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l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), Université de Montpellier, Montpellier,
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Abstract

The semicircular canal (SC) system of the inner ear detects head angular accelerations

and is essential for navigation and spatial awareness in vertebrates. Because the bony laby-

rinth encloses the membranous labyrinth SCs, it can be used as a proxy for animal behavior.

The bony labyrinth of dicynodonts, a clade of herbivorous non-mammalian synapsids, has

only been described in a handful of individuals and remains particularly obscure. Here we

describe the bony labyrinth anatomy of three Endothiodon cf. bathystoma specimens from

Mozambique based on digital reconstructions from propagation phase-contrast synchrotron

micro-computed tomography. We compare these findings with the bony labyrinth anatomy

of their close relative Niassodon. The bony labyrinths of Endothiodon and Niassodon are rel-

atively similar and show only differences in the shape of the horizontal SCs and the orienta-

tion of the vertical SCs. When compared to extant mammals, Endothiodon and Niassodon

have highly eccentric SCs. In addition, the Endothiodon SCs are nearly orthogonal. An

eccentric and orthogonal SC morphology is consistent with a specialization in rapid head

movements, which are typical of foraging or feeding behaviors. Furthermore, we estimate

the body mass of these Endothiodon specimens at ~116 to 182 kg, based on the average

SC radii calculated using a linear regression model optimized by the Amemiya Prediction

Criterion. Our findings provide novel insights into the paleobiology of Endothiodon which are

consistent with the peculiar feeding mechanism among dicynodonts presumed from their

multiple postcanine toothrows.
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Introduction

The semicircular canal (SC) system of the inner ear has a fundamental role in proprioception

by encoding rotations of the head [1–5]. The development of computed tomography has sig-

nificantly increased our knowledge of the anatomy of the bony labyrinth in extinct and extant

taxa, from reptilians to synapsids. It is currently accepted that the three-dimensional morphol-

ogy of the bony labyrinth provides an ecomorphological signal, because it reflects how sensi-

tive the inner ear is to angular motion of the head [6–11]. Thus, the analysis of fossilized inner

ears can provide important insights into the lifestyle of extinct species (e.g., [12–14]). Further-

more, labyrinth anatomy and morphometrics are also useful for systematic purposes [15, 16].

Although a vast amount of information on mammaliaform labyrinth morphological diver-

sity has accumulated over recent years (e.g., [17–23]), few studies have addressed the vestibular

anatomy of non-mammaliaform synapsids (e.g., [24–27]). For instance, dicynodont osseous

labyrinths have only been described in a small number of specimens [27–38] representing a

minor subset of the enormous diversity of more than 120 dicynodont species currently known

[39]. Furthermore, as most of these anatomical descriptions relied on imprecise reconstruc-

tions from serial grinding, rigorous morphological comparisons of non-mammaliaform syn-

apsid bony labyrinths have remained challenging. This technical limitation has also hindered

comparisons with extant species to address ecomorphological questions, for instance. Con-

trary to the view that the inner ear has conserved morphology, significant variations have been

reported in some extant species, even at the intraspecific level (e.g., [40, 41]). This morphologi-

cal diversity provides information about the animals’ lifestyles.

In this study, we used synchrotron radiation-based micro-computed tomography to exam-

ine the anatomy of the bony labyrinth of three rare specimens of the extinct Mozambican

Endothiodon cf. bathystoma [42] and Niassodon [35] collected from the K5 Formation [43, 44]

of the Metangula Graben, Niassa Province, Mozambique. Our results revealed unusually

high SC eccentricity in Endothiodon and Niassodon, when compared to extant animals of the

synapsid lineage. Interestingly, the unusual SC morphology of these Endothiodontia allowed

us to explore a previously poorly known region of the bony labyrinth morphospace [45]. Fur-

thermore, we found low intraspecific variation in the SC system among these Endothiodon
specimens. Finally, we used the dimensions of the SC radii to estimate the body mass for

Endothiodon with a highly-significant linear regression model.

Materials and methods

Institutional acronyms

MTA/ACL, Academia das Ciências de Lisboa, Lisbon, Portugal; AMNH, American Museum

of Natural History, New York, United States of America; GPIT/RE, Institut und Museum für

Geologie und Paläontologie, Tübingen, Germany; MB.R, Museum für Naturkunde, Leibniz-

Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany; SAM-PK, Iziko South

African Museum, Cape Town, Republic of South Africa.

Materials

We examined three rare and fragile Endothiodon cf. bathystoma specimens that preserve par-

tial occipital and basicranial regions, namely MTA/ACL001 (Fig 1), MTA/ACL002 (Fig 2),

MTA/ACL003 (Fig 3) [42]. The Endothiodon specimens can be consulted at the Academia de

Ciências de Lisboa. The specimens were all collected from the K5 Formation [43, 44] of the

Metangula Graben, Niassa Province, Mozambique. Niassodon is permanently deposited in

the Museu Nacional de Geologia (Mozambique) collections. A comprehensive review of the

Endothiodon bony labyrinth
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history of the specimens and the collection of fossil vertebrates from Mozambique is described

in the Supporting Information.

MTA/ACL001 is composed of the ventral portion of the supraoccipital enclosing the fora-

men magnum, the basioccipital fused to the exoccipitals with the occipital condyle eroded, the

posterior portion of the basisphenoid with relatively intact basisphenoid tubera, and only the

medial portions of the opisthotic (Fig 1).

Fig 1. MTA/ACL001 basicranium. A, ventral, B, dorsal, C, posterior, and E, anterior views. Osseous labyrinth within the basicranium in E, anterior

and F, left lateral views. Legend: bt, basal tubera, fm, foramen magnum, oc, occipital condyle.

https://doi.org/10.1371/journal.pone.0189883.g001

Endothiodon bony labyrinth
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MTA/ACL002 contains of a small fragment of the right portion of the supraoccipital and

the most medial portion of the right opisthotic perforated by the right jugular foramen. MTA/

ACL002 also contains the basioccipital, which forms together with the exoccipitals a tripartite

occipital condyle, the latter being pierced by two roots of the hypoglossal foramina (Fig 2).

