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Autism is a kind of biologically based neurodevelopmental condition, and the coexistence
of atopic dermatitis (AD) is not uncommon. Given that the gut microbiota plays an
important role in the development of both diseases, we aimed to explore the differences of
gut microbiota and their correlations with urinary organic acids between autistic children
with and without AD. We enrolled 61 autistic children including 36 with AD and 25 without
AD. The gut microbiota was sequenced by metagenomic shotgun sequencing, and the
diversity, compositions, and functional pathways were analyzed further. Urinary organic
acids were assayed by gas chromatography–mass spectrometry, and univariate/
multivariate analyses were applied. Spearman correlation analysis was conducted to
explore their relationships. In our study, AD individuals had more prominent
gastrointestinal disorders. The alpha diversity of the gut microbiota was lower in the AD
group. LEfSe analysis showed a higher abundance of Anaerostipes caccae, Eubacterium
hallii, and Bifidobacterium bifidum in AD individuals, with Akkermansia muciniphila,
Roseburia intestinalis, Haemophilus parainfluenzae, and Rothia mucilaginosa in
controls. Meanwhile, functional profiles showed that the pathway of lipid metabolism
had a higher proportion in the AD group, and the pathway of xenobiotics biodegradation
was abundant in controls. Among urinary organic acids, adipic acid, 3-hydroxyglutaric
acid, tartaric acid, homovanillic acid, 2-hydroxyphenylacetic acid, aconitic acid, and 2-
hydroxyhippuric acid were richer in the AD group. However, only adipic acid remained
significant in the multivariate analysis (OR = 1.513, 95% CI [1.042, 2.198], P = 0.030). In
the correlation analysis, Roseburia intestinalis had a negative correlation with aconitic acid
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(r = -0.14, P = 0.02), and the latter was positively correlated with adipic acid (r = 0.41,
P = 0.006). Besides, the pathway of xenobiotics biodegradation seems to inversely
correlate with adipic acid (r = -0.42, P = 0.18). The gut microbiota plays an important role
in the development of AD in autistic children, and more well-designed studies are
warranted to explore the underlying mechanism.
Keywords: autism, atopic dermatitis, gut microbiota, organic acids, mitochondrial dysfunction
INTRODUCTION

Autism spectrum disorder (ASD) is a kind of neurodevelopmental
condition and troubles a lot of children in the world, with a
prevalence up to 1%–2% (Liu et al., 2022). ASD is characterized by
a deficit in social communication and interaction and the
restrictive, repetitive pattern of behavior (Lai et al., 2014). What
is worse, the coexistence of neuropsychiatric disorders and allergic
diseases is not uncommon (Simpson, 2012; Miyazaki et al., 2017).
In a large cross-sectional study, ASD children showed a higher
odds ratio in association with skin allergy compared with children
without ASD (Xu et al., 2018). Billeci et al. retrospectively analyzed
18 studies to assess the relationship between ASD and atopic
dermatitis (AD). They found that ASD was positively associated
with AD compared with typically developing controls, and vice
versa (Billeci et al., 2015). Moreover, the frequencies of AD in ASD
varied, ranging from 7% to 64.2%. Atopic dermatitis is a
chronically inflammatory skin disease featured with intense
itching and relapsing eczema-like skin lesions and is one of the
most common skin diseases in children (Weidinger et al., 2018). It
is generally accepted that epidermal barrier abnormalities and T-
cell abnormal activation are involved in the development of AD,
and it shows a relationship with some autoimmune diseases
especially those affecting the skin, the gastrointestinal tract, and
the connective tissue, such as systemic lupus erythematosus (Narla
and Silverberg, 2019; Ivert et al., 2021). ADmostly develops within
the first 5 years of life, up to 90% of cases. In accordance with
previous studies, in our clinic center, autistic children are prone to
suffering from AD, which impairs their daily life and lowers the
quality of life further.

