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stimuli. Surprisingly, human imaging studies cannot consistently 
confirm activation in the lateral system in response to unilateral 
noxious stimuli. SI for example is only activated in approximately 
50–75% of all reports (Bushnell et al., 1999; Peyron et al., 2000; 
Apkarian et al., 2005; Farrell et al., 2005). Similarly, hard evidence 
is lacking for distinct contralateral hemispheric activation of other 
structures of the lateral pain system. One explanation may be that 
only few studies report on administering noxious stimuli to bilat-
eral homologous body parts (Coghill et al., 1999, 2001; Bingel 
et al., 2002, 2003; Brooks et al., 2002; Youell et al., 2004; Symonds 
et al., 2006). The current study aimed at elucidating cortical spa-
tial representation and hemispheric lateralization in response to 
dental nociception.

Ideally, lateralization aspects of pain were investigated by asyn-
chronously applying bilateral noxious stimuli at graded distances 
to the body midline. This is readily realized by stimulation of mul-
tiple teeth as previously done (Ettlin et al., 2004, 2009). A possi-
ble interference by midline crossing of maxillary nerve endings is 
unlikely based on findings by Kemppainen et al. (2003). Jantsch 
et al. (2005) published the first brain fMRI investigation on tooth 
pain induced by electric stimulation. However, they stimulated one 
single tooth only as well as the ipsilateral dorsal hand. The results 
of their study suggest that brain processing of electrically evoked 
dental pain shows similarities as well dissimilarities compared to 
upper extremity mechanically induced pain.

IntroductIon
Brain structures consistently activated by noxious stimuli are: 
anterior cingulate cortex (ACC), insula, secondary somatosensory 
cortex (SII), lentiform nuclei, cerebellum, and thalamus. Less con-
sistently, activation related to nociception has been reported for 
primary somatosensory cortex (SI), motor cortex (M1), premo-
tor areas, and subcortical structures (Treede et al., 1999; Petrovic 
et al., 2000; Peyron et al., 2000; Bingel et al., 2002; Farrell et al., 
2005). Functionally, these areas have been divided into a lateral 
and medial pain system and substantial evidence has emerged in 
support of this model (Albe-Fessard et al., 1985; Bushnell et al., 
1999; Tracey and Mantyh, 2007), although alternative hypotheses 
have also been put forward (Apkarian et al., 2005; Craig, 2005; 
Mouraux and Iannetti, 2009).

Generally, the medial pain system composed of the insular 
cortex, anterior cingulate, and limbic structures is held respon-
sible for processing emotional-affective and cognitive-behavioral 
pain aspects (Kulkarni et al., 2005; Wiech et al., 2006). The lat-
eral pain system is attributed to sensory-discriminative compo-
nents of pain and includes the lateral spinothalamic tract, the 
ventral posterolateral nucleus of the thalamus, and SI (Kenshalo 
Jr. et al., 1988; Bushnell and Duncan, 1989; Bushnell et al., 1999). 
In line with these functional attributes, one would expect to find 
evidence from experimental pain studies showing contralateral 
activation in this lateral system in response to unilateral noxious 
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Based on the model of a lateral and medial pain system, we 
hypothesized that within the cortical pain circuitry, certain brain 
areas be activated dependent on the stimulation side and others 
showing lateralized or bilateral hemispheric activity independent 
of the side of stimulus application.

MaterIals and Methods
PartIcIPants
Twenty-one neurologically healthy subjects (8 female/13 male, age 
20–44, all right-handed (Annett, 1970) with no dental pain expe-
rience during the preceding year participated in the experiment. 
Inclusion criteria required test teeth to be caries free, vital, and 
without attachment loss. Dental and periodontal pathologies were 
excluded by professional dental and radiographic examinations of 
maxillary teeth. Subjects received detailed information about the 
experimental procedure and provided written informed consent. 
The study was approved by the local ethics committee and was con-
ducted according to the guidelines of the Declaration of Helsinki 
for treatment of experimental human subjects.

exPerIMental MaterIal
Maxillary alginate impressions were taken from the subjects’ denti-
tions for fabrication of soft dental acrylic splints. Four pairs of stain-
less steel electrodes were embedded in each individual dental splint 
opposite the labial and palatal surface center of the target teeth, 
namely maxillary canines and central incisors (Figure 1). They 
served as anode and cathode during electric stimulation. In order 
to minimize electric resistance during stimulation, a round piece 
of hydrogel (AG602-6, AMGEL Technologies, Lystrup, Denmark) 

with 3 mm diameter was placed between the tooth and anode and 
cathode, respectively, and was covered with a thin layer of tooth-
paste (Signal Microgranuli, Unilever, Zug, Switzerland).

Electric stimulation was performed by means of the portable system 
Compex Motion System (Keller et al., 2002) and the experimental 
protocol was controlled by the Presentation software1 via parallel port 
using a self made interface. To avoid radiofrequency contamination of 
the stimulation current, specially shielded wires were used. For rating of 
the stimulus intensities within the MRI scanner, a computerized visual 
analog scale was used (COVAS; MEDOC, Haifa, Israel), with anchor 
points “no pain” on the left and “worst imaginable pain” on the right. 
This COVAS was projected onto a screen outside the scanner, and a 
mirror based deflection system enabled its visibility for the subjects.

sensory testIng PrIor to the Mr exPerIMent
One to two weeks prior to the MR experiment, sensory testing 
with the tooth stimulation setup was performed in order to assess 
individual thresholds for sensory perception (SPT), pain perception 
(PPT), and pain tolerance (PTT) separately for each target tooth. 
The three thresholds were defined as the average ascending electric 
stimulus intensity out of three tests at which the subject reported 
sensation, pain, and PTT, respectively. We also questioned subjects 
whether single stimuli were felt distinctly in one test tooth only, 
which was acknowledged by all participants. Sequence of tooth 
stimulation was randomized between individuals.

