8

Decreased: Bcl-2; Bcl-xL

Different concentrations of
raddeanin A (0.5, 1.5, and

4.5 mg/kg)

Granuloma cell line S180,
hepatic carcinoma cell line

H22, and cervical cancer cell
line U14 mice models

Increased: NR
Decreased: tumor volume of

granuloma cell line S180, hepatic
carcinoma cell line H22, and

cervical cancer cell line
U14 models

Rosamultic acid Various concentrations
(0–100 µM)

SGC-7901 Increased: activation of
caspase-3, -9, and -8

Decreased: NR

Saikosaponin A IC50 = 20 µM LoVo, SW48 Increased: Bax; activation of
caspase-3, -2, -9, and -8;

activation of Bid
Decreased: Bcl-2; MMP

Saponins 30.3 µM HT-29 Increased: Bax; activation of
caspase-3, -9, and -8;

activation of Bid
Decreased: Bcl-2

Tubeimoside-1 Various concentrations
(0–40 µM)

HepG2 Increased: Bak; activation of
caspase-3, -9, and -8; Fas; FasL

Decreased: Bcl-2; MMP

Ursolic acid 40 µM RC-58 T/h/SA#4 Increased: Bax; activation of
caspase-3, -9, and -8;

activation of Bid
Decreased: Bcl-2

56, 74, and 98 mg/m2 Clinical trial; patients with
advanced solid tumors

Increased: 60% of patients had
stable disease; 1 lung cancer

patient showed
significant improvement

Decreased: The lesion size

Xanthone α-Mangostin IC50 = 24.9 µM MCF7 Increased: Bax; cytochrome C
release; activation of caspase-3,

-7, -9, and -8
Decreased: Bcl-2; MMP

30 and 60 mg/kg LA7 cells bearing female
Sprague-Dawley rats

Increased: NR
Decreased: tumor volume

Pyranocycloartobiloxanthone
A

IC50 = 1.4 µM MCF7 Increased: Bax; cytochrome C
release; activation of caspase-3,

-7, -9, and -8
Decreased: Bcl-2; MMP

MMP—mitochondrial membrane potential; NR—not reported.
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Figure 3. The picture shows representative plants with known proapoptotic activities.

Three cancer cell lines (DU-145, PC-3, A-549 cells) were exposed to various concen-
trations of nimbolide, which is a triterpene found in neem tree. The data showed that
nimbolide significantly activates caspase-3, -8, and -9 compared to untreated control cells.
This indicated that nimbolide potently triggers both extrinsic and intrinsic apoptosis [82].
Anthocyanins are classic flavonoid compounds with various medicinal effects. Antho-
cyanin constituents isolated from Vitis coignetiae (known as crimson glory vine) kill human
leukemia U937 cells by stimulating the apoptosis process in these cells. This effect is
exerted through activating Bid and caspase-3, -9, and -8 along with the elevation of Bax
and diminution of MMP, Bcl-2, XIAP, cIAP-1, cIAP-2. However, U937 cells with higher
levels of antiapoptotic Bcl-2 protein do not respond to the apoptosis-inducing effects of
anthocyanins [83]. Phytosphingosine, a phospholipid found in various organisms, such as
plants, fungi, and animals, is a key factor involved in many cellular processes. Park et al.
showed that phytosphingosine promoted apoptotic cell death in human T-cell lymphoma,
Jurkat, and human non-small cell lung cancer cells, NCI-H460. This phospholipid activated
caspase-8 via an unknown mechanism without modulating death receptors. Additionally,
phytosphingosine induced translocation of Bax into mitochondrial membrane and loss of
MMP, which led to cytochrome C release and subsequent activation of caspase-9 and -3
without the involvement of caspase-8 in this process [84].