The co-occurrence of autism and atopic dermatitis indicates
potentially common mechanisms including shared genetic
background, common immunologic dysfunction, and
autoimmune process. For those with ASD, their siblings were
prone to develop atopic diseases (Dai et al., 2019), and children,
who suffered from early AD were more likely to develop
subsequent ASD (Billeci et al., 2015; Lee et al., 2016).
Meanwhile, in prior studies, ASD children also showed an
imbalance in inflammatory cytokine and T-cell subsets (Xu
et al., 2018). Besides, in recent years, with both incidence
increasing, it has come to the realization that environmental
factors play an important role in the development of diseases.
Digestive symptoms were more easily observed in autistic
children including constipation, diarrhea, bloating, and
vomiting (Holingue et al., 2018; Vargason et al., 2019; Lasheras
et al., 2020). Compared to neurotypical children, autistic children
showed lower bacterial diversity, which was inversely associated
gy | www.frontiersin.org 2
with the severity of digestive symptoms (Srikantha and Mohajeri,
2019). There are lots of studies revealing intestinal dysbiosis in
ASD and, mostly, showing a decreased ratio of Bacteroidetes to
Firmicutes (Srikantha and Mohajeri, 2019). Based on prior
studies, Xu et al. conducted a meta-analysis and found that
autistic children had lower abundance of Enterococcus,
Escherichia coli, Bacteroides, and Bifidobacterium and higher
abundance of Lactobacillus compared to controls (Xu et al.,
2019). Clostridia species were also found richer in ASD and
related to the severity of the autistic condition (Iovene et al.,
2017). The emergence of the microbiota–gut–brain axis led to
more research on the underlying mechanism and the possible
strategies to ameliorate the clinical symptoms. Autistic children
presented altered metabolic profiles in urinary and blood
analyses, which could be the biomarker of gut dysbiosis
(Srikantha and Mohajeri, 2019). Meanwhile, there are several
studies revealing promising results that the application of
antibiotics and probiotics could improve not only the mental
conditions of autistic children but also digestive symptoms
(Critchfield et al., 2011; Patusco and Ziegler, 2018; Shaaban
et al., 2018; Niu et al., 2019), even though a consensus has not
been reached. Similarly, the gut–skin axis described the mutual
connection between the gut and the skin, fitting the hygiene
hypothesis (Sinha et al., 2021). For those with AD, their gut
microbial diversity was lower than that in healthy individuals
(Fang et al., 2021). Furthermore, many studies have shown
intestinal dysbiosis in children with AD, which could be
further improved by probiotics (Watanabe et al., 2003; Roessler
et al., 2012; Hulshof et al., 2017). The alteration of the gut
microbiota may influence the ratio among T-cell subsets and the
metabolic pathway, which induces the inflammatory response
and the development of AD.

As aforementioned, the gut microbiota plays an important
role in disease development, which could be affected by diet,
living habits, and mental stress. Kong et al. enrolled 20
individuals with ASD, and they found an increased relative
abundance of gut Proteobacteria in ASD with allergy compared
with those without allergy, which was not observed in
neurotypical controls (Kong et al., 2019). Considering the
high prevalence of AD in autism, in this study, we aim to
explore the different compositions of gut microbiota between
autistic children with and without AD. Besides, we further
conduct a non-invasive urinary analysis to detect the possible
metabolic changes, which may give some clues to the
underlying mechanism of gut microbes on AD development
in autism and aid in the clinical management of those
special individuals.
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MATERIALS AND METHODS

Children
In this cross-sectional study, we enrolled autistic outpatients in
Peking University Medical College Hospitals between September
2015 and January 2018. The inclusion criteria were as follows: ①
age between 2 and 12 years; ② be diagnosed with ASD in Peking
University Sixth Hospital based on the Diagnostic and Statistical
Manual of Mental Disorder (Fourth Edition); and ③ the score
of Autism Behavior Checklist (ABC) or Childhood Autism
Rating Scale (CARS) more than 30 to avoid the potential
influence of Attention Deficit Hyperactivity Disorder and other
neuropsychiatric diseases. In our study, atopic dermatitis was
diagnosed by a professional dermatologist in our hospital
according to the criteria of the UK proposed by Williams HC
in 1994 (Williams et al., 1994). Moreover, those skin conditions
and autoimmune diseases, which mimic atopic dermatitis, were
excluded, such as allergic contact dermatitis, seborrheic
dermatitis, and psoriasis. Furthermore, those who had no
allergy were considered as controls. The Peking Union Medical
College Hospital Ethics Committee approved this study, and all
participants or their caregivers signed consent forms when
enrolled in this clinical study.