For all tooth stimuli (threshold determination and fMRI stimu-
lation protocol) biphasic pulse forms of 1 ms duration were applied 
on both maxillary canine and medial incisors with interstimulus 
intervals randomized between 7.5 and 10 s.

fMrI data acquIsItIon and stIMulatIon Protocol
Within 1–2 weeks after sensory testing, subjects underwent the 
fMRI protocol in a Philips 3-T Achieva system (Philips Medical 
Systems, Best, The Netherlands) at the same time of day as threshold 
determination was performed, since evidence indicates a diurnal 
association of somesthetic perception (Fillingim and Ness, 2000; 
Sessle, 2000; Wiesenfeld-Hallin, 2005). Subjects were placed in the 
scanner in a supine position and their individual SPT and PPT were 
re-tested inside the scanner to exclude changes related to the experi-
mental setting. No significant differences were observed [analysis 
of variance (ANOVA), Greenhouse–Geisser corrected, F = 1.653, 
p = 0.187, η2 = 0.076]. The fMRI stimulation protocol consisted of 
40 constant stimuli per tooth applied in randomized order to the 
four teeth with an intensity 150% of the tooth specific PPT. Pain 
intensity ratings were used to control for differences in perceived 
pain intensity among tested teeth. For each tooth subjects were 
requested to rate the pain intensity of 10 randomly selected stimuli 
(25% of all stimuli applied). For those stimuli to be rated, the VAS 
appeared directly after stimulus delivery, and subjects were offered 
5 s for pain intensity rating. For the remaining 75% of trials, the 
stimulus was followed by a fixation cross on the screen. We decided 
not to have every stimulus rated in order to minimize motion arti-
facts and other rating influences (Schoedel et al., 2008). All scans 
followed by a rating were therefore excluded from further fMRI 
analysis. The experimental run lasted approximately 23 min.FIguRe 1 | Customized acrylic splint with carbon wires and stainless 

steel electrodes (fabricated for each subject). Electrodes were placed on 
the labial and oral face of the respective tooth.

1www.neurobs.com/presentation
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2003) for areas selected from pain literature reviews (Peyron et al., 
2000; Farrell et al., 2005): postcentral gyrus, thalamus, amygdala, 
supramarginal (BA 40), preparietal (BA 5), and superior parietal 
(BA 7) areas, subcentral area (BA 43), cerebellum (anterior and 
posterior lobe), the supplemental motor area (BA 6), frontomedial 
area (BA 46), and frontopolar (BA 10) areas, hippocampus, para-
hippocampus, caudate, putamen, pallidum, and the brainstem. Two 
exceptions were applied: the “insula-ROI” provided by the WFU-
Pickatlas was divided into three parts (anterior, medial, and poste-
rior) according to Brooks et al. (2002), since several reports suggest 
a complex anatomical (Varnavas and Grand, 1999) and functional 
(Coghill et al., 1999; Brooks et al., 2002, 2005; Symonds et al., 2006) 
fragmentation within the insula. To take into account the functional 
complexity of the cingulate cortex, we subdivided this structures 
based on Vogt (2005). The numbers of activated voxels, mean- and 
maximum activation were calculated within each ROI.

Data were then analyzed using SPSS for Windows (Release 14.0.0, 
SPSS Inc., Chicago, IL, USA). A RM-ANOVA with “hemisphere” 
and “side of stimulation” as within-subjects-factors was performed 
for the ROIs. Main effects for factor “hemisphere” as well as interac-
tion between factors “hemisphere” and “side of stimulation” were 
analyzed. For RM-ANOVAs, results were Greenhouse–Geisser cor-
rected for non-sphericity if applicable.

results
PsychoPhysIcs
Mean stimulus intensities of the general study population during the 
scanning procedure demonstrated a significant within-subjects effect 
(F = 3.45, p = 0.02) ranged from 20.76 to 25.24 mA across the four 
teeth, whereas respective ratings ranged from 46.9 to 49.1 but showed 
no significant differences (F = 0.48, p = 0.70). According to gender 
related differences, we found a trend in the interaction gender × stim-
ulus intensities (F = 2.74, η2 = 0.13, p = 0.051) but no interaction 
according to the gender × rating interaction with F = 0.87, η2 = 0.04, 
and p = 0.46 (for detailed information please see Table 1).