A derivative of phytosphingosine, named N, N-dimethyl phytosphingosine (DMPS),
also affects both intrinsic and extrinsic pathways in human leukemia cells (HL-60 cells).
However, activation of caspase-8 is the pivotal step in the induction of the intrinsic pathway,
which is accompanied by impairment of the MMP, release of cytochrome C, activation
of caspase-9 and caspase-3, and suppression of the antiapoptotic members of the Bcl-2
family [85]. Tubeimoside-1, a triterpenoid saponin, stimulates both pathways of apoptosis
in the human hepatoma cell line (HepG2 cells). Tubeimoside-1significantly elevated the
levels of cleaved caspases-3, -8, and -9 and the expression of Fas, FasL, and Bak, but
downregulated Bcl-2 protein levels in HepG2 cells. Interestingly, tubeimoside-1 failed
to alter the expression level of Bax protein [86]. Tetrandrine (TET) and cepharanthine
(CEP), as two alkaloid compounds found in medicinal plants, are reported to function
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as apoptosis-inducing agents. Xu et al., by treating human leukemia Jurkat T cells with
the combination of these alkaloids, have declared that they significantly upregulated both
initiator caspases (caspase-8 and 9) and effector caspases (caspase-3 and 6). TET and CEP
also enhanced the expression of Bax and p53 but negatively affected the expression of Bcl-2
and Mcl-1 [87].

Berberine, as an isoquinoline alkaloid of the protoberberine type, induced apoptosis of
SCC-4 human tongue cancer cells by activating expression of caspase-8, -9 and -3, AIF, and
endoG. It also increased the ratio of Bax/Bcl-2 and altered MMP in these cancer cells [88].
Wogonin, a flavonoid-like compound found in Scutellaria baicalensis (known as Baikal
skullcap or Chinese skullcap), has been discovered that triggered apoptosis of U-2OS
human osteosarcoma cells by augmenting the expression of both intrinsic and extrinsic
apoptosis components, including Bax, Bad, cytochrome C, cleaved caspase-9, cleaved
caspase-3, AIF, Endo G, Fas, caspase-8, and caspase-4 [89]. Anticancer effect of wogonin
in vivo was shown in athymic nude mice inoculated with two breast cancer cells (T47D
and MDA-MB-231 cells). The results revealed a decreased xenografts burden by up to 88%
without any toxicity after 4 weeks of treatment [90].

Treating U-2OS cells with ouabain (a steroid or cardiac glycoside) resulted in the
activation of caspase-3, -8, and -9, the elevation of Bax, AIF, Endo, cytochrome C release,
but downregulation of Bcl-2. Ouabain also decreased the levels of ROS and MMP while
increased Ca2+ levels in U-2OS cells [91]. Xenografting neuroblastoma SH-SY5Y cells into
immune-deficient mice treated with 2 mg/kg/day ouabain significantly decrease tumor
volume and activated caspases-3 enzyme in these tumor tissues [92]. Kim et al. conducted
an investigation to study the potential of saikosaponin A (a triterpenoid saponin) in
inducing death of human colon carcinoma cell lines. Their data unraveled that saikosaponin
A promoted apoptosis by affecting death receptor and mitochondrial-dependent processes,
which converged on the elevated activity of caspase-2, -8, and -9 as well as the activation
of Bax and Bid proteins [93]. Yan et al. chemically modified the structure of emodin to
an emodin azide methyl anthraquinone derivative (AMAD), which is isolated from the
rhizome of Polygonum sachalinense (known as giant knotweed. Then, they experimentally
demonstrated AMAD-induced apoptosis of human breast cancer cell cells (MDA-MB-453
cells) and human lung adenocarcinoma cells (Calu-3 cells). They further discovered that
AMAD dropped MMP, caused the efflux of cytochrome C, activated caspase-8, -9, and -3.
They also confirmed that the mitochondrial-mediated promotion of apoptosis was probably
dependent on caspase-8 activation and subsequent cleavage of Bid protein [94]. In vivo
data on the anticancer effects of emodin (40 mg/kg/day) revealed its suppressing capacity
against tumor weight of nude mice xenografts bearing LS1034 colon cancer cells [95].

A triterpenoid compound isolated from Anemone raddeana (known as Toujian Liang in
China), raddeanin A, has been suggested to trigger the apoptosis process in three different
gastric cancer cells (BGC-823, SGC-7901, and MKN-28 cells). The molecular biology
techniques clarified that raddeanin A amplified Bax expression while diminished the
expressions of Bcl-2, Bcl-xL, and survivin. This terpenoid also augmented the activities of
caspase-3, -8, -9, and poly-ADP ribose polymerase (PARP) enzymes in all three cell lines [96].
Raddeanin A shows strong antitumor activities in syngeneic models of granuloma cell line
S180, hepatic carcinoma cell line H22, and cervical cancer cell line U14. Although different
concentrations of raddeanin A (0.5, 1.5, and 4.5 mg/kg) were applied for the treatment of
these mice models, 4.5 mg/kg dose of raddeanin A more significantly inhibited the volume
of these tumors [97].