Disease Assessment
A series of questionnaire surveys were conducted to fully assess
the severity of autism, including ABC, CARS, Clinical Language
State Questionnaire (CLSQ), and The Autism Treatment
Evaluation Checklist (ATEC). CLSQ involves two aspects—
expression (CLSQ-I) and cognition (CLSQ-II)—and a lower
score indicates more severe language impairment. ATEC
consists of four subscales, and a higher score is in consistency
with the increasing severity of autistic symptoms.

In case of bias, we omitted the item “insensitive to pain” in
ATEC, considering that it was hard to be described precisely by
children themselves or their caregivers. Meanwhile, these
following items potentially relevant to gastrointestinal (GI)
problems were added based on clinical experience and scored
from 0 to 3 (0 means absence): “feces containing undigested food
or smelling sour”, “hiccup/acid regurgitation/abdominal
distension”, “extremely happy of unknown reason”, “jump/run
back and forth”, and “difficulty in concentrating”.

Fecal and Urine Collection
Before fecal collection, participants were required not to take any
dosage of antibiotics in a month and any probiotics in 2 weeks.
Also, fruits and tomatoes were prohibited in 24 h before urine
collection. A fresh fecal sample and the first clean midstream
specimen of urine in the morning were collected. All samples
were stored in dry ice within 3 min since collected.

Metagenomics Sequencing and
Microbial Analysis
We extracted DNA from fecal samples according to the protocol
of the MO-BIO PowerSoil DNA Isolation Mini Kit (Carlsbad,
CA, USA). Gel electrophoresis was applied for sample quality
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
inspection and quality level judgement. Moreover, the
sequencing library construction and template preparation were
based on the NEBNext Ultra DNA Library Prep Kit (New
England Biolabs, Ipswich, MA, USA). Each sample was marked
by a barcode, and equal quantities of barcoded libraries
were used for sequencing. All extracted DNA samples were
stored at -80°C, and the final sequencing libraries also received
quality and quantity assessment before Illumina sequencing.
NGS analysis was performed on an Illumina instrument
according to the manufacturer’s instructions (Illumina, San
Diego, CA, USA). Illumina HiSeq 2500 and HiSeq X Ten
sequencing systems (Illumina, CA, USA) were applied for
paired-end 150-bp sequencing. In order to appreciate the
diversity and to sample a sufficient number of microbial genes,
generating at least 4 Gb of data per sample was recommended in
our study.

MetaPhlAn (version 1.7.7) (Segata et al., 2012) was used for
analyzing the main bacterial taxonomic levels and the relative
abundance of the species level. Then, the linear discriminant
analysis (LDA) effect size (LEfSe) (Segata et al., 2011)was applied
to identify the difference of taxonomic biomarkers between
autistic children with and without AD. The Vegan R-package
was used for diversity analysis. SOAPaligner (version 2.21) was
used to do the alignment and retain the unique mapped reads to
do the downstream analysis. We defined the genome-size-
normalized relative abundance of these (super)contigs or
genomes which was calculated based on the number of aligned
reads normalized by the (super)contig’s or genome’s size. We
used an integrated non-redundant gene catalog database about
the human gut microbiome to do the function analysis (Li et al.,
2014) with the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database therein.

Urinary Organic Acid Assay
The urine samples were analyzed by gas chromatography–mass
spectrometry, following the instructions described in the study
(Shaw et al., 1995). All analyses were conducted at the Great
Plains Laboratory, Inc. (Lenexa, KS, USA). A total of 75
metabolites were measured finally, and their concentrations
were normalized by the concentration of creatine in the
same specimen.

Statistical Analysis
Continuous variables were expressed as mean and standard
deviation or median and quartile if appropriate and further
analyzed by Student’s t-test or Mann–Whitney U test.
Categorical variables were analyzed by chi-square test or
Fisher’s exact test. For urinary organic acids, those with a P
value less than 0.05 in univariate analysis were further enrolled in
multivariate binary logistic regression analysis using the method
of forward stepwise. Then, the Spearman correlation test was
applied to explore the correlation among gut microbiota, their
functional pathways, and urinary organic acids. Statistical
analyses were performed in SPSS 24.0.0.0 and R software
(version 4.0.0), and a two-tailed P value less than 0.05 was
considered statistically significant.
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RESULTS

The Baseline Characteristics of
Enrolled Children
A total of 61 children were enrolled in our study between 2015
and 2018, including 36 children in the AD group and 25 children
in the control group. The basic characteristics of both groups are
shown in Table 1. The sex ratio between AD individuals and
controls was not statistically significant. The average age of each
group was 3.86 ± 2.22 and 4.12 ± 1.83 years, respectively (P =
0.293). The scores of ABC, CARS, CLSQ, and ATEC between
both groups did not show statistical significance, which meant
the conditions of autism were comparable (Table S1).

