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A B S T R A C T   

Isolating anthocyanins from grape pomace, byproduct of red wine, becomes attracting for the multiple health 
beneficial effects of anthocyanins. Here in the ultrasound assisted anthocyanin isolation, parameters of time, 
ethanol concentration and pH, as well as temperature were individually optimized first. Then, surface response 
methodology was employed to further optimize the interactive and synergistic effect of these parameters. 
Optimal isolation condition was identified as the following: at the material liquid ratio of 1:15, 78.9 % of ethanol 
of pH 7.0 was utilized to extract at 63.8 ◦C for ~48 min. Experimental yield with the optimal isolation conditions 
was 193.547 mg/100 g anthocyanin from grape pomace, almost twice as much as previously reported. Two more 
anthocyanins, delphinidin-acetylglucoside and cyanidin-coumaroylglucoside, were identified in the extract. With 
ethanol as the only organic solvent used, this isolation method is an economical, eco-friendly and more efficient, 
anthocyanin preparation method with simpler instrument setups.   

1. Introduction 

Anthocyanins are often chemicals composed of an aglycone (the so- 
called anthocyanidin), sugar(s), and usually acyl group(s) (Liang et al., 
2021). They naturally present in almost all the plant tissues including 
flowers, fruits, leaves, stems, and roots, and endow cyanic colors to these 
tissues as pigments. Many parts of our daily diet are good sources of 
anthocyanins, and their health beneficial effects were studied in 
different aspects including reducing the risks of diseases such as cancer 
(Kocic et al., 2011), atherosclerosis (Aboonabi & Singh, 2015), cardio-
vascular diseases (Cassidy, 2018), and type II diabetes (Guo & Ling, 
2015). Due to their many health benefiting effects, supplements of an-
thocyanins has become a major portion of the nutrition market (Zhang 
et al., 2021). Thus, studies have been performed to isolate anthocyanins 
from many plants including black currant fruits (Matsumoto et al., 
2001), bilberry (Du et al., 2004), red kiwi fruit (Comeskey et al., 2009), 
blueberry (Wang et al., 2014), wild blueberry (Chorfa et al., 2016), 
mulberry (He et al., 2018), red cabbage (Chen et al., 2018), and black 
rice (Yi et al., 2021). On the other hand, anthocyanin isolation from agri- 
byproducts are attracting more and more attentions for the full utiliza-
tion of these precious molecules (S et al., 2020). 

Red wines are good sources of anthocyanins (Mateus et al., 2003), 

and the byproduct of red wine-grape pomace also contains considerable 
amount of anthocyanins. In a previous study, methanol and formic acid 
were used in the extraction of anthocyanins from grape pomace (Zhao 
et al., 2020). Formic acid was used to obtain the flavylium cation form of 
anthocyanins (Tena & Asuero, 2022). However, methanol was harmful 
to human health and their residual presence in the anthocyanin product 
may not meet the criteria of food grade production. Besides, anthocy-
anin isolation with column chromatography as stated in this study is not 
readily applicable and economical to industrial preparation in many 
circumstances. 

Here in this research, a bio-safer and eco-friendlier, anthocyanin 
isolation method with simpler and more economical setups were stud-
ied. The ultrasound assisted anthocyanin isolation conditions were 
optimized, and the extraction yield almost doubled with two more an-
thocyanins identified in the end product. 

2. Materials and methods 

2.1. Materials 

The Beibinghong grape (Vitis vinifera × Vitis amurensis) pomace was 
kindly provided by Dr. Yibin Lan in the College of Food Science and 
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Nutritional Engineering, China Agricultural University (Lan et al., 
2016). Acetic acid and absolute ethanol were purchased from Modern 
Oriental Fine Chemistry (Beijing, China). Potassium chloride and so-
dium acetate were purchased from XiLong Scientific (Shantou, Guang-
dong Province, China). Hydrochloric acid was purchased from 
Sinopharm Chemical Reagent Co., ltd. (Beijing, China). 

2.2. Ultrasound assisted anthocyanin extraction 

For each extraction, around 1 g grape pomace was weighted, mixed 
with ethanol with a material liquid ratio of 1:15. The isolation param-
eters, including time, pH, ethanol concentration, temperature, were 
according to the single parameter optimization or surface response 
methodology optimized values. The extract solution was centrifuged at 
4000 rpm for 15 min at room temperature to remove precipitates, and 
anthocyanin content in the supernatant was measured with the 
following described method. 

Initial evaluation of the isolation yield with and without ultrasound 
assistance was performed by extraction with 80 % ethanol and a mate-
rial liquid ratio of 1:15, at 37 ◦C for 20, 30, 40, 50, and 60 min, 
respectively. Ultrasound was applied with a VGT-1730QTD ultrasonic 
water bath (GT Sonic, Meizhou, Guangdong Province, China). 