Celastrol, as a pentacyclic triterpenoid isolated from Tripterygium wilfordii (known as
thunder god vine), acted on the death receptor and mitochondrial-dependent pathways
to initiate apoptosis in human non-small-cell lung cancer cell line, A549. In the intrinsic
pathway, celastrol promoted the release of cytochrome C from mitochondria and induced
the upregulation of Bax and downregulation of Bcl-2 proteins. In the extrinsic pathway,
it stimulated the expression levels of Fas and FasL. Consequently, celastrol led to the
proteolytic activation of caspase-9, -8, -3, and PARP protein [98]. Celastrol also affected
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osteosarcoma cells (HOS and MG-63 cells) apoptosis process through elevating the activity
of caspase-3, -8, and -9 along with the upregulation of DR5 and proteolytic activation of
Bid [99]. This terpenoid has the potential to be used as an anticancer agent in vivo. Celastrol
has been described to inhibit the growth of human glioma xenografts in a murine model of
this cancer through suppressing angiogenesis [100]. Arctigenin, bioactive lignin isolated
from some plants, triggers apoptosis in HepG2 and SMMC7721 hepatocarcinoma cells.
This compound affects the mitochondrial pathway by inducing loss of MMP, the elevation
of Bax, diminution of Bcl-2, an increase of cytochrome C in the cytosol, and activation of
caspase-9 and -3. Furthermore, it influences the extrinsic pathway by upregulating the
levels of Fas/FasL and activating caspase-8 [101].

Oleandrin, a toxic glycoside, induces death in two osteosarcoma cell lines (U-2OS and
SaOS-2 cells) by acting on apoptotic cell death via the generation of intracellular ROS and
loss of MMP which leads to the release of cytochrome C into the cytoplasm. Oleandrin also
reduced the Bcl-2 level. However, it induced the expressions of Bax, Fas, FasL, caspase-9,
-8, -3, and activity of caspase-3 in these cancer cells [102]. Casticin is a flavonoid compound
that can induce apoptosis in colon cancer cell lines (HT-29, HCT-116, and SW480 cells).
Tang et al. uncovered that treating these three cells with casticin lowered the expression
of antiapoptotic Bcl-2 and Bcl-xL, inhibitors of apoptosis-like Bax, XIAP, and cFLIP. This
flavonoid also incremented the expression of DR5 while had no effect on other cell surface
receptors, such as DR4 and DcRs [103]. Lambertianic acid (LA) is a phytoconstituent
isolated from Pinus koraiensis (known as Korean pine) leaves with the capacity to initiate
apoptosis in non-small cell lung cancer cells (A549 and H1299 cells). A study by Ahn and
colleagues showed that this active compound in combination with TRAIL orchestrated
the induction of both pathways of apoptosis through, which Bcl-2, FLIP, and XIAP were
decreased, but Bid and caspase-3, -,8, -9 were activated and DR4 was upregulated in
both cell lines [104]. Experimental evidence obtained from the treatment of H460/R cells
(resistant non-small cell lung cancer cell line) with the combination of galbanic acid, a
sesquiterpene coumarin, with TRAIL established apoptosis-promoting activity for this
combination therapy. This activity was observed as the activation of caspase-9, caspase-8,
and PARP along with overexpression of DR5 and underexpression of Bcl-2, Bcl-xL, and
XIAP in H460/R cells [105].