MTA/ACL003 is composed of the right opisthotic, the ventral portion of the supraoccipital,

and the basioccipital, although the occipital condyle is eroded. In MTA/ACL003 the exoccipi-

tals are fused to the basioccipital and there is a portion of the basisphenoid whose basisphenoi-

dal tubera was largely eroded. In all specimens due to modern-day erosion an outer layer of

the bone surface was significantly demineralized.

AMNH6156 natural cast of the inner ear was found to possess similar morphology to the

Endothiodon inner ear endocasts, therefore, we incorporated a description and comparisons in

S1 Text.

Fig 2. MTA/ACL002 basicranium. A, ventral view, B, dorsal view, C, posterior view, D, medial view with the osseous labyrinth, E, posterior view with the osseous

labyrinth. Legend: bt, basal tubera, oc, occipital condyle.

https://doi.org/10.1371/journal.pone.0189883.g002
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Propagation phase-contrast synchrotron micro-computed tomography and

segmentation

The Endothiodon specimens were scanned at the beamline ID17 of the European Synchrotron

Radiation Facility (ESRF, Grenoble, France), using Propagation Phase Contrast Synchrotron

Fig 3. MTA/ACL003 basicranium. A, ventral view, B, dorsal view, C, posterior view, D, anterior view. Osseous labyrinth within the basicranium in E, ventral view, F,

anterior view. Legend: bt, basal tubera, fm, foramen magnum, oc, occipital condyle, pp, paroccipital process.

https://doi.org/10.1371/journal.pone.0189883.g003

Endothiodon bony labyrinth
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micro-Computed Tomography (PPC-SRμCT). The set up consisted of a 130 keV monochro-

matic beam (bent double Laue), a tapered scintillating fiber-optic, a 0.5x set of lenses and a

FReLoN-2K camera resulting in an isotropic voxel size of 45.98 μm in reconstructed data. The

data acquisition comprised 3100 projections of 0.1 s each over 360˚, and laterally shifted center

of rotation to increase the reconstructed horizontal field of view (i.e., half-acquisition protocol

[46]). Consecutive scans had an approximate 35% vertical overlap to compensate for the verti-

cal beam profile. To produce Figs 4, 5 and 6 three orthogonal virtual thin sections are oriented

based on the plane containing the horizontal semi-circular canal. All virtual thin sections result

from the maximum intensity projection of three adjacent tomograms in order to reduce the

density gradient present near the edge of the specimen. The contrast on the images has been

adjusted setting the background to 0 and reaching saturation for the denser inclusion in the

specimen.

The Niassodon specimen was imaged at the ID19 beamline of the European Synchrotron

Radiation Facility (ESRF, Grenoble, France). The setup consisted of a FReLoN-2k camera, a

0.475x magnification set of lenses, a 750 μm LuAG scintillator, white beam from a W150 wig-

gler (gap 58 mm) filtered with Al 2 mm and Cu 4 mm (detected total integrated energy at 97.8

Fig 4. Virtual thin section through the osseous labyrinth of MTA/ACL001 specimen. Orthogonal virtual thin sections in A, horizontal plane, B, coronal plane, C,

sagittal plane through the right osseous labyrinth of MTA/ACL001 specimen. D, three-dimensional rendering of the right osseous labyrinth with semi-transparent

outline of the whole specimen in anterolaterodorsal view. Scale bar: 10 mm.

https://doi.org/10.1371/journal.pone.0189883.g004

Endothiodon bony labyrinth
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keV) and a sample-detector distance of 16 m to perform Propagation Phase Contrast Synchro-

tron micro Computed Tomography (PPC-SRμCT). The tomography was computed based on

6000 projections of 0.1 s each over 360 degrees resulting in data with a 27.85 μm isotropic

voxel size. Additionally, the center of rotation was shifted by ~18 mm to increase the horizon-

tal field of view in the reconstructed data (i.e., half acquisition protocol).

Both tomographic reconstructions were performed using the single distance phase retrieval

approach of the software PyHST2 [47,48]. For this purpose, a range of ð/ß values were tested

first (500–2000, steps of 250) from which a value of 1000 was selected as it was giving best con-

trast on reconstructed slices. The resulting 32-bit data were converted to a stack of 16-bit tiff

images using the minimum and maximum values excluding 0.001% of voxels on both sides of

the 3D histogram generated by PyHST2.

Volume processing and rendering was undertaken using the software VGstudio MAX 2.1

(Volume Graphics, Heidelberg, Germany). The segmentation was carried out using semi-auto-

matic 3D region growing tools. When this tool did not permit complete extraction (e.g., con-

trast too low between the bone and the matrix or elevated fracture level), missing parts were

added slice by slice using manual segmentation as necessary.

Fig 5. Virtual thin section through the osseous labyrinth of MTA/ACL002 specimen. Orthogonal virtual thin sections in A, horizontal plane, B, coronal plane, C,

sagittal plane through the right osseous labyrinth of MTA/ACL002 specimen. D, three-dimensional rendering of the right osseous labyrinth with semi-transparent

outline of the whole specimen in anterolaterodorsal view. Scale bar: 10 mm.

https://doi.org/10.1371/journal.pone.0189883.g005

Endothiodon bony labyrinth
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Data accessibility

The tomographies described here are made accessible as.jpeg2000 stacks through the ESRF

Paleontological Database (paleo.esrf.eu).