Considering the verbal limitation in children, we newly added
five items in our study, which could be the indicators of potential
GI problems to some extent. According to Table 1, these
children in the AD group had a more severe condition of feces
containing undigested food or smelling sour (1.432 ± 1.042 vs.
0.720 ± 0.936, P = 0.007). Meanwhile, we also compared the
fourth subscale of ATEC about behavior (data not shown) and
found that AD children were more likely to be unhappy or crying
compared with those without AD (1.162 ± 0.688 vs. 0.640 ±
0.638, P = 0.004).

The Difference in Compositions and
Functional Profiles of Gut Microbiota
The relevant analyses of gut microbiota are presented in
Figure 1. For alpha diversity, AD individuals showed a lower
alpha diversity index than their control counterparts (P = 0.039)
(Figure 1A), while there was no significant difference in terms of
Pielou’s evenness, Shannon Diversity Index, and Simpson’s
Diversity Index (P = 0.9, 0.87, and 0.82, respectively).
Additionally, principal coordinate analysis (PCoA) could not
make a distinction between individuals in the AD group and
those in the control group (Figure 1B). The LEfSe method was
applied to identify the phylotypes abundant in these two groups
(Figures 1C, D). A significant increase of Anaerostipes caccae
and Eubacterium hallii was found in AD individuals
(Figure 1D), and Roseburia intestinalis was abundant in
controls. Intriguingly, Bifidobacterium bifidum was richer in
AD individuals. Moreover, Akkermansia muciniphila,
Haemophilus parainfluenzae, and Rothia mucilaginosa were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
positively associated with controls. The relative abundance of
above species is presented in Figure 2.

Then pathway analyses (Figure 3) revealed that the pathways
of carbohydrate metabolism, metabolism of amino acids, and
xenobiotics biodegradation were prominent in control
individuals, while the pathway of lipid metabolism showed a
predilection in the AD group.

The Increase of Urinary Organic Acids in
AD Individuals
A total of 75 organic acids were reported from the spectrum
analysis. PCoA did not show an obvious demarcation between
AD individuals and controls (data not shown). Herein, we only
presented those items with statistical significance based on the
univariate test (Table 2). Others are presented in Table S2.
Among urinary organic acids, adipic acid, 3-hydroxyglutaric
acid, tartaric acid, homovanillic acid, 2-hydroxyphenylacetic
acid, aconitic acid, and 2-hydroxyhippuric acid had higher
concentrations in the AD group. However, only adipic acid
was enrolled in the final logistic regression model (OR = 1.513,
95% CI [1.042, 2.198], P = 0.030).

The Correlation Analysis
The Spearman correlation test was applied to further explore the
correlation among gut microbiota; functional pathways (LEfSe:
P < 0.05, LDA >2) with those urinary organic acids were
significant in univariate analysis (Figure 4). According to
the matrix, Roseburia intestinalis, enriched in those without
atopic dermatitis, had a negative correlation with aconitic acid
(r = -0.14, P = 0.02). As for the functional pathways and
urinary organic acids, however, we did not observe any
statistically significant correlation. The pathway of xenobiotics
biodegradation and metabolism seems to inversely correlate with
adipic acid (r = -0.42), yet with a P value of 0.18. Among urinary
organic acids, aconitic acid was positively correlated with adipic
acid (r = 0.41, P = 0.006). Besides, there were positive
correlations among urinary organic acids with a correlation
coefficient of about 0.5. This could directly explain why the
difference in results existed between logistic regression and
univariate analysis for urinary organic acids. We also
conducted correlation analysis between other taxa at genus or
species level identified in metagenomic sequencing and those
TABLE 1 | The basic characteristics of enrolled autistic children with atopic dermatitis and controls.