In the overall study population, post hoc t-test on stimulus inten-
sity revealed a significant difference between right central incisor 
and right canine (t = 3.82, p = 0.001) as well as between right central 
incisor and left canine (t = 2.83, p = 0.01). An additional one-way 
ANOVA exploring possible gender differences showed a signifi-
cant difference between the stimulus intensities of the left central 

For the functional scans, a blood oxygen level dependent (BOLD) 
sensitive single-shot gradient echo planar imaging sequence was 
used with 33 axial slices, covering the entire cerebrum and cerebel-
lum, using an eight-channel receive-only head coil. Parameters: 
echo time = 30 ms, flip angle = 75°, repetition time = 2500 ms, slice 
thickness = 4 mm, inter-slice gap = 0 mm, field of view = 230 mm, 
and matrix size in plane = 128 × 128, resulting in a voxel size of 
1.72 mm × 1.72 mm × 4 mm. Three “dummy” scans were first 
acquired to reach steady state magnetization and discarded. A total 
of 180 high-resolution T1 weighted axial slices (spoiled gradient 
echo) were acquired with TR = 20 ms, flip angle = 20°, voxel size = 
0.98 mm × 0.98 mm × 1.02 mm, FOV = 24 cm, matrix = 256 × 192, 
which were used as an underlay for individual functional maps.

data analysIs
Individual PPT thresholds were analyzed with respect to differ-
ences between the laboratory and fMRI condition in a repeated 
measures ANOVA (RM-ANOVA), with the factors “location” and 
“tooth.” A separate ANOVA with mean COVAS ratings per tooth 
as dependent variable, “tooth” as within-subject factor and “gen-
der” as between-subject factor was calculated to check whether 
within each subject pain intensity and PPT varies between the 
stimulated teeth.

Functional image analysis was done using the SPM5 software 
package2 running on MatLab R2007a (MathWorks, Natick, USA). 
In a first step, spatial realignment and reslicing to the first image 
in the series as reference was performed [detected movement did 
not exceed 1.5 mm (translational) or 1° (rotational) compared 
with the reference image]. For studying group effects, data were 
normalized to the MNI template brain (Evans et al., 1993) fol-
lowed by smoothing with a Gaussian kernel of 6 mm (FWHM) 
and scaled to the global mean intensity. A general linear model 
(GLM) was setup and estimated. Differences between stimulation 
and baseline were transformed into color-coded T-maps for each 
voxel and superimposed onto the MNI single-subject-T1 brain. 
Corrected data [family wise error (FWE); Worsley et al., 1996] 
with p < 0.01 are reported in the general cortical activation section. 
Regions of interest (ROI) were defined, based on images provided 
by the “WFU-Pickatlas” (Lancaster et al., 1997, 2000; Maldjian et al., 

Table 1 | Mean stimulus intensities and related mean ratings during fMRI in the overall study population and differentiated by gender.

 Right Left

 Canine Central incisor Canine Central incisor

OveRaLL (n = 21)

Stimulus intensities (mA) 25.2 ± 10.3 20.8 ± 11.3 24.8 ± 11.5 23.9 ± 13.1

COVAS ratings (0–100) 46.7 ± 18.5 48.0 ± 19.7 45.5 ± 19.0 46.9 ± 18.3

FeMaLe (n = 8)

Stimulus intensities (mA) 21.9 ± 9.6 17.0 ± 7.5 18.8 ± 7.5 15.8 ± 5.8

COVAS ratings (0–100) 38.0 ± 13.3 43.5 ± 20.2 39.5 ± 18.8 41.5 ± 17.6

MaLe (n = 13)

Stimulus intensities (mA) 27.3 ± 10.6 23.1 ± 12.8 28.5 ± 12.1 28.9 ± 13.9

COVAS ratings (0–100) 52.1 ± 19.6 50.8 ± 19.6 49.1 ± 18.8 50.2 ± 18.6

2http://www.fil.ion.ucl.ac.uk/spm
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areas, supramarginal (BA 40) and subcentral areas (BA 43), ante-
rior, medial, and posterior insula, amygdala, hippocampus, parahip-
pocampus, both cerebellae (anterior and posterior lobe), caudate, 
putamen, pallidum, supplementary motor (BA 6), frontomedial (BA 
46), and frontopolar areas (BA 10) the subdivisions of the cingulate 
gyrus [PCC, pMCC, aMCC, pregenual ACC (pACC), sACC, and 
the brainstem; Table 2].

lateralIzatIon effects based on regIons of Interest analysIs

(1) There are no ROIs demonstrating a significant effect for “side 
of stimulation.”

 incisor (F = 6.30, p = 0.2) and a trend with respect to the left canine 
(F = 4.17, p = 0.55). All other comparisons reached no significant 
level. All values are listed with respective standard deviations.

heModynaMIc resPonses across the entIre braIn and wIthIn 
regIons of Interest
Group activation brain maps (stimulation versus baseline) are dis-
played in Figure 2 and specified in Table A1 in Appendix (as we 
focus on the lateralization analyses, we disclaim from describing 
this patterns here more extensively). All ROIs investigated showed 
significant activation compared to baseline, namely postcentral 
gyrus, thalamus, preparietal (BA 5), and superior parietal (BA 7) 

FIguRe 2 | Cortical areas activated by electric tooth stimulation across all 
four teeth (a) and with respect to both right teeth (RI and RC) and both left 
teeth (LI and LC) respectively (B,C). Activity is projected onto the single-subject-
MNI-template. Indicators at the rendered brains stand for the views: R, from 

right; L, from left; S, from superior; A, from anterior; P, from posterior, all brain 
figures are in neurological orientation. Slices from left to right: midsagittal (M), 
coronal (C) at Y = −36 and horizontal (H) at Z = 54. Data are corrected for multiple 
comparison (FWE) p = 0.01 with an extended threshold of 10 voxels.
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Table 2 | activation statistics in the selected regions of interest (see Materials and Methods) based on group analysis pooled across all four teeth.