Measurements and statistics

The measurements were performed in Amira (FEI, Hillsboro, Oregon, USA) using the 2D

angle measurement tool and the 3D linear measurement tool following the scheme of Fig 7

(Tables 1, 2, 3, S1 and S2 Tables). To calculate the elliptical eccentricity of the vertical semicir-

cular canals we used the formula e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ða=bÞ2
q

, where a is the major axis, and b the minor

axis of the SC. We used the surface thickness computation module in Amira to perform the

lumen diameter measurements of the various semicircular canals. Each measurement was

performed five times at different occasions to ensure repeatability and to test intra-observer

variability (Tables 2, 3, S1 and S2 Tables). The five measurements of lumen diameter were per-

formed in relatively equidistant points along the semicircular canal. Summary statistics were

Fig 6. Virtual thin section through the osseous labyrinth of MTA/ACL003 specimen. Orthogonal virtual thin sections in A, horizontal plane, B, coronal plane, C,

sagittal plane through the left osseous labyrinth of MTA/ACL003 specimen. D, three-dimensional rendering of the left osseous labyrinth with semi-transparent outline

of the whole specimen in posterolaterodorsal view. Scale bar: 10 mm.

https://doi.org/10.1371/journal.pone.0189883.g006

Endothiodon bony labyrinth
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calculated for the linear measurements of the lumen diameter of the SCs (Table 2), whereas

circular statistics [49] were used to treat the angular measurements between the three SCs

for each specimen (Table 3). We used the t-distribution with two tails and n-1 degrees of free-

dom. We also calculated the relative and absolute Technical Error of Measurement (TEM) and

performed repeated measures ANOVA’s for the angles between SC’s because these are truly

repeated measurements (S2 Table); the lumen diameters are not made in the same homolo-

gous points (see Fig 7). Therefore, variations through the SCC are expected, so that the TEM

cannot be calculated. Also, because the TEM is designed for 2 repeated measurements, not 5,

we calculated the TEM for all pairwise combinations between the 5 repeated measurements

and then averaged the calculated TEM for all 10 pairwise combinations.

Results

Anatomical description of the Endothiodon bony labyrinth

The Endothiodon osseous labyrinths are exquisitely preserved (Figs 8, 9, 10, S1, S2 and S3 Figs)

except for small dorsal portions of the anterior and posterior SCs as well as a part of the crus

communis in MTA/ACL003 (Fig 10).

The fenestrae vestibuli and lagena are not clearly distinguishable. The bone surrounding

the fenestra vestibuli is not completely preserved, missing the lateralmost portions of the basi-

sphenoid and opisthotic. The vestibule is slightly curved, with a medial curvature convexity

(Figs 8, 9 and 10, S1, S2 and S3 Figs). The vestibule is a broad chamber, which is subtriangular

in cross section. It develops the cochlea ventrally as a straight canal. The major axis radius of

the anterior SC is slightly longer (average = 9.47 mm) than the posterior SC (average = 8.47

Fig 7. Diagrammatic scheme of the linear measurements performed. Osseous labyrinth in A, posterior view. B, lateral view. C, anterior view. D, dorsal view.

Abbreviations: APHSC, angle between the posterior and horizontal semicircular canal, AAHSC, angle between the anterior and horizontal semicircular canal,

AAPSC, angle between the anterior and posterior semicircular canal. LDASC, lumen diameter of the anterior semicircular canal. LDPSC, lumen diameter of

the posterior semicircular canal. LDHSC, lumen diameter of the anterior semicircular canal. AMaSCD, anterior major axis of the semicircular canal diameter.

AMiSCD, anterior minor axis of the semicircular canal diameter. PMaSCD, posterior major axis of the semicircular canal diameter. PMiSCD, posterior minor

axis of the semicircular canal diameter. HMaSCD, horizontal major axis of the semicircular canal diameter. HMiSCD, horizontal minor axis of the semicircular

canal diameter.

https://doi.org/10.1371/journal.pone.0189883.g007

Endothiodon bony labyrinth
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mm); see Table 1. The anterior SC major axis is 1.37 to 2.49 times longer than the minor axis,

whereas the posterior SC is slightly more eccentric (2.20 to 2.56; Table 1). At the level of the

fenestra vestibuli a horizontal SC develops laterally. The horizontal SC is ellipsoidal in shape,

with a major axis ranging from 8.03 to 8.48 mm, and the minor axis from 3.05 to 3.50 mm

(Figs 8, 9 and 10). The horizontal SC is broad near the vestibulum but it becomes abruptly thin

laterally. Similarly, the vertical SCs are thin and dorsoventrally elongated. The SCs are sub-

orthogonally-oriented relative to each other (Table 3, Figs 11, 12). However, the angle between

Table 1. Vertical semicircular canal elliptical eccentricity measurements for the mammalian sampled taxa, the Endothiodon specimens and Niassodon. Abbrevia-

tions: AMiSCD, anterior semicircular canal minor axis diameter, AMaSCD, anterior semicircular canal major axis diameter, PMiSCD, posterior semicircular canal minor

axis diameter, PMaSCD, posterior semicircular canal major axis diameter, HMiSCD, horizontal semicircular canal minor axis diameter, HMaSCD, horizontal semicircular

canal major axis diameter, LogBM, log10 body mass, asterisk refers to estimated body mass calculated using the linear regression model. See also S3 Table.