Atopic dermatitisN = 36 Control groupN = 25 P value*

F/M, n 6/30 5/20 0.747
Age, year 3.86 ± 2.22 4.12 ± 1.83 0.293
Newly added items related to gastrointestinal symptoms
Feces containing undigested food or smelling sour 1.44 ± 1.05 0.72 ± 0.94 0.007
Hiccup/acid regurgitation/abdominal distension 1.00 ± 0.89 0.60 ± 0.76 0.071
Extremely happy of unknown reason 1.50 ± 0.84 1.12 ± 0.93 0.095
Jump/run back and forth 1.64 ± 0.80 1.20 ± 0.87 0.065
Difficulty in concentrating 1.94 ± 0.75 2.04 ± 0.89 0.499
June 2022 | Volume 12 | Articl
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A B

DC

FIGURE 1 | The diversity and compositions of gut microbiota between autistic children with and without atopic dermatitis. (A) The violin plot of the alpha diversity
index between two groups. (B) Principal coordinate analysis. (C) Red and green dots showed the relatively abundant bacterial taxa in AD individuals and the control
group, respectively. Concentric rings from inside to outside were phylum, class, order, family, and genus. (D) Linear discriminant analysis (LDA) effect size (LEfSe) of
gut microbiota. Those richer in AD individuals are represented in the red bar with a negative LDA score, and the control group in the green bar with a positive score.
Only items with an absolute LDA value more than 2 are shown.
A B D

E F G

C

FIGURE 2 | The relative abundance of gut species detected in the LEfSe analysis between autistic children with and without atopic dermatitis. (A) Akkermansia
muciniphila; (B) Roseburia intestinalis; (C) Haemophilus parainfluenzae; (D) Rothia mucilaginosa; (E) Anaerostipes caccae; (F) Eubacterium hallii; (G) Bifidobacterium
bifidum. Data are shown in mean and standard deviation, and the Mann–Whitney U test was applied.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org June 2022 | Volume 12 | Article 8861965
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aforementioned urinary organic acid, as shown in Figures S1, 2.
Nevertheless, no strong correlation was further revealed.
DISCUSSION

The coexistence of atopic dermatitis in autism is far from rare,
which bothers those children and further lowers their life quality.
This is the first study exploring the alterations of gut microbiota
and urinary organic acids in autistic children with AD compared
with those without AD. We found that there was no significant
difference in sex, age, and disease evaluation between both
groups, which was reasonable to carry out further analysis.
FIGURE 3 | Linear discriminant analysis (LDA) effect size (LEfSe) of functional profiles between autistic children with and without atopic dermatitis. Only items with an
absolute LDA value more than 2 are shown.
TABLE 2 | The comparative results of urinary organic acids between children
with atopic dermatitis and without (controls).

Items Controls
N = 25

Atopic dermatitis
N = 36

P value

Adipic acid 2.005 ± 1.669 3.240 ± 2.147 0.002
3-Hydroxyglutaric acid 5.352 ± 2.238 6.703 ± 2.620 0.011
Tartaric acid 0.534 ± 0.777 2.033 ± 7.087 0.014
Homovanillic acid 4.136 ± 1.686 5.697 ± 3.058 0.016
2-Hydroxyphenylacetic acid 0.385 ± 0.201 0.488 ± 0.196 0.030
Aconitic acid 11.672 ± 5.202 14.158 ± 4.825 0.046
2-Hydroxyhippuric acid 0.616 ± 0.414 1.438 ± 2.057 0.048
Unit: mmol/mmol creatinine. Just those with a two-sided P value less than 0.05 in the
Mann–Whitney U test are shown. Data were presented as mean and standard deviation.
FIGURE 4 | The Spearman correlation matrix among gut microbiota, functional pathways, and urinary organic acids different in autistic children with and without
atopic dermatitis. *P < 0.05.
June 2022 | Volume 12 | Article 886196
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As expected, in our study, autistic children with AD had more
prominent GI symptoms than their control counterparts. GI
symptoms showed greater prevalence in patients with ASD
compared to those without ASD (McElhanon et al., 2014). As
for patients with AD, lots of studies have revealed that AD is
related to the increased risk of GI disorders including Crohn’s
disease, ulcerative colitis, and celiac disease (Baron et al., 2005;
Ress et al., 2014; Augustin et al., 2015). Considering the
limitation of verbal communication in children, their
underlying GI problems may be presented as sleep or mood
disturbance (Maenner et al., 2012). In our study, AD individuals
had a higher score in the item about being unhappy or crying
than that in controls.