anatomical description Hemisphere Cluster size MNI coordinates voxel p voxel T 

   (max T voxel) (FWe-corrected) (max T)

Postcentral gyrus (SI) L 970 −38 −36 54 0.000 14.74

 R 1024 50 −30 52 0.000 13.16

Thalamus L 281 −10 −20 8 0.000 11.04

 R 275 14 −16 10 0.000 9.94

Preparietal area (BA 5) L 46 −34 −44 62 0.000 11.13

 R 11 32 −48 62 0.000 7.16

Superior parietal area (BA 7) L 502 −22 −66 62 0.000 10.78

 R 387 16 −78 34 0.000 9.60

Supramarginal area (BA 40) L 586 −40 −36 58 0.000 13.66

 R 374 50 −30 50 0.000 12.16

Subcentral area//SII (BA 43) L 9 −52 −18 16 0.000 6.69

 R 36 66 −16 20 0.000 10.07

Anterior insula L 213 −46 12 −8 0.000 11.38

 R 215 42 16 −8 0.000 10.60

Medial insula L 490 −40 0 −10 0.000 11.13

 R 318 42 0 −10 0.000 9.85

Posterior insula L 52 −44 −14 2 0.000 7.93

 R 41 42 −12 −8 0.000 7.92

Amygdala L 90 −20 0 −12 0.000 7.54

 R 72 26 2 −20 0.000 8.37

Hippocampus L 79 −20 −24 −10 0.000 10.57

 R 48 18 −36 0 0.000 8.62

Parahippocampus L 47 −24 −26 −16 0.000 7.80

 R 144 16 −38 −6 0.000 8.88

Cerebellum anterior lobe L 617 −34 −58 −34 0.000 9.21

 R 1017 2 −62 −26 0.000 9.96

Cerebellum posterior lobe L 617 −2 −72 −38 0.000 9.54

 R 1313 2 −64 −28 0.000 10.01

Caudate L 117 −14 16 −8 0.000 10.36

 R 108 16 16 −10 0.000 8.88

Pallidum L 69 −10 4 2 0.000 9.27

 R 6 16 10 −2 0.000 6.65

Putamen L 455 −18 14 −2 0.000 14.55

 R 264 22 14 0 0.000 10.23

Supplementary motor area (BA 6) L 631 −2 6 48 0.000 11.68

 R 421 2 8 46 0.000 10.71

Frontomedial area (BA 46) L No suprathreshold cluster with this conservative statistic level

 R 7 52 42 6 0.000 7.05

Frontopolar area (BA 10) L No suprathreshold cluster with this conservative statistic level

 R 1 52 42 0 0.000 6.41

PCC L 280 −8 −28 44 0.000 10.70

 R 108 2 −28 52 0.000 9.02

pMCC L 249 −2 −6 48 0.000 11.33

 R 259 8 −8 46 0.000 11.93

aMCC L 521 −2 6 40 0.000 10.37

 R 480 2 16 38 0.000 9.83

pACC L 103 −2 32 18 0.000 6.90

 R 20 2 34 20 0.000 6.75

sACC L No suprathreshold cluster with this conservative statistic level

 R No suprathreshold cluster with this conservative statistic level

Brainstem L 47 −2 −34 −50 0.000 6.83

 R 69 2 −26 −30 0.000 7.82

A small volume correction was performed with the regions of interests as search volume. Described are cluster size, MNI coordinates of the maximally activated 
voxel with the respective p- and t-values. Data are family wise error (FWE) corrected (p < 0.01, extent voxel threshold k = 10).
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right hemispheric effect, whereas a stronger left hemispheric effect 
was observed in putamen, pregenual cingulate cortex, and supra-
marginal area (BA 40).

Pain related cerebellar activity has been consistently demon-
strated (reviewed in Peyron et al., 2000; Apkarian et al., 2005; Farrell 
et al., 2005) and several suggestions are published in order to explain 
this often robust activity (see e.g., Saab and Willis, 2003). Evidence 
for direct and/or collateral trigeminal input to cerebellar struc-
tures is provided by animal studies (Snyder et al., 1978; Dietrichs 
and Walberg, 1987; Patrick and Robinson, 1987; Saab et al., 2001; 
Bukowska et al., 2006; Holtzman et al., 2006). Findings revealed 
that trigeminal brainstem nuclei interpolaris, oralis, and princi-
palis project predominantly ipsilateral to cerebellar regions. Taken 
together, cerebellar cortices receive mostly ipsilateral and to a lower 
extend, bilateral fibers from several trigeminal brainstem nuclei 
(detailed summarized by Dietrichs and Walberg, 1987). Recent work 
by Borsook et al. (2008) provides an overview of 28 studies with 
cerebellar activation in acute experimental pain using fMRI and 
PET. Bilateral activity is described in 15, ipsilateral activity in 10, and 
contralateral activity in 3 of them. This is an astonishing observation 
as most of the reviewed investigations stimulated the upper extremi-
ties unilaterally. Considering the anatomical perspective provided 
by animal research, one would expect a predominantly ipsilateral 
and to a smaller extent, bilateral activation. They also summarize 
own research on investigating specifically noxious and non-noxious 
thermal heat and brush stimuli applied to the maxillary division 
of the face in healthy and neuropathic pain patients. Summarized, 
noxious heat evoked predominantly contralateral activation in both 
groups, while brush evoked more ipsilateral cerebellar activity. Based 
on their observations a “dichotomy of innocuous stimuli/sensori-
motor cerebellum activation versus noxious experience/cognitive/
limbic cerebellum activation” was suggested.