2.3. Single parameter optimization 

2.3.1. Extraction time 
Grape pomace with 80 % ethanol at a material liquid ratio of 1:15, 

incubated in the ultrasound water bath at 55 ◦C for 20 min, 25 min, 30 
min, 35 min, 40 min, 45 min, and 50 min, respectively. The anthocyanin 
yield was measured as described in the following. 

2.3.2. Extraction pH 
Grape pomace with 80 % ethanol at a material liquid ratio of 1:15, 

incubated in the ultrasound water bath at 55 ◦C, and different pH of 3, 4, 
5, 6, 7, respectively. The anthocyanin yield was measured as described 
in the following. 

2.3.3. Extraction ethanol concentration 
Grape pomace with ethanol at a material liquid ratio of 1:15, incu-

bated in the ultrasound water bath at 53 ◦C for 30 min, and different 
ethanol concentration of 50 %, 60 %,70 %, 80 %, 85 %, and 90 %, 
respectively. The anthocyanin yield was measured as described in the 
following. 

2.3.4. Extraction temperature 
Grape pomace with 80 % ethanol at a material liquid ratio of 1:15, 

incubated in the ultrasound water bath for 30 min, and different tem-
perature of 35 ◦C, 45 ◦C, 55 ◦C, 63 ◦C, 65 ◦C, 68 ◦C, 75 ◦C, respectively. 
The anthocyanin yield was measured as described in the following. 

2.4. Surface response methodology optimization 

The optimal mixture design consisting variables of ethanol concen-
tration, temperature and time was used in this study via the Box- 
Behnken design, and a second order regression yielded 17 formula-
tions with the Design-Expert 12 software (Stat-Ease Inc., Minneapolis, 
MN, USA) as in the previous study (Guo et al., 2021). 3D response curves 
were generated with anthocyanin extraction yield as the output and 
ethanol concentration, temperature and time as the input. Analysis of 
variance (ANOVA) was performed to evaluate any significant differ-
ences between independent variables. 

2.5. Anthocyanin content and composition determination 

Anthocyanin content and composition in each extraction was 
determined as described previously (Wang et al., 2021). Roughly, the 

extracts were filtered with a 0.45 μM PTFE microfiltration membrane 
and then analyzed with a Zorbax SB-C18 column on a 1290 series liquid 
chromatography system (Agilent Technologies Inc., Palo Alto, CA, USA) 
equipped with diode array detector. 

2.6. Statistical analysis 

All measurements were performed in duplicates. One-way ANOVA 
was applied to the data with the Duncan test for significance analysis 
using SPSS statistics (version 17, IBM Corp., Armonk, NY, USA). The 
results were plotted with GraphPad Prism (version 8.0, GraphPad Soft-
ware Inc, La Jolla CA, USA). 

3. Results and discussion 

3.1. Effect of ultrasound assisted extraction 

Ultrasound application to bioactive compounds extraction with 
organic solvent often not only increases the yield, but also reduces en-
ergy consumption (Cassiana Frohlich et al., 2022). Additionally, it al-
lows the use of low temperature and thus conserves the heat-sensitive 
materials, such as anthocyanins (Wei et al., 2016). In the initial 
extraction experiment where other parameters were not optimized yet, 
the effectiveness of ultrasound assisted extraction was assessed first. 
Grape pomace was mixed with 80 % ethanol at a material liquid ratio of 
1:15, and extracted at 37 ◦C for 20 min, 30 min, 40 min, 50 min, and 60 
min, respectively. It was observed that the extraction yield with the 
presence of ultrasound assistance was significantly higher than that 
without ultrasound assistance at all time scales (Fig. 1, A). In the absence 
of ultrasound assistance, the extraction yield increased first when the 
incubation time extended from 20 to 50 min, and then decreased when 
the incubation time was beyond 50 min. On the other hand, with the 
presence of ultrasound assistance, the extraction yield kept increasing 
from 20 min to 50 min, indicating that ultrasound assistance contributes 
positively to the extraction yield of anthocyanins. The increase of 
anthocyanin extraction yield in the presence of ultrasound assistance is 
due to the release of anthocyanin in the disruption of plant tissue caused 
by physical forces during acoustic cavitation (Kumar et al., 2021). 

3.2. Single parameter optimization on ultrasound assisted extraction 

There are couple of parameters when ultrasound assisted anthocy-
anin extraction is applied in industrial preparation, including time, pH 
and composition of organic solvent, temperature (Bamba et al., 2018; 
Carrera et al., 2021; Görgüç et al., 2019; Setyaningsih et al., 2019; Zhu 
et al., 2017). As stated in the above section, with the assistance of ul-
trasound, the extraction yield increased as the incubation time extended. 
Here the impact of incubation time was assessed, where the grape 
pomace and 80 % ethanol was mixed at a material liquid ratio of 1:15, 
and incubated at 55 ◦C for different time scales. It was observed that the 
extraction yield increased initially from 20 to 45 min, and then 
decreased significantly at 50 min, while the extraction yields between 
40 and 45 were not significantly different (Fig. 1, B). The decrease of 
anthocyanin yield is highly likely due to its degradation by oxidation, 
hydrolysis, and polymerization at such a temperature for longer time 
(Benvenutti et al., 2022). 