In the analysis of gut microbiota, lower diversity was observed in
the AD group, which was consistent with previous studies on
autism and atopic dermatitis (Petersen et al., 2019; Bezawada
et al., 2020). This may echo the known theory—the hygiene
hypothesis—in which the lack of exposure to a high diversity of
microbes in early life is related to a higher prevalence of chronic
inflammatory disorders as well as psychiatric disorders (Garn et al.,
2021). In our study, B. bifidum showed an enrichment in autistic
children with AD (0.31% vs. 0.05%). For children with ASD, Xu
et al. summarized that the relative abundance of Bifidobacterium
was lower compared to controls (Xu et al., 2019). Even though
several studies had revealed that Bifidobacterium was less in AD
infants compared to healthy controls (Fang et al., 2021), controversy
always exists. A cross-sectional study from Brazil revealed that AD
children had a greater abundance of Bifidobacterium (OR: 11.09;
95% CI: 2.14; 57.39) (Melli et al., 2020). At species levels, Waligora-
Dupriet et al. enrolled 10 allergic infants and 20 controls, and they
did not detect any alteration in the diversity of gut Bifidobacterium
species (Waligora-Dupriet et al., 2011). However, Suzuki et al. found
that B. bifidum had a higher prevalence in allergic infants than
healthy controls (70% vs. 12.5%, P < 0.01), which was irrelevant to
feeding methods (Suzuki et al., 2007). Furthermore, Huang and
coauthors enrolled 13 randomized controlled trials and found it was
not robust to conclude that probiotics were beneficial to children
with AD (Huang et al., 2017). Similarly, Yang et al. did not observe
the therapeutic or immunomodulatory effects of probiotics on the
treatment of AD (Yang et al., 2014). Additionally, as mentioned
above, as a possible comorbidity of AD, Nistal et al. observed that
the diversity of Bifidobacterium species was reduced in treated
patients with celiac disease while B. bifidum was enriched in
untreated patients (Nistal et al., 2012). Therefore, it is necessary to
further investigate the relationship between conventional probiotics
and the development of AD in autistic children.

In this present study, we observed different distributions of
species from family Lachnospiraceae in both groups, among
which A. caccae and E. hallii predominated in AD individuals,
with R. intestinalis in controls (8.22 × 10-4 vs. 1.18 × 10-5; 0.28%
vs. 0.08%; 0.30% vs. 0.95%). All these microbes were involved in
the production of short-chain fatty acids (SCFAs), such as
acetate, propionate, and butyrate (Louis et al., 2014). SCFAs,
the major products from the fermentation activity of gut
microbes, are proved to play a crucial role in host health
(Wong et al., 2006; Koh et al., 2016; Sivaprakasam et al., 2016;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Gill et al., 2018; Hu et al., 2018). They could promote the
differentiation of regulatory T cells and the production of the
anti-inflammatory cytokines, avoiding colonic inflammation and
cancer development, as well as modulate host energy metabolism
(Sleeth et al., 2010; Singh et al., 2014; Koh et al., 2016; Hu et al.,
2018). Additionally, it became increasingly accepted that SCFAs
could mediate epigenetic modification, which was negatively
associated with allergic sensitization and events (Acevedo et al.,
2021). Reddel et al. showed that AD children were characterized
as a reduction of SCFA-producing bacteria (Reddel et al., 2019).
Moreover, the severity of atopic eczema was inversely correlated
with the abundance of butyrate-producing bacteria (r = -0.52,
P = 0.005) (Nylund et al., 2015). Meanwhile, in an ovalbumin-
induced mouse model of AD, the use of antibiotics before
primary ovalbumin sensitization would reduce gut SCFA levels
and aggravate AD symptoms mediated by gut dysbiosis (Kim
et al., 2020). Nevertheless, in autism, SCFA is a double-edged
sword. Compared to healthy controls, autistic children had a
lower concentration of SCFAs, among which the level of butyrate
was dramatically reduced while propionate and acetate were in
higher levels (De Angelis et al., 2013). The injection of
propionate into rats could cause ASD-like symptoms, and it
was associated with Clostridia species, which was generally
acknowledged involved in the pathophysiology of ASD
(Srikantha and Mohajeri, 2019). Butyrate is considered as the
most important SCFA in hosts. Lots of studies had shown its role
in brain protection and its positive effects on neurodegenerative
diseases (Mohajeri et al., 2018).