Our data show a right-lateralized effect in both, anterior and pos-
terior cerebellum as well as in the parahippocampus. Schmahmann 
and Pandya (1997) as well as Manto (2006) describe outputs to 

(2) There were several ROIs that were strongly activated on one 
hemisphere irrespective of the side of stimulation. Both, ante-
rior and posterior cerebellar lobes demonstrated a stronger 
right hemispheric effect. A stronger left hemispheric effect 
was found in putamen, pACC, supramarginal area (BA 40), 
and parahippocampus (Table 3; Figure 3).

(3) There was one region, namely the subcentral area (BA 43), 
in which “hemisphere” showed a stronger right sided effect 
as well as an interaction with the factor “side of stimulation” 
(Table 3; Figure 3). This laterality effect was observed espe-
cially after left sided stimulation.

(4) There were several regions in which no main effect but an 
interaction between “hemisphere” and “side of stimulation” 
was observed (Table 3; Figure 3). Postcentral gyrus (SI), 
posterior insula, thalamus, and amygdala all showed a hemi-
spheric dominance contralateral to the stimulation side.

dIscussIon
The aim of this study was to elucidate cortical spatial representa-
tion and hemispheric lateralization in response to noxious electric 
dental stimulation. Findings reveal robust brain activation in areas 
previously shown to be involved in pain processing.

Focusing on lateralization aspects, we categorize the findings 
into three groups: (1) structures exhibiting hemispheric lateraliza-
tion irrespective of side of stimulation, (2) structures showing acti-
vation dominance contralateral to the side of stimulation without 
hemispheric lateralization, and (3) structures demonstrating not 
only hemispheric lateralization, but also dependency on side of 
stimulation. In the following, we discuss these findings in detail.

heMIsPherIc lateralIzatIon IrresPectIve of sIde of 
stIMulatIon
We found evidence for hemispheric lateralization in six brain areas 
irrespective of side of stimulation. The anterior and posterior cere-
bellar lobes as well as the parahippocampus demonstrate a stronger 

Table 3 | Repeated measures aNOva results of the region of interest analysis.

anatomical description Main effect “hemisphere” [F (η2) p] Interaction effect “tooth × hemisphere” 

  [F (η2) p]

Thalamus 0.028 (0.001) 0.870 11.038 (0.356) 0.003

Postcentral gyrus (SI) 0.876 (0.042) 0.360 12.928 (0.393) 0.002

Posterior insula 0.003 (0.000) 0.959 4.564 (0.186) 0.045

Amygdala 3.615 (0.153) 0.072 23.163 (0.537) 0.000

Subcentral area (BA 43) 17.723 (0.470) 0.000 12.899 (0.392) 0.002

Preparietal area (BA 5) 1.219 (0.057) 0.283 3.008 (0.131) 0.098

Cerebellum (posterior lobe) 18.814 (0.485) 0.000 1.349 (0.063) 0.259

Cerebellum (anterior lobe) 4.546 (0.185) 0.046 1.942 (0.089) 0.179

Parahippocampus 6.628 (0.249) 0.018 1.417 (0.066) 0.248

Supramarginal area (BA 40) 7.191 (0.264) 0.014 1.654 (0.076) 0.213

Pregenual anterior cingulate (pACC) 13.934 (0.411) 0.000 0.771 (0.037) 0.515

Anterior medial cingulate (aMCC) 4.271 (0.176) 0.052 0.507 (0.025) 0.679

Putamen 7.213 (0.265 ) 0.014 0.718 (0.035) 0.407

Supplementary motor area (BA 6) 3.909 (0.163 ) 0.062 0.357 (0.018) 0.557

Only the significant and (p < 0.05), trend-like interactions (p < 0.10) are shown (see Figure 3 for illustration). Main effect “tooth” is not shown, as there is neither a 
significant nor a trend within that factor. F, F-value, p, p-value, η2, proportion of the variability in the dependent measure that is attributable to a factor. Bold indicates 
p < 0.5, italicized indicates a trend (p < 0.1).
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FIguRe 3 | Regions of interest (ROIs) showing significant main effect hemisphere (indexed with °) or interaction (indexed with *) in the repeated measure 
aNOva. Displayed are mean activations (Y axis) with corresponded standard errors for each tooth within the respective hemisphere. RC, right canine; RI, right 
central incisor; LI, left central incisor; LC, left canine.

numerous (limbic) structures, among them; hippocampal complex, 
amygdala, thalamic nuclei, hypothalamus, and the periaqueductal 
gray. Based on these connections, the cerebellum has also been 

called “modulator of different neurologic functions,” thus directly 
influencing sensory, but also emotional and cognitive processing 
(Allen et al., 2005; Ito, 2008).

Frontiers in Human Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 12 | 7

Brügger et al. Cerebral processing of dental pain



tions in contrast to  right-lateralized parietal cortex activity which 
is thought to mediate the analysis and integration of body-related 
visual and painless somatosensory information.

With respect to the finding that parahippocampus shows pre-
dominantly right sided BOLD responses to dental nociceptive 
stimuli, the function of this structure may also be described in the 
context of novelty detection theories, as suggested before by Bingel 
et al. (2002) and Ploghaus et al. (2000) and corroborated by Strange 
and Dolan (2006) with fear related stimuli.

structures wIth PredoMInant contralateral actIvatIon
We found evidence in five brain areas that reveal activation domi-
nance contralateral to the side of stimulation: SI, thalamus, pos-
terior insula, amygdala, and subcentral area (BA 43). Subcentral 
area additionally demonstrates hemispheric lateralization and will 
be discussed later.