Next, the pH of the extraction solution was assessed for its impact on 
the extraction yield. The grape pomace was mixed with 80 % ethanol at 
a material liquid ratio of 1:15, and incubated at 55 ◦C with different pH 
in the range of 3–7. It is observed that the extraction yield increased 
significantly as the pH increased from 3 to 7 (Fig. 1, C). Extraction yield 
at higher pH than 7 was not investigated, since basic solution deproto-
nates anthocyanins and lead to its degradation (Peanparkdee et al., 
2020). Though the material liquid ratio of 1:15 was used, ethanol con-
centration could be optimized. The grape pomace was mixed with 50 %, 
60 %, 70 %, 80 %, 85 %, and 90 % ethanol, and incubated at 53 ◦C for 30 
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min. It was observed that when the ethanol concentration increased 
from 50 % to 70 %, the extraction yield increased significantly (Fig. 1, 
D). However, when the ethanol concentration further increased from 70 
% to 90 %, there was no significant difference between the extraction 
yields. This is likely due to higher concentration of ethanol enhanced 
permeability of solvent while similar polarity of solvent to anthocyanins 
permits their dissolve (Zhou et al., 2022). 

Finally, the extraction temperature as examined. Grape pomace was 
mixed with 80 % ethanol at a material liquid ratio of 1:15, and incubated 
at 35 ◦C, 45 ◦C, 55 ◦C, 63 ◦C, 65 ◦C, 68 ◦C, 75 ◦C for 30 min, respectively. 
Initially as the temperature increased from 35 ◦C to 65 ◦C, the extraction 
yield increased significantly (Fig. 1, E). When the temperature further 
increased from 65 ◦C, the extraction yield decreased significantly. This is 
highly likely due to the low stability of anthocyanins under high tem-
peratures (Fernandes et al., 2020; Wang et al., 2021). 

3.3. Surface response methodology optimization on ultrasound assisted 
extraction 

Since the extraction yield at neutral pH reached its maximal, ultra-
sound assisted extraction experimental parameters of time, ethanol 
concentration, and temperature could be further optimized. The inter-
action and synergistic effect between these three parameters could be 

revealed with the surface response methodology (Guo et al., 2021). 
Three levels of each input parameter were utilized. For ethanol con-
centration, 70 %, 77.5 %, and 80 % were investigated. For temperature, 
60 ◦C, 64 ◦C, and 68 ◦C were studied. For incubation time, 40 min, 47.5 
min, and 55 min were utilized. The Box-Behnken design for this 33- 
factorial set up yielded 17 experimental setups, and anthocyanin 
extraction was performed following each condition. The 3D surface 
response surface with the resulting extraction yield was generated, and 
fitting of extraction yield to the quadratic equation yielded an F value of 
419.59 (Table 1, p < 0.0001, significant), indicating the 3D surface as an 
adequate modeling of extraction yield to the input variables. 

For ethanol concentration, initial increasing from 70 % to 79 % 
increased the anthocyanin extraction yield while further increasing of 
ethanol concentration from 79 % to 85 % decreased the extraction yield 
(Fig. 2, A, B). For extraction temperature, initial increasing from 60 ◦C to 
64 ◦C enhanced the anthocyanin extraction yield and further tempera-
ture increasing from 64 ◦C to 68 ◦C undermined the yield (Fig. 2, A, C). 
For the extraction time, initial extension from 40 min to 48 min 
increased the extraction yield while further extension from 48 min to 55 
min decreased the yield (Fig. 2, B, C). In the quadratic equation 
modeling anthocyanin extraction yield, the regression coefficients for 
ethanol concentration, temperature, time, and ethanol concentration ×
time are significant (Table 1, p < 0.05), indicating that these parameters 