Genus Specimen AMaSCD AMiSCD PMaSCD PMiSCD HMaSCD HMiSCD Log10 BM e
Atelerix unvouchered 1.33 1.22 1.23 1.08 0.96 0.89 2.52 0.44

Canis TMMM-150 1.73 1.72 1.42 1.42 1.50 1.46 4.60 0.10

Cavia TMM-M-7283 2.15 1.53 1.46 1.44 1.90 1.16 2.86 0.57

Chrysochloris AMNH82372 1.20 0.78 0.68 0.48 0.67 0.58 1.67 0.75

Cynocephalus AMNH187859 2.09 1.95 1.64 1.53 1.49 1.37 3.10 0.36

Dasypus TMM-M-152 1.90 1.50 1.63 1.62 1.45 1.38 3.60 0.47

Dasypus TMM-M-1065 1.96 1.66 1.80 1.72 1.44 1.40 3.60 0.44

Dasypus TMM-M-1880 2.06 1.31 1.88 1.72 1.58 1.54 3.60 0.64

Dasypus TMM-M-1885 2.15 1.31 1.94 1.93 1.48 1.37 3.60 0.61

Didelphis TMM-M-2517 1.47 1.40 1.11 1.10 0.92 0.84 3.39 0.25

Equus TMM-M-171 3.53 3.43 3.49 3.20 3.10 3.04 5.61 0.33

Eumetopias unvouchered 3.32 2.38 2.83 2.32 2.59 1.91 5.58 0.64

Felis TMM-M-968 1.99 1.67 1.84 1.73 1.73 1.53 3.46 0.46

Hemicentetes AMNH161535 1.13 0.95 0.79 0.65 0.69 0.58 2.13 0.55

Homo UTO-HS01 1.99 1.83 2.83 2.38 2.72 2.51 4.77 0.49

Macaca TMM-M-5987 2.68 1.34 2.36 2.27 2.36 2.02 5.67 0.70

Macroscelides AMNH161535 1.19 1.16 1.07 0.73 1.17 0.76 1.59 0.55

Manis AMNH53896 1.40 1.13 1.40 1.15 0.82 0.78 3.19 0.58

Monodelphis TMM-M-7599 1.02 1.00 0.94 0.87 0.74 0.69 1.97 0.29

Mus TMM-M-3196 0.86 0.58 0.71 0.47 0.59 0.52 1.29 0.74

Nycteris AMNH268369 0.99 0.85 0.81 0.70 0.96 0.61 1.47 0.50

Orycteropus AMNH51909 3.36 2.86 4.07 2.95 3.44 2.88 4.75 0.62

Procavia TMM-M-4351 2.15 1.57 2.30 1.72 2.03 1.48 3.47 0.67

Pteropus AMNH237593 1.54 1.36 1.45 1.15 1.28 1.25 2.50 0.54

Rhinolophus AMNH245591 0.87 0.70 0.74 0.66 0.92 0.77 1.35 0.53

Sorex unvouchered 0.78 0.41 0.70 0.43 0.44 0.44 0.84 0.83

Sus TMM-M-2689 2.46 2.00 2.20 1.53 1.88 1.56 4.93 0.65

Sylvilagus TMM-M-2689 1.75 1.69 1.42 1.28 1.27 1.18 3.08 0.34

Tadarida TMM-M-3030 0.83 0.73 0.69 0.61 0.89 0.61 1.10 0.48

Trichechus MSW03156 4.07 4.06 3.72 3.59 4.53 4.27 5.67 0.19

Tupaia TMM-M-2256 1.91 1.61 1.67 1.26 1.84 1.20 2.12 0.60

Tursiops SDNHM21212 1.08 0.96 0.80 0.68 1.29 1.27 5.45 0.49

Endothiodon MTA-ACL-002 5.24 2.00 4.61 1.81 3.24 1.74 5.15� 0.92

Endothiodon MTA-ACL-003 4.93 2.74 3.91 1.87 2.97 1.62 5.06� 0.85

Endothiodon MTA-ACL-001 5.15 2.64 4.24 1.96 3.47 2.09 5.26� 0.87

Niassodon ML1620 2.4 1.68 2.08 1.08 3.46 2.93 2.69� 0.79

https://doi.org/10.1371/journal.pone.0189883.t001

Endothiodon bony labyrinth
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the anterior and horizontal SC is consistently around ~91˚ in the different specimens, and the

angle between the anterior and posterior SC is consistently around ~89˚ (Fig 12A).

The lumina of the SCs are subcircular (i.e., elliptical eccentricity less than 0.15) to slightly

elliptical in cross-section. Interestingly, the posterior SC possesses a crest close to the crus

communis (Figs 8 and 9). The narrowest duct radius of the anterior SC ranges from 0.67 to

0.79 mm, and for the posterior SC from 0.40 to 0.42 mm (Table 2). The lumen diameter of the

anterior and horizontal SCs are nearly the same (0.6–0.8 mm); however, the lumen of the pos-

terior SC is consistently thinner (~0.4 mm; Fig 11B). Additionally, in dorsal view, the posterior

SC is significantly more arched anteriorly than the horizontal and anterior SCs. The horizontal

and anterior SCs are in-plane, i.e., there are no significant deviations from a planar toroid (Fig

12D, 12E and 12F). The osseous enclosure around the ampullae in all three SCs are poorly dis-

tinguishable from the slender portion of the canal. At the intersection of the anterior and hori-

zontal SC there is an inflated portion, elliptical in cross section, which forms the secondary

Table 2. Linear measurements for each Endothiodon cf. bathystoma specimen. Each variable for the three speci-

mens was measured at five different loci of each SC. Abbreviations: SE, standard error, σ, variance, conf. int. confidence

interval, LDASC Lumen diameter of the anterior semicircular canal, LDPSC Lumen diameter of the posterior semicir-

cular canal, LDHSC Lumen diameter of the horizontal semicircular canal.