Contralateral activation is closely linked to somatotopic encod-
ing. Yet, unresolved questions exist as to lateralization aspects in cor-
tical structures like SI, SII, thalamus, and posterior insula. To address 
this topic was one of the aims of the present study. Previously, Bingel 
et al. (2003) have investigated lateralized brain activity in response 
to noxious stimuli in SI, SII, insula, and thalamus and found con-
tralateral bias in all these four areas. Although stimulation of either 
hand evoked bilateral activation of anterior and posterior insular 
regions, a contralaterally biased response was found for the posterior 
parts of the insula bordering SII. Similar findings were reported by 
Brooks et al. (2002) who applied noxious thermal stimuli to both 
hands. Again, activation in insular posterior parts was dependent on 
the site of stimulation, whereas this dependency was absent in more 
anterior insular areas and SII. Interestingly, activation was absent 
in thalamus and SI. If activation in the thalamus is reported, then 
mostly contralateral but also often bilateral (Peyron et al., 2000) 
although, more recently, Kulkarni et al. (2005) reported ipsilateral, 
but no contralateral thalamus activity.

Our electric dental stimulation data show robustly that SI is acti-
vated bilaterally with a significant predominance contralateral to the 
stimulus application side. The same findings hold true for thalamus, 
and posterior insular cortex (Figure 3). We thus confirm the functional 
role of these cortical areas in topographic stimulus encoding.

Possibly, lateralized activation of areas could be caused by evasive 
or protective motor action dependent on the site of stimulation. 
However, this unlikely explains the present data, since withdrawal 
and orientation responses have been shown to predominantly 
activate cingulate cortex subdivisions (Vogt, 2005; Peyron et al., 
2007) and cerebellum (Dimitrova et al., 2003) but not SI, thalamus, 
posterior insula, amygdala, or subcentral area (BA 43).

The amygdala’s involvement in various forms of conditioned 
hypoalgesia and analgesia has been well established in several ani-
mal studies (e.g., Crown et al., 2000; Neugebauer and Li, 2002, 
2003; Neugebauer et al., 2004). Lesion studies, specifically of the 
latero-capsular amygdaloid nucleus (also termed “nociceptive amy-
gdala”) demonstrated reduced or completely abolished conditioned 
behavior (Watkins et al., 1998). Inconsistent amygdala activation 
in response to nociceptive and other aversive stimuli in humans is 
frequently reported (Baas et al., 2004; Phan et al., 2004; Rempel-
Clower, 2007; Tracey and Mantyh, 2007). Why amygdala activa-
tion appears robustly in response to noxious dental stimulation in 

The role of the basal ganglia in processing nociceptive informa-
tion is still debated despite their robustly observed involvement 
shown in human studies (Coghill et al., 1999, 2001; Apkarian 
et al., 2005) as well as in animal research (Chudler, 1998). 
Neuroanatomical evidence reveals afferents from several subdivi-
sions of the cerebral cortex (including neocortical and cingulate 
cortex), thalamic nuclei, cerebellum, the amygdala, parabrachial 
area, and dorsal raphe nucleus (Chudler and Dong, 1995; Downar 
et al., 2003). Although the main role of the basal ganglia is often 
related to sensorimotor integration and thus adaptation of motor 
responses to noxious stimuli, their involvement in other dimensions 
of pain processing cannot be excluded. The review of Chudler and 
Dong (1995) provides strong evidence for a functional involve-
ment of the basal ganglia in both, direct innocuous and noxious 
somatosensory processing. Supporting this finding, Coghill et al. 
(1999) pointed out the role of the putamen and globus pallidus 
(bilateral) in processing of human pain intensity and Scott et al. 
(2006) linked the role of the putamen to anticipatory mechanisms. 
Publications of several other investigations suggest cerebellar 
and basal ganglia processing to depend on cognitive functions 
(Akshoomoff and Courchesne, 1992; Schmahmann and Pandya, 
1997; Schmahmann and Caplan, 2006). However, based on present 
literature no evidence emerges regarding lateralization of cognitive 
functions in these areas. Therefore, we do not assume that left-
lateralization found in our data indicates cognitive involvement, 
but rather reveals motor functions, many of which are known to be 
lateralized to the motor dominant hemisphere. This interpretation 
is up for debate as two previous studies revealed certain aspects 
of hemispheric dominance to be independent of handedness for 
noxious and non-noxious somatosensory stimulation (Jung et al., 
2003; Schlereth et al., 2003).

Focusing on significantly activated cingulate cortex subdivisions 
(PCC, pMCC, aMCC, pACC, and sACC) we found a left hemispheric 
lateralization in the pACC and a trend toward left-lateralization in the 
aMCC, but no lateralization in the more posterior divisions. Current 
literature indicates that pACC is associated with engaging in positively 
valenced events and is linked with the amygdala’s lateral basal and 
accessory basal nuclei, whereas the aMCC contains the rostral cin-
gulate motor area (Vogt, 2005). Based on their findings, Büchel et al. 
(2002) concluded that a main function of the ACC’s subdivisions is 
to integrate a wide range of pain relevant information and to generate 
adequate responses. However, considering pain related investigations, 
distinct lateralization aspects of ACC subdivisions have to date not 
been in the focus of interest. In line with its functional attributes 
(selection of adequate reactions), the aMCC activation pattern found 
in our study points toward involvement in motor components of 
nociception, as seen for cerebellum and putamen (Vogt, 2005).