Fig. 1. Optimization of single parameter on anthocyanin isolation from grape pomace. (A) Comparison between the ultrasound assisted and not assisted anthocyanin 
isolation yield at a material liquid ratio of 1:15, 80 % ethanol, 37 ◦C, and different time of 1 (20 min), 2 (30 min), 3 (40 min), 4 (50 min), 5 (60 min), respectively. (B) 
Anthocyanin isolation yield at a material liquid ratio of 1:15, 80 % ethanol, 55 ◦C, and different time of 20, 25, 30, 35, 40, 45, 55 min, respectively. (C) Anthocyanin 
isolation yield at a material liquid ratio of 1:15, 80 % ethanol, 55 ◦C, and different pH of 3, 4, 5, 6, 7, respectively. (D) Anthocyanin isolation yield at a material liquid 
ratio of 1:15, 53 ◦C for 30 min, and different ethanol content of 50 %, 60 %,70 %, 80 %, 85 %, and 90 %, respectively. (E) Anthocyanin isolation yield at a material 
liquid ratio of 1:15, 80 % ethanol for 30 min, and at different temperature of 35, 45, 55, 63, 65, 68, 75 ◦C, respectively. 
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were all playing significant roles in anthocyanin extraction while a 
strong interaction present between ethanol concentration and time. The 
surface response methodology yielded a mathematical maximal 

extraction yield of 193.108 mg/100 g grape pomace, provided that 78.9 
% ethanol was applied at 63.8 ◦C for 48.3 min. 

3.4. Composition analysis and quantification of anthocyanins in the 
optimized extract 

With the conclusion in the above section, we performed anthocyanin 
extraction with 78.9 % ethanol (pH 7.0) at a material liquid ratio of 
1:15, extracted at 63.8 ◦C for ~ 48 min, and yielded 193.547 mg/100 g 
anthocyanin from grape pomace. Our experimental yield is slightly 
higher than the predicated numerical value. Previous study obtained 
112.3 mg/100 g anthocyanin from grape pomace, while our optimized 
isolation yield is ~ 1.72-folds of that in the previously reported (Zhao 
et al., 2020). 

The composition of the above isolated anthocyanins was analyzed 
with the HPLC-MS/MS method (Supplementary Information Table S1). 
It was found that the glucoside-conjugated anthocyanidins are the major 
composition, while there are also acetylglucoside- and 
coumaroylglucoside-conjugated anthocyanidins (Fig. 3, A). Malvidin- 
glucoside is the richest content which takes about 48.9 % of all the 
anthocyanins, followed by malvidin-acetylglucoside (11.0 %), malvidin- 

Table 1 
ANOVA of response surface quadratic model for anthocyanin isolation.  

Source Sum of 
Squares 

Mean 
Square 

F value p-value Prob 
> F 

Model  15145.71  1682.86  419.59 <0.0001 
A-ethanol conc 

(%)  
68.63  68.63  17.11 0.0044 

B-Temperature 
(◦C)  

316.46  316.46  78.9 <0.0001 

C-time (min)  48.9  48.9  12.19 0.0101 
AB  18.17  18.17  4.53 0.0708 
AC  38.03  38.03  9.48 0.0178 
BC  0.53  0.53  0.1321 0.727 
A2  364.04  364.04  90.77 <0.0001 
B2  12679.88  12679.88  3161.5 <0.0001 
C2  858.04  858.04  213.94 <0.0001 
Residual  28.07  4.01   
Lack of Fit  21.44  7.15  4.31 0.096  

Fig. 2. Response surface plots of different parameters on anthocyanin isolation from grape pomace. Response surface plots to anthocyanin isolation yield to the input 
of temperature and ethanol concentration (A), time and ethanol concentration (B), time and temperature (C). 

Fig. 3. Composition analysis and quantification of anthocyanins isolated from grape pomace. The portion of anthocyanins (A) and anthocyanidins (B) obtained with 
the optimized isolation method. 
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coumaroylglucoside (8.2 %), and petunidin-glucoside (9.3 %). Among 
these three anthocyanidin derivatives, malvidin derivatives are the 
major species that takes 68.11 %, followed by petunidin (14.49 %), and 
delphinidin (6.23 %, Fig. 3, B). Cyanidin and peonidin derivatives were 
taking about the same proportion. Compare with Zhao et al. (2020), 
delphinidin-acetylglucoside and cyanidin-coumaroylglucoside were 
identified in our extract, while malvidin-caffeoylglucoside was not 
identified. 

There are studies extracting anthocyanins using acetone, butanol, 
(Zuleta-Correa et al., 2020), and eutectic solvents including chloride- 
citric acid-glucose (Guo et al., 2019). However, these solvents are 
harmful to human health, and their residual presence in the extracted 
anthocyanin put consumers’ safety at risk. Here, ethanol as the only 
organic solvent was used in the extraction process, which is safe and 
evaporates before anthocyanin reached the consumers. 

4. Conclusion 

Ultrasound is identified as a positive factor to the extraction of an-
thocyanins from grape pomace. The optimal ethanol concentration and 
pH, extraction temperature and time were optimized with the response 
surface methodology, which exhibits almost twice as much yield of 
anthocyanin. Two more anthocyanins, delphinidin-acetylglucoside and 
cyanidin-coumaroylglucoside, were identified in the extract. This opti-
mized method utilizes harmless ethanol as the only organic solvent with 
simple extraction instruments, thus it is an economical to industry and 
eco-friendly procedure with food grade end product. 
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