R. intestinalis, a butyrate-producing bacterium in the colon,
has come to the fore due to its role in the prevention of intestinal
inflammation and the maintenance of host homeostasis in many
digestive, autoimmune, and neurological diseases (Nie et al.,
2021). Of note, one of the fermentative products of B. bifidum is
lactate (de Vries et al., 1967), which could be the substrate for
producing butyrate by A. caccae and E. hallii besides acetate,
while R. intestinalis just uses acetate for producing butyrate (Koh
et al., 2016). Additionally, B. bifidum is the only species to
degrade mucin into monosaccharides in genus Bifidobacterium
and enable the growth of E. hallii to produce SCFAs by cross-
feeding (Bunesova et al., 2017). To some extent, these may
explain why two SCFA-producing bacteria were richer in AD
individuals, unexpectedly in our study.

As a promising probiotic, A. muciniphila was found richer in
autistic children without AD compared to those with AD (2.31%
vs. 0.61%). According to previous studies, compared to healthy
children, atopic children showed a significant decrease in or even
deletion of A. muciniphila (Candela et al., 2012; Drell et al., 2015;
Sung et al., 2022). Lee et al. found that the colonization of A.
muciniphila reduced in infants with AD compared to the control
group (Lee et al., 2018). Besides atopy, the lower relative
abundance of A. muciniphila in the gut was also reported to be
related to autism (Wang et al., 2011), even though the relative
abundance of genus Akkermansia was not significantly different
between ASD infants and healthy controls (Inoue et al., 2016).
Characterized by mucolytic ability, A. muciniphila could degrade
host mucin to promote the production of SCFAs and regulate the
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immune system, maintaining the integrity of the gut barrier
(Belzer et al., 2017; Ottman et al., 2017; Zhang et al., 2019; Zhou
and Zhang, 2019). Meanwhile, SCFAs should bind to G protein-
coupled receptors to achieve the normal resolution of
inflammatory response (Maslowski et al., 2009), the expression
of which was regulated by A. muciniphila (Lukovac et al., 2014).
Compared to children with persistent AD, the proportion of
Akkermansia was higher in transient AD cases, indicating its
potential role in the remission of AD (Park et al., 2020).

Surprisingly, we found that the amounts of H. parainfluenzae
and R. mucilaginosa were significantly higher in controls
compared with AD individuals (1.17% vs. 0.68%; 4.42 × 10-5

vs. 3.28 × 10-5). Both two species are usually regarded as
opportunistic pathogens, which could lead to a variety of
diseases, such as pneumonia, endocarditis, and bacteremia
(Spernoga, 1980; Bruminhent et al., 2013; Maraki and
Papadakis, 2015; Cobo et al., 2017; Faure et al., 2017; Poyer
et al., 2019). However, Zheng and coauthors identified that genus
Haemophilus was richer in healthy infants compared to infants
with eczema (Zheng et al., 2016). In a study by Arrieta et al., the
reduced amount of genus Rothia in the gut during the first 100
days of life was associated with a higher risk of childhood asthma
by means of reducing the level of fecal acetate (Arrieta et al.,
2015). In ASD, Kang et al. revealed that a decrease in the
abundance of H. parainfluenzae in the gut was related to more
severe GI symptoms in children with ASD (Kang et al., 2018),
similar to the study conducted by Zou et al. (2020). By far, no
study has yet been reported on the relationship between these
two species and AD.