The combination of apigenin, a flavonoid, with TRAIL also has antiproliferative and
apoptogenic impacts on A549 and H1299 cells. Chen and colleagues provided evidence
to prove that this combination therapeutic strategy showed a synergistic effect on the
upregulation of death receptors (DR4 and DR5) in the extrinsic pathway and on the am-
plification of Bad and Bax as well as the inhibition of Bcl-xL and Bcl-2 in the intrinsic
apoptosis pathway [106]. Their in vivo study conducted to evaluate the effects of apigenin
on the growth of A549 xenografts in mice models of the disease indicated that apigenin
not only inhibits tumor growth but also increases the expressions of DR4 and DR5 recep-
tors [106]. Exposing human ovarian cancer cells OVCAR-3 and SKOV-3 to kaempferol,
a flavonoid, caused a significant amplification in the expression levels of proapoptotic
factors, such as Bax, caspase-3, -8, and -9, while decreased antiapoptotic proteins, including
Bcl-2, Bcl-xL, survivin, XIAP, c-FLIP in these cells. Kaempferol, in combination with TRAIL,
also showed the same results as kaempferol alone [107]. Rosamultic acid, a triterpenoid
found in Rosa multiflora (known as rambler rose and baby rose) roots, has been revealed as
a natural anticancer product against the human gastric cancer cell line (SGC-7901 cells).
Rosamultic acid-induced cell cycle arrest and apoptosis in SGC-7901 cells through cleaving
PARP and activation of caspase-3, -8, and -9, indicating the promotion of receptor and
mitochondrial-dependent apoptosis due to rosamultic acid treatment [108].

As a plant-derived flavonoid, acacetin kills gastric cancer cells (AGS cells) by initiating
an apoptosis cascade in them. The molecular mechanism of this effect involves both
intrinsic and extrinsic pathways. Acacetin affects the intrinsic pathway by producing
ROS, collapsing MMP, augmenting Bax and p53, declining Bcl-2, activating Bad, inducing
the efflux of cytochrome C from mitochondria, and subsequent activation of caspase-9.
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However, it promotes the extrinsic pathway via increasing the expressions of Fas and FasL
and activation of caspase-8 and Bid proteins [109]. Lycorine is an alkaloid compound
isolated from the Amaryllidaceae family with the capacity to suppress the growth of
HL-60 leukemia cells and cause its apoptosis. Lycorine-treated cells show an increased
ratio of Bax/Bcl-2 proteins along with the higher activities of caspase-8, -9, -3 enzymes
compared to untreated cells, which explains the implication of intrinsic and extrinsic
apoptosis pathway in this effect of lycorine [110]. Lycorine derives a similar effect when
is exposed to the KM3 human multiple myeloma cell line [111]. HL-60 cells underwent
apoptotic cell process when they were treated with various concentrations of meisoindigo.
Meisoindigo, as an active constituent of Indigo naturalis (known as Qing dai in China),
elevates the activities of caspase-3, -8, -9, and PARP, while reducing the levels of Bcl-2
and inducing the expression of Bax, Fas receptor and the release of cytochrome C into the
cytosol of HL-60 cells. This implies that both cell surface receptors and mitochondria are
implicated in the apoptosis-inducing capacity of meisoindigo [112]. Methyl ferulate is a
derivative of the Tamarix aucheriana plant (known as salt cedar) that has been shown to
trigger apoptosis in two colorectal cancer cell lines (SW1116 and SW837 cells). To initiate
apoptotic cell death, methyl ferulate increased the expression of Bax, Bad, Apaf1, Bid, Bim,
Smac, and various initiator and effector of caspases, including caspase-2, -3, -6, -7, -8, and
-9. It also downregulated antiapoptotic proteins involved in the apoptosis, such as c-IAP-1,
c-IAP-2, Bcl2, and FLIP [113].

Thiosulfinates are esters isolated from Allium tuberosum (known as garlic chives) that
previously have been discovered to have anti-growth effects on PC-3 human prostate
cancer cells. Kim et al. identified their apoptogenic activity, which was observed as the
augmented activities of caspase-8, -9, and -3, as well as the cleavage of Bid, downregulation
of Bcl-2, and upregulation of Bax and AIF [114]. A study by Lee et al. conducted to evaluate
the proapoptotic effects of thiosulfinates in human colon carcinoma cell lines (HT-29 cells)
also elicited similar results [115]. RC-58 T/h/SA#4 prostate cancer cells treated with
Corni fructus (known as Shan Zhu Yu in China) -derived triterpene, ursolic acid, showed
apoptotic features, including nuclear condensation, apoptotic body formation, and DNA
fragmentation. Ursolic acid also altered various apoptosis pathway components, such
as the activation of caspase-3, -8, -9, and Bid along with the overexpression of Bax and
reduction of Bcl-2 proteins, suggesting the promotion of intrinsic and extrinsic apoptosis in
these cancer cells [116]. A study by Kim et al. provided evidence to prove the anticancer
impact of crude saponins extracted from Platycodon grandiflorum (known as Kilkyong in
Korea, Jiegeng in China, and Kikyo in Japan) roots against HT-29 cells. Their further tests
demonstrated that these phytochemicals induced apoptosis through activation of PARP,
Bid, and caspase-8-, -9, and -3 along with the fragmentation of DNA, augmentation of Bax
level, and reduction of Bcl-2 protein [117].