The left-lateralization effect noticed in the supramarginal area 
(BA 40) may also relate to a functional role of this structure in 
sensorimotor integration (Serrien et al., 2006), or a specialization 
for the detection of behaviorally relevant stimuli (Corbetta and 
Shulman, 2002).

Even if the stimuli may not be interpreted by subjects as poten-
tially dangerous, pain is inherently salient (Legrain et al., 2009). 
Conform to Farrer et al. (2008) we favor an interpretation that the 
left lateralized activation within the supramarginal area is related 
to the analysis and integration of body-related nociceptive sensa-
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comparison to stimulation of other body parts (Peyron et al., 2000; 
Apkarian et al., 2005; Farrell et al., 2005) can only be speculated. 
One possible explanation is that the amygdala has proven relevant 
for emotional conditioning (Büchel et al., 1999; Büchel and Dolan, 
2000; Cardinal et al., 2002) and thus, a unique emotional salience 
of dental pain could explain our findings. However, it must be 
noted that the emotional value of the applied stimuli has not been 
directly controlled for. Stimulus conditioning and (missing) previ-
ous dental pain experiences could both contribute to an assumed 
peculiarity of dental pain. Alternatively dental pain may involve 
different processing pathways (trigeminal versus spinal). Future 
investigations need to further elucidate this topic.

Lateralization of amygdala activation shows an inconsistent pic-
ture. Among human neuroimaging studies, none described a clearly 
lateralized activation dependent on the stimulation side (e.g., Bingel 
et al., 2002; Bornhovd et al., 2002). The present data show that 
BOLD signal in the amygdala is stronger contralateral than ipsi-
lateral to the side of stimulation. To the best of our knowledge, this 
has previously not been shown in pain studies nor in investigations 
on emotion. Regarding the latter, Baas et al. (2004) pointed out that 
there is no stimulation side dependent amygdala lateralization effect 
across 54 studies analyzed by them. One has of course to consider 
different paradigms and also different statistical approaches which 
hamper an adequate conclusion so far. Our approach of analyzing 
mean activations by a RM-ANOVA provides some evidence toward 
possible somatotopic related encoding properties. Previous studies 
may have missed a lateralization effect in the amygdala due to less 
salient stimuli and/or bigger voxel sizes (introducing greater partial 
volume effects and hence reduced statistical power).

Interestingly, contrary to previous reports our data do not indi-
cate lateralization of brainstem activity. We propose that this is 
due to methodological reasons. Without applying special imaging 
techniques, brainstem activity is often severely masked by move-
ment artifacts stemming from pulsation movements of the A. caro-
tis. Correction of these artifacts involves, e.g., cardiac triggering, 
which we did not apply for sake of greater power in the remaining 
regions. Methods to deal with physiological artifacts post hoc (see 
e.g., Harvey et al., 2008) were also not applicable due to missing 
cardiac and respiratory information. Thus we argue that brainstem 
effects are likely to be missed in our study which should not give 
rise to suspicion regarding the effects found.

structures showIng heMIsPherIc doMInance and 
PredoMInant contralateral actIvatIon
The subcentral area (BA 43) shows significant lateralization to 
one hemisphere (main effect “hemisphere”) and also significant 
enhanced activation contralateral to the stimulus. Interestingly, this 
area is not frequently reported in pain studies. Subcentral area 
(BA 43) is located at the ventral end of the pre/postcentral gyri 
and the bank of the lateral sulcus and also delineated as SII. Its 
rostral and caudal borders are neighbored by both, the anterior and 
posterior subcentral sulci. Its distinction from surrounding areas 
is based on its specific cytoarchitectonic features already observed 
by Brodmann (Eickhoff et al., 2006, 2007).

Only few human studies explicitly reported lateralized activation 
within BA 43 in response to noxious stimulation. Becerra et al. (2001) 
noted right-lateralized activation in BA 43 in response to noxious 

thermal hand stimulation, but this result was not addressed in the dis-
cussion. Focusing on idiopathic chronic low back pain, Giesecke et al. 
(2004) found bilateral activation in BA 43 and discussed it as being part 
of the SII. In a simultaneous EEG–fMRI investigation, Christmann 
et al. (2007) reported bilateral activation within BA 43 and also deline-
ated it as being part of SII. However, in none of these studies, activity 
within BA 43 was further interpreted by the authors.

The present data showed a strong hemodynamic response within 
BA 43, with a significant interaction effect between stimulated 
tooth and hemisphere (activity is predominantly contralateral to 
the stimulus) as well as a main effect toward the right hemisphere 
(Table 3; Figure 3). This distinct right-lateralized activation is eye-
catching and the present data may shed new light on the role of this 
structure, since the activation pattern is quite different from other 
parts of SII. Strong anatomical connections between the subcen-
tral area and premotor cortices, as well as posterior parietal area 
(Cipolloni and Pandya, 1999) place the subcentral area (BA 43) in 
an ideal position for multimodal sensorimotor integration. Such 
a role has long been suggested for mammals (Krubitzer, 1996) and 
more recently for humans (Disbrow et al., 2000).