LDASC LDPSC LDHSC

MTA-ACL-001 0.75 0.42 0.57

0.80 0.35 0.58

0.80 0.40 1.02

0.84 0.42 0.88

0.76 0.39 0.66

Mean 0.79 0.40 0.74

σ 0.04 0.03 0.20

St error 0.02 0.01 0.09

Lower bound 95% conf. int. 0.75 0.36 0.49

Upper bound 95% conf. int. 0.83 0.43 0.99

MTA-ACL-002 0.69 0.43 0.76

0.81 0.38 0.77

0.94 0.44 0.73

0.59 0.44 0.88

0.53 0.42 0.66

Mean 0.71 0.42 0.76

σ 0.17 0.02 0.08

St error 0.07 0.01 0.04

Lower bound 95% conf. int. 0.51 0.39 0.66

Upper bound 95% conf. int. 0.92 0.45 0.86

MTA-ACL-003 0.61 0.41 0.41

0.68 0.36 0.62

0.64 0.40 0.47

0.70 0.42 0.77

0.71 0.41 0.51

Mean 0.67 0.40 0.56

σ 0.04 0.02 0.14

St error 0.02 0.01 0.06

Lower bound 95% conf. int. 0.62 0.37 0.38

Upper bound 95% conf. int. 0.72 0.43 0.73

https://doi.org/10.1371/journal.pone.0189883.t002
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crus communis and houses the ampulla. The osseous enclosure around the ampulla of the pos-

terior SC is slightly expanded ventrally, but also confounds with the posterior intersection of

the horizontal SC. The crus communis is very broad at the base but becomes precipitously thin

towards its dorsal portion, giving a subtriangular aspect. The cross-section of the crus commu-

nis changes dorsoventrally, being D-shaped ventrally with the convexity being laterally-ori-

ented, subcircular at the midpoint and then becoming ellipsoidal dorsally. The jugular (vagal)

canal meets the osseous labyrinth near the base of the posterior SC.

Anatomical description of the Niassodon bony labyrinth

Based on new segmentation derived from a PPC-SRμCT scan, we provide further details on

the anatomy of Niassodon inner ear (Fig 13), a pivotal taxon related to Endothiodon according

to the most recent phylogenetic analysis [50,51]. Indeed, the small-bodied Niassodon possesses

Table 3. Angular measurements and respective descriptive circular statistics for each Endothiodon cf. bathystoma
specimen. Five repeated measurements of the angle between the three SCs was measured for the three sampled speci-

mens. Abbreviations: conf. int., confidence interval, AAHSC, Angle between the anterior and horizontal semicircular

canal, APHSC, Angle between the posterior and horizontal semicircular canal, AAPSC, Angle between the anterior

and posterior semicircular canal.

AAHSC APHSC AAPSC

MTA-ACL-001 91.7 90.4 89.7

92 90.5 89.4

90.6 90.1 88.8

91.5 89.2 89.6

89.6 90.1 90.9

Circular mean 91.08 90.06 89.68

Circular standard deviation 0.84 0.25 0.37

Standard error 0.38 0.11 0.16

Lower bound 95% conf int 90.03 89.75 89.23

Upper bound 95% conf int 92.13 90.37 90.13

MTA-ACL-002 91.2 91.7 88.6

92.2 91.2 90.1

92.2 92.0 89

92.5 89.2 89.0

92.1 89.8 89.7

Circular mean 92.04 90.78 89.28

Circular standard deviation 1.8 0.67 0.66

Standard error 0.8 0.3 0.29

Lower bound 95% conf int 89.81 89.95 88.46

Upper bound 95% conf int 94.27 91.61 90.1

MTA-ACL-003 90.5 89.5 87

91.4 90.4 88

91.5 90.2 90.3

90.7 90.4 90.4

88.9 89.6 89.6

Circular mean 90.08 89.91 87.44

Circular standard deviation 91.12 90.13 90.68

Standard error 0.19 0.04 0.58

Lower bound 95% conf int 90.22 89.94 87.89

Upper bound 95% conf int 90.98 90.1 90.23

https://doi.org/10.1371/journal.pone.0189883.t003
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relatively elongated SCs [35]. In Niassodon, the vestibular system is delimited by the supraocci-

pital, prootic and opisthotic. The supraoccipital delimits the posterior SC, the crus communis

except its base and the posterior third of the anterior vertical SC. The prootic envelops the

anterior two-thirds of the anterior vertical SC, the anterior part of the vestibule and the ante-

rior portion of the horizontal SC, and the base of the crus communis. The lagena is delimited

by the exoccipital, basisphenoid and basioccipital. The exoccipital envelops the posterior por-

tion of the vestibule and a small dorsomedial portion of the lagena. The medial and posterior

part of the lagena, as well as the dorsal part of the lateral aspect of the fenestra vestibuli is

delimited by the basisphenoid. The basioccipital delimits the posterior aspect of the lagena.

The SCs are ellipsoidal and orthogonally oriented with respect to each other (Fig 13). The

anterior SC projects higher dorsally than the posterior SC. The least eccentric is the horizontal

Fig 8. MTA/ACL001 left inner ear. A, anterior view. B, lateral view. C, dorsal view. D, anterior view. E, ventral view. F, medial view. Abbreviations:

ASC, Anterior semicircular canal. PSC, Posterior semicircular canal. HSC, horizontal semicircular canal. ve, vestibulus. cc, crus communis. aASC,

Ampulla of the anterior semicircular canal. aPSC, Ampulla of the posterior semicircular canal, “�”, estimates based on the average radius of the

semicircular canal. See also S1 Fig.

https://doi.org/10.1371/journal.pone.0189883.g008
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SC with 0.5 mm difference between the major and minor axis on average (Table 1). On the

other hand, the posterior SC is the most eccentric with a 1.9 mm difference between major

and minor axis (Table 1). The anterior SC is two and a half times more eccentric (1.25 mm)

than the horizontal SC (Table 1).

Measured at the thinnest section of the canal, the horizontal SC is the thickest among the

three with a diameter of averaging 0.61(±0.01) mm (Fig 13). The posterior SC is the thinnest

(0.34±0.03 mm) and the anterior SC is about 0.47 mm diameter. Midway on the left anterior

SC there seems to be a constriction (0.24 mm cross-section), but it appears to be an artifact

of segmentation. The crus communis is nearly twice as thick as the vertical SCs, straight but

somewhat expanded at the base (Fig 13).