Fisetin is a dietary flavonoid, which uses an unusual mechanism to induce apoptosis
in caspase-3-deficient MCF-7 cells. It decreases MMP along with activation of caspase-
7, -8 and -9, and PARP cleavage but has no obvious effects on DNA fragmentation and
phosphatidylserine cell surface exposure [118]. Fisetin can activate both caspase-8 and
caspase-9 in triple-negative breast cancer cell lines, including MDA-MB-468 and MDA-
MB-231 cells [119]. This flavonoid affected apoptosis pathway components in prostate
cancer LNCaP cells by increasing cytochrome C release, downregulating Bcl-2 and XIAP,
and activating caspases-3, -8, and -9 [120]. Treatment of Lewis lung carcinoma cells
(LLC)-bearing mice with fisetin inhibited the tumor growth by 67% compared to the 66%
inhibition rate produced by low-dose cyclophosphamide. Fisetin seemed to exert this effect
by hampering angiogenesis in tumor tissues [121]. (-)-Anonaine is a bioactive alkaloid
that has been proven to cease the proliferation of human cervical cancer (HeLa) cells by
inducing apoptotic pathways in them. This alkaloid acted on the apoptotic process by
increasing intracellular ROS, disrupting MMP, upregulating Bax, and activating caspase-3,
-7, -8, and -9 in these cancer cell lines [122]. A flavonoid compound, ampelopsin, has
been experimentally affirmed that could activate both pathways of apoptotic cell death
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via raising the activities of initiator caspases-8 and -9 and the effector caspase-3 in two
human glioma cell lines (U251 and A172 cells) [123]. Ampelopsin prevented tumor growth
of human glioma xenograft in vivo. It affected apoptosis of these tumor cells by activating
caspase-3, -8, and -9, as well as the enhancement of PARP expression [123]. Britannin,
a sesquiterpene lactone, triggers apoptosis of SMMC-7721 and HepG2 liver cancer cell
lines through modulating both the extrinsic and intrinsic pathways by the activation of
caspase-8, -9, and -3 [124]. Treating HepG2 bearing male BALB/c nu/nu nude mice with
britannin significantly hampered the growth of these tumors in vivo. Further experiments
showed that britannin downregulated both ki-67 and phosphorylated-mammalian targets
of rapamycin (mTOR), whereas upregulated phosphorylated-AMP-activated protein kinase
(AMPK), cleaved caspase-3, and light chain 3 (LC3) on these tumors [124].