Although our results point toward a specialized somatosensory 
encoding function with a possible role in sensorimotor integra-
tion, it may be premature to speculate on the specific role of BA 
43 within the pain circuitry.

study lIMItatIons
A full understanding of brain activations in response to pain-
ful stimuli is inherently limited by the complexity of the multi-
dimensional pain experience. Some brain activity patterns may 
not necessarily be directly involved in pain processing, but rather 
relate to aspects of alertness and/or orientation responses. Namely 
 parieto-occipital activation clusters may be interpreted this way. 
The human pain experience implies orientation toward pain and 
toward options to relieve it. Some brain activity may thus not be 
directly linked to the pain experience itself. Furthermore, as the 
intensities of all stimuli were above the pain threshold, purely soma-
tosensory processes cannot be controlled for and thus it cannot 
be excluded that some brain activities may reflect somatosensory 
aspects of the stimulation. Finally, although all subjects located 
their pain to the stimulation tooth, we are unable to report on the 
fiber subpopulations involved in pain transmission.

conclusIon
Electrically evoked dental pain activates cortical areas typically 
described in spinal pain studies. Yet, robust activation can be 
observed in additional areas, namely the amygdala. Besides previ-
ously known lateralization effects, hemispheric lateralization irre-
spective of side of stimulation were observed in subdivisions of the 
ACC (aMCC and pACC). Predominant contralateral activation in 
the posterior insular cortex and the amygdala points toward their 
possible involvement in somatotopic encoding of noxious stimuli, 
in addition to other, previously described functions.
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Table a1 | Complete list of local maxima within clusters activated for the contrast stimulation versus baseline (as illustrated in Figure 2).

anatomical description Cluster size voxel p (FWe-corrected) MNI coordinates (max T voxel) voxel T (max T)

Postcentral gyrus 27749 0.000 14.74 −38 −36 54

  0.000 14.55 −18 14 −2

  0.000 14.21 −40 −28 56

  0.000 13.92 −38 −32 62

  0.000 13.16 50 −30 52

  0.000 13.13 38 −34 48

  0.000 12.85 44 −62 4

  0.000 12.65 −34 −44 56

  0.000 12.52 −34 −42 52

  0.000 12.5 42 −36 54

  0.000 12.43 −42 −32 46

  0.000 12.34 −46 12 −10

  0.000 12.25 −46 −20 58

  0.000 12.05 −56 −28 52

  0.000 11.75 −42 −28 18

  0.000 11.7 −58 −22 14

  0.000 11.56 58 12 −8

  0.000 11.55 −52 −22 54

  0.000 11.55 40 2 −18

  0.000 11.46 −54 −26 16

  0.000 11.44 −40 −36 42

  0.000 11.43 54 −22 44

  0.000 11.43 34 −8 64

  0.000 11.38 36 −18 66

  0.000 11.18 −40 0 −12

  0.000 11.15 50 16 −14

  0.000 11.04 −10 −20 8

  0.000 11.02 −52 4 −6

  0.000 10.98 −56 6 −2

  0.000 10.85 −46 4 −4

  0.000 10.84 36 −46 54

  0.000 10.78 −22 −66 62

Posterior cingulate 3304 0.000 13.16 −4 −32 26

  0.000 11.68 0 6 48

  0.000 11.35 −2 −14 56

  0.000 11.29 −2 −2 48

  0.000 11.09 −2 16 38

  0.000 10.82 2 −8 46

  0.000 10.24 −8 −28 44

  0.000 9.98 0 −26 54

  0.000 9.96 −2 −6 56

  0.000 9.95 −2 18 46

  0.000 9.11 2 −22 44

  0.000 8.96 2 −2 66

  0.000 8.87 4 −2 38

  0.000 8.82 10 22 28

  0.000 8.75 −10 18 30

  0.000 8.2 −2 30 18

  0.000 7.74 6 −4 30

(Continued)
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  0.000 7.58 8 16 64

  0.000 7.31 4 −20 28

  0.000 6.92 −4 26 38

  0.000 6.86 2 −14 28

  0.000 6.48 −2 38 10

  0.003 6.02 10 4 40

Midbrain 99 0.000 10.17 2 −16 −14

  0.000 7.4 4 −26 −28

  0.000 7.2 0 −18 −20

Cerebellum posterior lobe 117 0.000 9.6 14 −76 −48

Medulla 72 0.000 8.07 −2 −34 −50

  0.000 6.48 −6 −34 −42

Inferior frontal gyrus 37 0.000 7.53 52 44 4

  0.001 6.25 54 40 −2

Cerebellum posterior lobe 26 0.000 7.19 32 −80 −32

Temporal inferior lobe 31 0.000 6.89 −44 −42 −28

  0.000 6.51 −38 −48 −24

  0.002 6.11 −48 −42 −26

Cingulate gyrus 13 0.000 6.79 14 −28 36

Occipital lobe (lingual) 55 0.000 6.69 2 −68 4

  0.000 6.53 6 −64 0

Parietal lobe (precuneus) 17 0.000 6.62 −6 −52 52

  0.001 6.25 −2 −58 52

Inferior parietal lobe (supramarginal) 11 0.001 6.2 68 −36 26

Only    

As there are very large clusters, anatomical descriptions are related only to the maximally activated voxel within each cluster.

Table a1 | Continued

anatomical description Cluster size voxel p (FWe-corrected) MNI coordinates (max T voxel) voxel T (max T)
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