The anterior ampulla is a projecting globular structure, detaching from the vestibule (Fig

13). The posterior ampulla is integrated with the vestibule, yet forming a ventral projection

giving a somewhat rectangular appearance in posterolateral view. The ampulla of the horizon-

tal canal cannot be differentiated from the vestibule (Fig 13).

Fig 9. MTA/ACL002 right inner ear. A, dorsal view. B, anterior view. C, ventral view. D, lateral view. E, posterior view. F, medial view. Abbreviations:

ASCC, Anterior semicircular canal. PSCC, Posterior semicircular canal. HSCC horizontal semicircular canal. ve. vestibulus. cc. crus communis. aASCC,

Ampulla of the anterior semicircular canal. aPSCC, Ampulla of the posterior semicircular canal. jc. jugular canal. See also S1 Fig.

https://doi.org/10.1371/journal.pone.0189883.g009
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The lagena projects ventrally from the SC system but it is truncated along the sagittal plane

(Fig 13). Dorsally, near the vestibule, the lagena is a stout D-shaped cylinder with the apex of

the curvature projecting posterolaterally, then the lagena tapers ventrally to an acute tip.

Intraspecific variation

The summary statistics for all of the morphometric variables allow us to understand measure-

ment precision and by comparing the three specimens we have some information on intraspe-

cific variation despite the small sample size. The lumen diameter of the anterior SC varies

between specimens from 0.67–079 mm (we used the mean of the repeated measures for each

variable to calculate the sample range) with a mean of 0.72 mm, likewise for the posterior SC

varies from 0.40–0.42 mm averaging 0.41 mm, and the horizontal SC varies from 0.56–0.76

mm averaging 0.69 mm. The standard error for the lumen diameter of the anterior SC 0.03

mm, for the posterior SC 0.01 mm, and the horizontal SC 0.04 mm.

The angle between the horizontal and posterior SCs ranges from 90.02 to 90.78˚ averaging

90.29˚, between the horizontal and anterior SCs ranges from 90.6 to 92.04˚ averaging 91.24˚,

Fig 10. MTA/ACL003 right inner ear. A, dorsal view. B, posterior view. C, ventral view. D, lateral view. E, anterior view. F, medial

view. Abbreviations: ASCC, Anterior semicircular canal. PSCC, Posterior semicircular canal. HSCC, Horizontal semicircular canal.

ve, vestibulus. cc, crus communis. aPSCC, Ampulla of the posterior semicircular canal. See also S3 Fig.

https://doi.org/10.1371/journal.pone.0189883.g010
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and the angle between the anterior and posterior SCs ranges from 89.06 to 89.68˚ averaging

89.34˚. The angle between the horizontal and posterior SCs has a standard error of 0.25˚, for

the angle between the horizontal and anterior SCs 0.18˚, between the horizontal and posterior

SCs is 0.25˚ and between the anterior and posterior SCs is 0.31˚.

The repeated measures of the linear variables allow to check intra-canal variability. For the

linear measurements, the standard error ranges from 0.01 mm for the posterior SC lumina

diameters of all specimens and 0.09 mm for the lumina diameter of the horizontal SC in MTA/

ACL001. Thus, linear measurements of the lumina diameters are relatively precise with errors

not exceeding 14% of the measured quantities (Table 1). For the angular measurements, the

Fig 11. Comparative charts between the various semicircular canals among the different Endothiodon cf.

bathystoma specimens. A, angle between the semicircular canals. B, lumen diameter of the various semicircular canals.

Notice that all the semicircular canals are nearly orthogonal, but the AAHSC is consistently greater than 90˚, and the

AAPSC is consistently lower than 90˚. Also, the horizontal and the anterior semicircular canals have consistently

similar lumen diameters and the posterior semicircular canal is consistently the thinnest.

https://doi.org/10.1371/journal.pone.0189883.g011
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Fig 12. Comparison between the three Endothiodon cf. bathystoma specimens. Images are not at scale to facilitate

comparisons. A, MTA-ACL001 in anterior view. B, MTA-ACL002 in anterior view (reversed). C, MTA-ACL003 in anterior

view (reversed). D, MTA-ACL001 in dorsal view. E, MTA-ACL002 in dorsal view (reversed). F, MTA-ACL003 in dorsal view
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repeated measurements allow to understand intra-observer variability. The average relative

TEM is 0.82% for the angle between the posterior and horizontal SCs, 0.88% for the angle

between the anterior and horizontal SCs, and 1.08% for the angle between the anterior and

posterior SCs. Thus, angular measurements are very precise with errors not exceeding 1.08%

of the measured quantities (Table 2, S2 Table). The overall average between angles for all SCs

in all specimens is 90.29˚.

Body mass estimation

We used the average of all SC radii to estimate Endothiodon body mass (Fig 14), which has

given statistically significant results by previous authors for other taxa [12,15]. The resulting

linear regression equation, optimized for Amemiya Prediction Criterion, is highly significant

(correlation coefficient = 0.787, �r2 ¼ 0:606, P<0.0001, α = 0.05, see Fig 14). Significant devia-

tions of the SC radius have so far only been detected in highly specialized taxa (e.g., [12]). The

resulting linear regression equation estimates that Endothiodon weighed between ~116 to 182

kg. MTA/ACL002 is the Endothiodon specimen closest to the average (140 kg).

Discussion

Intraspecific variation of the semicircular canal system

The summary statistics on the Endothiodon cf. bathystoma angular and linear measurements

indicate low intraspecific variability, despite the small sample. However, as there is currently

limited information on dicynodont inner ear morphology in the literature, we cannot con-

clude at this stage whether low intraspecific variability is a common trend among dicynodonts.