Human cervix adenocarcinoma cells, HeLa, treated with corosolic acid, a pentacyclic
triterpene acid isolated from various plants, show an increased ratio of Bax/Bcl-2, reduces
MMP, leading to the efflux of cytochrome C from mitochondria and activation of caspase-9
and -3. It also promotes the activation of the extrinsic pathway by augmenting the activity
of caspase-8 [125]. Artemisia princeps Pampanini (known as Korean wormwood, Korean
mugwort, and Japanese mugwort) possesses a natural flavonoid, named eupafolin, with
significant anticancer properties. Eupafolin anticancer effects on HeLa cells are observed
as Bcl-2 gene alteration, mitochondrial-dependent events, and the activation of caspase-3,
-6, -7, -8, and -9 [126]. Dehydrocostus lactone isolated from Saussurea lappa root (known
as costus) alters various components of the intrinsic and extrinsic pathways to initiate
apoptosis in DU145 human prostate cancer cells. These alterations include increased
activities of caspases-8, -9, -7, and -3, activation of PARP, downregulation of Bcl-xL, and
upregulation of Bax, Bak, Bok, Bik, Bmf, and t-Bid [127]. Administration of isoangustone
A, as a flavonoid isolated from Glycyrrhiza uralensis (known as Chinese licorice) to DU145
cells, promotes extrinsic cascade by amplifying Fas and DR4 as well as the activation
of caspase-8 and Bid, while stimulates intrinsic pathway through decreasing MMP and
releasing cytochrome C into the cytosol, causing caspase-9 activation. It also activates
effector caspases -3 and -7 [128]. Hemanthamine and hemanthidine, alkaloid compounds
from Amaryllidaceae family, treatment of Jurkat cells lead to the decreased MMP, strong
activation of caspase-9 and caspase-3/7, and weaker activation of caspase-8 [129]. Another
alkaloid compound, 6-methoxydihydrosanguinarine, induces apoptosis in HepG2 cells by
stimulating the activation of caspase-8, -9, and -3. This alkaloid also increased the ratio of
Bax to Bcl-2, leading to the release of mitochondrial cytochrome C into the cytoplasm of
HepG2 cells [130].

Sanguinarine is an alkaloid with structural similarities with 6-methoxydihydrosanguinarine.
Sanguinarine can trigger apoptosis in primary effusion lymphoma (PEL) cell lines, includ-
ing BC1, BC3, BCBL1, and HBL6, through orchestrating two apoptosis cascades. It acts by
elevating DR5 expression through ROS and promotes the activation of caspase-8 and Bid,
which stimulates Bax. This can impair MMP, the release of cytochrome C, and activation of
caspase-9 and caspase-3 [131]. A biologically active flavonoid present in the root bark of
Morus australis known as morusin exerts apoptogenic effects on colorectal cancer HT-29
cells. Morusin targets various factors of the extrinsic and intrinsic pathways, such as the
disruption of MMP, inhibition of XIAP, and release of cytochrome C and Smac/DIABLO.
In addition, this flavonoid stimulates the activation of caspase-8, -9, and -3 to effectively
induce apoptosis in HT-29 cells [132]. Souza-Fagundes and coworkers purified a naturally
occurring labdane diterpene, known as myriadenolide, from the leaves of Alomia myriadenia
and evaluated its apoptogenic activity against two different human leukemia cells (Jurkat
and THP-1 cells). Then, they reported that myriadenolide targets both apoptotic pathways
via depolarization of mitochondria and activation of Bid, caspase-8, -9 and, -3. However,
their further analyses showed that the activation of caspase-8 and Bid was not mediated by
death receptors activation, indicating the role of another mechanism in the stimulation of
extrinsic pathway components [133]. Plumbagin is a natural naphthoquinone isolated from
Plumbago zeylanica (known as Chitrak) that effectively targets apoptotic pathways in human
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promyelocytic leukemia cells (NB4 cells). Plumbagin exerts its effects by increasing Bax
and Bak protein levels and decreasing Bcl-xL protein while showed no remarkable effect on
Bcl-2 protein. Moreover, plumbagin depolarized mitochondrial membrane and activated
caspase-8, -9, and -3 in NB4 cells [134]. Assessment of plumbagin anticancer effects on the
growth of xenografts of NB4 cells into NOD/SCID mice showed its suppressing activity
against this type of tumor in vivo. Plumbagin reduced the volume of the tumor by 64.49%
compared to control animals [134].