The gut dysbiosis may come along with the disruption of the
host barrier and the alteration of metabolism, which could be
further reflected by the metabolic analysis in feces, blood, and
urine. In our study, for urinary organic acids, only adipic acid
was statistically significant in the multivariate analysis (OR =
1.513, P = 0.030). Adipic acid was produced from the omega-
oxidation pathway of fatty acids, a process which was normally
an alternative to the beta-oxidation pathway in mitochondria
(Puig-Alcaraz et al., 2016). This pathway could be augmented
when mitochondrial function was impaired. Compared to
healthy controls, the increase of adipic acid in urine was
significantly correlated with ASD and its severity (Puig-Alcaraz
et al., 2016; Khan et al., 2022). Furthermore, in the correlation
analysis, aconitic acid and adipic acid were positively related.
Aconitic acid was an intermediate product in the Krebs cycle and
produced by the dehydration citric acid (Mussap et al., 2016).
The increase of aconitic acid in urine was observed in individuals
with autism, depression, or autoimmune diseases compared to
healthy controls (Jones et al., 2005; Noto et al., 2014). Both
indicated mitochondrial dysfunction. Mitochondria critically
modulated host immune response, and its dysfunction could
induce oxidative stress favoring systemic inflammation, which
was observed to be involved in allergic diseases including atopic
dermatitis, allergic rhinitis, and asthma (Iyer et al., 2017;
Trinchese et al., 2018). Zhang et al. found that the deficiency
of the detoxification pathway of the gut microbiota was linked to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
the biomarkers of mitochondrial dysfunction (Zhang et al.,
2020). This was in line with the enrichment of the pathway of
xenobiotics biodegradations in the control group, and this
pathway of the gut microbiota seems to have a negative
correlation with adipic acid (r = -0.42, P = 0.18). Besides, we
also found that R. intestinalis showed a negative correlation with
aconitic acid, which was the same with their distributions in
different groups. The exposure of toxic substances may
contribute to mitochondrial dysfunction (Lee et al., 2010),
finally leading to disease development. Meanwhile, with the
dramatical increase in the incidence of AD, epigenetic
regulation was brought to the fore and considered as a link
between the changing environment and genetic changes, which
had been explored extensively (Sroka-Tomaszewska and
Trzeciak, 2021). The disorders of xenobiotic biodegradation
may increase the risk of environmental exposure and
detrimental epigenetic modifications, shifting the host toward a
higher risk of allergic diseases. The specific mechanisms of gut
dysbiosis on AD development in autism require more evidence
in the future.

Besides, as Table 2 shows, there were some urinary organic
acids, known for the markers of metabolic disorders in amino acids,
enriching in the AD group, including 3-hydroxyglutaric acid (Al-
Dirbashi et al., 2011) and 2-hydroxyphenylacetic acid (Armstrong
et al., 1955), even though both have become statistically insignificant
in the multivariate analysis. This was consistent with the result that
the pathway of amino acid metabolism was found predominant in
the control group. Autistic children showed a perturbation of
phenylalanine metabolism, with elevated concentrations of 3-(3-
hydroxyphenyl)-3-hydroxypropionic acid, 3-hydroxyphenylacetic
acid, and 3-hydroxyhippuric acid in urinary analysis (Xiong et al.,
2016). Similarly, 2-hydroxyhippuric acid was richer in the AD
group, which was produced in the liver during the process of
detoxification of salicylic acid (Suh et al., 1986). Its level generally
increased with the intake of exogenous salicylic acid such as aspirin.
Nevertheless, Finnie et al. enrolled children with digestive
symptoms, to whom no salicylate-containing drugs were
administrated. They found that 2-hydroxyhippuric acid was
detected in the urine of sick children and its level was associated
with GI disorders (Finnie et al., 1976). Considering that salicylic acid
showed an anti-inflammatory effect in colitis (Miquel et al., 2015), it
was reasonable to deduce that the production of salicylic acid may
rise with the severity of GI disorders owning to self-defense
mechanisms, and we really observed more GI dysfunctions in
autistic children with AD.

We acknowledge that our study has several limitations.
Firstly, it was a single-center study and the sample size was
limited. Secondly, in this study, we only enrolled autistic children
with AD and without AD, lacking those healthy or only with AD
as controls. It is impossible for us to exclude the potential effect
of autism as a confounder. Thirdly, due to the limitation of
technology, we just took urinary organic acids into
consideration, not including fecal or blood samples, which may
affect the final result to some extent. Apart from the complex
network among gut microbiota and their interactions with the
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host, this may explain why we did not observe evident
correlations between urinary organic acids and gut microbiota.
Lastly but very importantly, we just limited the usage of
antibiotics and probiotics before sample collection, while the
diets of enrolled children were not obtained and analyzed, which
would introduce deviation in the final results. The question of
causality of the alteration of the gut microbiota and the
development of AD remains an egg or chicken problem. All of
these will make our study preliminary and exploratory. Large-
scale and well-designed studies in the future are needed.

Altogether, lots of studies have shed light on the role of the
gut microbiota in the pathogenesis of disease. Herein, we
identified significant differences of gut microbiota and
urinary organic acids between autistic children with and
without AD, and the underlying mechanism on AD
occurrence in autism needs further investigation. A more
comprehensive understanding of the relationship between gut
microbiota and AD in autistic children will be beneficial for
clinicians to manage those children in the prevention and
treatment of AD better.
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