(reversed). Variation of semicircular canal lumen diameter for: G, MTA-ACL001 in lateral view, H, MTA-ACL002 in lateral

view (reversed), I, MTA-ACL003 in lateral view (reversed).

https://doi.org/10.1371/journal.pone.0189883.g012

Fig 13. Niassodon mfumukasi (ML 1620) right inner ear. A, dorsal view. B, posterior view. C, lateral view. D, anterior view.

Abbreviations: ASC, Anterior semicircular canal. PSC, Posterior semicircular canal. LSC, horizontal semicircular canal. aPSC,

ampulla posterior semicircular canal. aASC, ampulla anterior semicircular canal. cc, crus communis.

https://doi.org/10.1371/journal.pone.0189883.g013
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It is crucial to investigate, when possible, more than one specimen of the same dicynodont

taxon. High intraspecific variability in the vestibular system has been linked to relaxed

selective pressures resulting, for instance, from slow and infrequent movements [40]. How-

ever, although our results tend to suggest that Endothiodon cf. bathystoma was not a slow-mov-

ing organism, we cannot perform the Levene’s heteroscedasticity test due to the small sample

size. In addition to this possible low variability in the SCs of Endothiodon cf. bathystoma, we

found several other conservative morphological characters among specimens (see below).

Our results show that the SCs of Endothiodon are nearly orthogonal, as the sum of the squared

differences from orthogonality for all specimens only amounts to 7.8 (Table 3, S2 Table). Malin-

zak et al. [4] suggest that small deviations from SC orthogonality are associated with agility in

strepsirrhine primates, and this rationale has been applied to various other mammalian synap-

sids (e.g., [21]). However, it is most likely that Endothiodon was not as agile as an arboreal pri-

mate, but that instead performed rapid head movements, which would also explain our results.

The pig, Sus, which are animals of comparable body mass to Endothiodon, do fast head

movements while foraging and ingesting food [52] and have elevated SC eccentricity (e~0.65)

and near orthogonal SCs. Sus SCs are quasi-orthogonal too (AAHSC is 86˚, APHSC is 89.7˚

and AAPSC is 90.8˚). Endothiodon could have employed a similar foraging and food process-

ing behavior. Based on the occipital index, previous authors [53] suggest that Endothiodon
performed a significant degree of lateral head movements, and the evidence here provided is

consistent with such behavior.

Comparative anatomy and evolution of Endothiodontia inner ears

Niassodon has been recovered as the sister-taxon of Endothiodon in recent phylogenetic analy-

ses [50,51], and hence comparisons between the taxa are relevant, as they both belong to

Fig 14. Linear regression of the log10 average semicircular canal radius to estimate the log10 body mass. The

estimates for the Endothiodon cf. bathystoma specimens range from ~116 to 182 kg. The correlation coefficient

between the two variables is 0.787. The extant mammal measurements can be found in S3 Table and from [15].

https://doi.org/10.1371/journal.pone.0189883.g014
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Endothiodontia. The vertical SCs of Endothiodon (n = 3) are substantially more eccentric

(e~0.88) than those of Niassodon (e~0.79, n = 1). Additionally, the anterior and posterior SCs

of Endothiodon are more vertically positioned than those of Niassodon. In Niassodon the SCs

are elliptical but rotated sub-horizontally whereas in Endothiodon they are vertically oriented

(Figs 8–10 and 13). These results suggest that within the Endothiodontia lineage there was a

re-orientation and elongation of the vertical SCs, leading to changes in sensitivity of the vestib-

ular system [5,45]. The surprisingly eccentric Endothiodon SCs may be related to the special-

ized feeding apparatus of this genus [53], which could require particular head movements for

foraging, processing or ingesting food. Based on the anatomy of the oral apparatus, Cox and

Angielczyk [53] described the food processing cycle of Endothiodon in detail and demon-

strated that it was capable of cropping food items with a uniquely peculiar ‘hare lip’. Further-

more, the occipital region suggests Endothiodon had a significant degree of lateral head

movements [53]. Despite the differences between the SCs of Endothiodon and Niassodon, both

taxa have strikingly higher SC eccentricity than other known dicynodonts [27–38]. However,

whereas this feature is unusual in the mammalian lineage (e.g., [15, 45]), it is premature to con-

clude that SC eccentricity was widespread among dicynodonts. Some authors [54] have specu-

lated that the elongation of the anterior SC in dinosaurs may be linked to bipedalism, because

humans also have similar SC elongation [55]. It was also suggested that horizontal SC elonga-

tion could be related to quick and powerful neck lateroflexion in tyrannosaurs [54]. Neverthe-

less, these hypotheses remain untested with robust biomechanical modelling.

The Endothiodon inner ear can be readily distinguished from that of Eodicynodon based on

a posteriorly tilted crus communis (Fig 15). Pristerodon can be distinguished from Endothio-
don because its horizontal SC is subcircular and the crus communis is not smoothly dorsally

tapering (Fig 15). Lystrosaurus has a strongly ellipsoidal duct cross-section, contrary to the

Endothiodon condition (Fig 15). Due to its inflated vestibule morphology [35], Kawingasaurus
clearly contrasts with Endothiodon (Fig 15). Some features seem to be shared by other dicyno-

donts, such as a ventrally broad crus communis, a significantly shorter posterior SC compared

to the anterior SC, the absence of well-delimited ampullae, and a certain degree of eccentricity

of the SCs [27, 35] (Fig 15). However, Endothiodon seems to have considerably more eccentric

canals than any other dicynodont published so far [27–38].

Other clades exhibit elevated eccentricity. For instance, caecilian amphibians have horizon-

tally elongated SCs (e.g., [56]), squamates have obliquely-oriented elongated SCs (e.g., [7]),

and some large-bodied dinosaurs have highly eccentric canals (e.g., [57, 58]). Additional stud-

ies outside Dicynodontia could elucidate broader evolutionary patterns of the SCs, namely a

trend toward more circular canals across synapsid history, with some reversals in taxa with

specific biomechanical demands, such as in Endothiodontia. Nevertheless, regardless of the

possible direct causal functions for SC elongation, it appears that complex biomechanical sti-

muli (such as foraging habits, locomotion type, ecology, etc.) are related to the evolution of

unusual eccentric morphologies.