Artocarpus obtusus has been found to have a xanthone compound called pyranocycloar-
tobiloxanthone A (PA), which shows proapoptotic activity in MCF7 cells. The apoptosis-
inducing effect of PA on these cancer cells is mainly observed as the elevation of Bax/Bcl-2
ratio, leading to the collapse of MMP, cytochrome C release, and activation of caspases-9,
which in turn induces the activation of effector caspase-3 and -7. PA also exerts these
effects through the implication of the extrinsic pathway caspase (caspase-8) [135]. Another
xanthone compound, known as α-mangostin, isolated from Cratoxylum arborescens, exhibits
apoptogenic activity against MCF7 cells. This activity is shown to be exerted through
a mechanism that is similar to PA-induced apoptosis [136]. Treating rat models of the
xenografted rat LA7 mammary adenocarcinoma cells with 30 and 60 mg/kg α-mangostin
for 28 days demonstrated its antitumor activity by reducing tumor volumes by 79.2% for
high dose and 74.1% for low dose treatments [136]. Biseugenol B is a natural anticancer
compound isolated from Litsea costalis that has been evidenced to kill prostatic cancer PC3
cells via apoptosis. Biseugenol B affected the intrinsic pathway by enhancing the ratio of
Bax/Bcl-2, causing MMP collapse, the release of cytochrome C, and activation of caspase-9.
It also acted on the extrinsic pathway via increasing the level of caspase-8. Biseugenol B
also induced the proteolytic activation of executioner caspases-3 and -7 [137]. Shikonin is
a bioactive naphthoquinone present in some Chinese medicinal herbs with apoptogenic
properties against EL7402 and Huh7 hepatocellular carcinoma cells. Its effects on apoptosis
have been illustrated as the proteolytic cleavage of caspase-8, caspase-9, and Bid protein
along with diminished protein levels of antiapoptotic factors, such as c-FLIP and Bcl-2.
However, it had no obvious effect on the protein level of Bcl-xL [138]. Treatment of Huh7
xenografts in nude mice with shikonin also showed a significantly increased activation
of caspase-8, caspase-9, and PARP enzymes, but a significant decrease in tumor volume
compared to control animals [138]. Apoptogenic effects of shikonin (Naphthoquinone)
in Tca-8113 oral squamous cancer cells involve the downregulation of Bcl-2 protein and
proteolytic activation of caspase-8, -9, -3, indicating the promotion of both intrinsic and
extrinsic cascades due to shikonin treatment in these cells [139].

2.5. Use of Plant Extracts and Plant Molecules in Human Clinical Trials

According to epidemiologic data obtained from a study on the Japanese population,
green tea consumption of approximately 10 cups/day significantly decreased the risk of
colorectal cancer [140]. Accordingly, Shimizu et al. conducted a clinical trial to evaluate the
effects of green tea on 71 patients with previously treated colorectal adenomas. Interestingly,
the results showed that the green tea extract drinking (1.5 g per day for 12 months) reduced
the incidence of metachronous adenomas and the size of relapsed adenomas in these
patients in comparison to the control group [141]. They also reported that no serious
adverse side effects were observed in the treatment group than control patients. Another
randomized clinical trial was conducted to assess the effect of green tea extract on the
prevention of metachronous colorectal adenoma and cancer in the Korean population. The
results indicated that consuming the group (0.9 g green tea extract supplementation per
day for 12 months significantly reduced the incidences of metachronous adenomas up to
23.6% compared to the control group (42.3%) [142].

A randomized, double-blind, placebo-controlled clinical trial investigated the effects
of Cucurbita ficifolia (pumpkin) seed oil alone or in combination with saw palmetto oil
on 47 patients with symptomatic benign prostatic hyperplasia for 12 months. Pumpkin
seed oil (320 mg/day) non-significantly reduced international prostate symptom score
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and increased quality of life after 3 months of treatment but had no considerable effect
on serum PSA compared to control subjects. This oil also gradually improved maximal
urinary flow rate after 6 months [143].

A randomized clinical study investigated the effects of Uncaria tomentosa extract on
the alleviation of the side effects of chemotherapy in patients with breast cancer who were
treated with the combination of fluorouracil, doxorubicin, and cyclophosphamide. The
data revealed that a combination of chemotherapy and Uncaria tomentosa (300 mg/day)
improved the neutropenia caused by chemotherapy, increased superoxide dismutase
activity, and restored cellular DNA damage. Therefore, this plant material can be used as
a good adjuvant therapy to reduce the adverse effects of chemotherapy for breast cancer
patients [144].

There are ongoing clinical trials on the anticancer effects of berberine. A randomized
phase II and III trial of berberine hydrochloride to prevent colorectal adenomas in patients
with previous colorectal carcinoma is ongoing in China [145]. Using berberine chloride
in preventing colorectal cancer in patients with ulcerative colitis in remission, a phase I
clinical trial was conducted by National Cancer Institute (NCI) [146]. No results have been
published from these two studies. A non-randomized controlled trial on seven familial
adenomatous polyposis patients who underwent berberine treatment (300 mg, three times
per day for 6 months) showed a significant reduction in the formation and recurrence of
polyps in these patients [147]. Meisoindigo, in phase II clinical trial, was used to treat
chronic myelogenous leukemia (CML). 134 CML patients were treated with this compound
at a dose of 75–150 mg/d. The data evidenced the complete hematological response (CR)
and partial response (PR) rates of 32.1% and 48.5%, respectively [148]. Moreover, a phase
III clinical study of the effect of meisoindigo at a dose of 100–150 mg/d on the treatment
of CML patients showed the hematological CR and PR rates of 45.0% and 39.3% for newly
diagnosed patients and 35.9% and 41.4% for pretreated patients [149].

Using green tea catechins (GTCs) in human volunteers with high-grade prostate
intraepithelial neoplasia (HG-PIN), a study demonstrated that daily treatment of patients
with three GTCs capsules, 200 mg each (total 600 mg/day) for one year, markedly decreased
the incidence of the tumor (up to 3%), international prostate symptom score, and quality of
life scores. However, prostate-specific antigen (PSA) levels had no significant difference
between treated and control patients [150]. Results of another double-blind placebo-
controlled phase II clinical study in Italy on the effects of GTCs (600 mg/day) on 60 patients
with HG-PIN for one year revealed a significant reduction in the level of PSA in the GTCs-
treated group. However, there was no statistically significant difference in disease incidence,
improvement in lower urinary tract symptoms, and quality of life between the two arms
of the study [151]. Epigallocatechin gallate (EGCG) is the major polyphenol compound
in green tea with the ability to prevent the reoccurrence of polyps after polypectomy in
colorectal cancer patients. Stingl et al. designed a randomized, placebo-controlled, phase
II clinical study to examine the effect of 300 mg/day EGCG on the recurrence of colon
adenomas in Germany. They enrolled 1001 patients who had undergone polypectomy for
colonic polyps to receive either 150 mg EGCG twice a day or a placebo over the course of 3
years. The study was completed in July 2019, but to date, no study results have been added
to clinicaltrials.gov for the study [152].

Clinical testing of shikonin for 19 patients with later-stage lung cancer discovered
that the compound markedly decreased the growth of the tumor (to 25% in diameter) and
improved the immune system of the patients. The survival rate of one year was 47.3%,
effective rate 63.3%, and remission rate 36.9% [153]. In phase I clinical trial to study the
multiple-dose safety and anticancer effects of ursolic acid liposomes (UAL) treatment on
subjects with advanced solid tumors, some promising outcomes were obtained. Treatment
of the patients with various doses of UAL (56, 74, and 98 mg/m2) was performed for
14 consecutive days of a 21-day treatment cycle. Although no CR or PR occurred, about
60% of subjects with advanced solid tumors had stable disease. Furthermore, UAL at a
dose of 98 mg/m2 significantly improved the disease condition and decreased the lesion
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size in one lung cancer patient [154]. Figure 4 depicts the chemical structure of some major
examples of phytochemicals with proapoptotic potential.

Figure 4. The chemical structure of some major examples of phytochemicals with proapoptotic
potential.

2.6. Concluding Remarks

The vast majority of experimental data in the literature point out the proapoptotic ef-
fects of plant-derived natural products, both the crude extracts and isolated phytochemicals,
on human cancer cells through specific targeting of the intrinsic pathway of apoptosis [28].
Targeting a single pathway in battling against cancer may lead to the failure of drugs if this
mechanism is interrupted or altered due to various cancer-related phenomenons. Therefore,
this can be a drawback for the mentioned approach of cancer therapy and may easily confer
resistance to cancer therapeutics. Moreover, a variety of immune system components
depends on apoptosis, and hence the changes in its signaling pathways render a resistance
phenotype to the immune system. Probable defects in some role-players of apoptosis
signaling pathways also raise the threshold for chemotherapy or radiotherapy and lead
to resistance to any therapeutic agent [155]. Thus, seeking the novel and more effective
natural anticancer therapeutics that simultaneously target both the intrinsic and extrinsic
pathways of apoptosis and also block other cross-talks between these pathways and others,
such as plant extracts and molecules described in this review, can be a promising and
efficient way to combat cancer.
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