Another important character in Endothiodon cf. bathystoma is the crest on the anterior SC,

which is absent in Niassodon. This morphological feature has not been previously described

and it is not an artifact of segmentation because it is consistently present in the individuals that

could be measured (not in MTA/ACL003 because this section of the SCs is not preserved).

Apart from these more striking differences, Endothiodon and Niassodon have relatively similar

bony labyrinths. For instance, the SCs have a comparable development of the ampullae, both

possess a triangular vestibule, the angles between SCs are similar, and the vertical SCs do not

follow the same plane but are slightly deflected toward each other, particularly the posterior SC

(see Anatomical Description). The current phylogenetic position of Niassodon and Endothio-
don as sister taxa indicates that these characters are synapomorphies of Endothiodontia.
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Fig 15. Simplified cladogram of published dicynodont bony labyrinths. Phylogeny based on the most recent

analysis [51]. Patranomodon, Eodicynodon, Pristerodon and Lystrosaurus from [27]; Diictodon from [29];

Brachyprosopus from [38]; Emydops from [34]; Cistecephalus from [33]; Kawingasaurus from [35] and Placerias from

[31]. Asterisks indicate bony labyrinths that did not result from computed tomography renderings.

https://doi.org/10.1371/journal.pone.0189883.g015
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Additional knowledge on the vestibular system of E. tolani [53] and E. uniseries [59] may rein-

force these results. Based on the anatomical characters here provided and the natural cast of

the AMNH6156 bony labyrinth, it seems that this specimen is an Endothiodon as well (S1

Text).

Endothiodon body mass

Body mass is intimately related to various aspects of ecology and physiology [60–62]. In dicyn-

odonts, body mass estimates are rare. We attempted to calculate body mass in Endothiodon
based on SC dimensions, rather than skull length, because our specimens do not have com-

plete skulls. Whereas several proxies based on specific skeletal elements such as postcranial

bones have been used to estimate body mass in extinct taxa, body mass also has a significant

correlation with SC dimension (e.g., [63]). We used an extant mammalian dataset [15] of osse-

ous labyrinths as a baseline to calculate body mass estimates for the three Endothiodon speci-

mens here described (Fig 14). Our results indicate that these Endothiodon specimens ranged

between 116 kg and 182 kg.

SAM-PK-K11271 is a complete Endothiodon specimen whose propodial dimensions can

be used to compare with the SC dimension estimates here provided. Other authors [64]

derived equations to estimate body mass based on the femur and humerus circumference.

SAM-PK-K11271 has a humeral and femoral narrowest midshaft circumference of 17.5 cm

and 13.0 cm, respectively. Body mass estimates based on these estimates range from ~309 to

556 kg, using Campione and Evans equations [64]. In contrast, our body mass estimates for

the Mozambican Endothiodon specimens based on SC dimensions ranged from 116–182 kg

(see above). Although they are in the same order of magnitude, the body mass estimates of

SAM-PK-K11271 are more than triple our estimates for the Mozambican specimens. This dif-

ference may be due to the larger size of SAM-PK-K11271 when compared to the Mozambican

Endothiodon specimens. Indeed, the measurement of the basioccipital condyle width (~6 cm)

and of the width between the basal tubera (~9.5 cm) for SAM-PK-K11271 (Roger Smith per-

sonal communication) reveals that this specimen is significantly larger than the Mozambican

specimens here described (~4 cm basioccipital condyle width and ~6 cm basal tubera width).

In the Late Permian of Mozambique, Endothiodon is among the most abundant and largest

fossil taxa discovered to date. Thus, Endothiodon was likely a large-bodied herbivorous ele-

ment of the late Permian terrestrial fauna occupying an ecological role similar to grazing mam-

mals in African savannas today.

Conclusions

Our study gives important new insights into dicynodont bony labyrinth anatomy. These find-

ings raise new interesting questions about the biomechanics and functional morphology of the

SCs. As CT-scanning technology becomes a widespread resource for paleontological research,

more of the anatomy that was previously unclear due to classical preparation techniques is

now becoming available. Thus, the morphology and variation of the non-mammalian synapsid

inner ear is expected to shed light into the ecomorphology and systematic utility of this organ.

The main conclusions of the present contribution are:

1. Endothiodon has low intraspecific variability of various biophysically relevant morphomet-

ric features, namely lumen diameter and angle between the SCs.

2. Niassodon and Endothiodon have highly eccentric semicircular canals when compared to a

wide range of extant synapsids.
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3. Within Endothiodontia, Endothiodon has unique vertically oriented SCs and an ellipsoidal

horizontal SC.

4. Endothiodon was probably capable of performing fast head movements, probably during

foraging and food processing.

5. Body mass estimates using inner ear morphology in dicynodonts may be more widely

applicable than other proxies because: (i) it offers a proxy that can be sampled in a broader

array of dicynodont taxa when compared to other methods (as dicynodont postcranial

material is rarer); and (ii) there is a wide range of available information on the inner ear of

mammalian taxa; (iii) the equations for estimating body mass based on SC dimension are

very robust for modern mammals.

6. Given its abundance in the Mozambican Karoo deposits, Endothiodon must have been one

of the large (>100 kg) dominant herbivorous members of the late Permian fauna from

Mozambique.
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quı́n Rodriguez-Léon for all the continuous scientific support. We would also like to thank the

academic editor, Gabriela Sobral and two other anonymous reviewers for valuable suggestions

that improved the manuscript. The publication of this article was funded by the Open Access

Fund of the Leibniz Association.

Author Contributions
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