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Abstract: Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high economic
value, and its growth and development are affected by the external environment. Drought and salt
stresses are common adverse conditions that can affect crop quality and yield. WRKY transcription
factors (TFs) have been demonstrated to play critical roles in plant stress response, but the function
of pineapple WRKY TFs in drought and salt stress tolerance is largely unknown. In this study, a
pineapple AcWRKY31 gene was cloned and characterized. AcWRKY31 is a nucleus-localized protein
that has transcriptional activation activity. We observed that the panicle length and seed number
of AcWRKY31 overexpression transgenic rice plants were significantly reduced compared with that
in wild-type plant ZH11. RNA-seq technology was used to identify the differentially expressed
genes (DEGs) between wild-type ZH11 and AcWRKY31 overexpression transgenic rice plants. In
addition, ectopic overexpression of AcWRKY31 in rice and Arabidopsis resulted in plant oversensitivity
to drought and salt stress. qRT-PCR analysis showed that the expression levels of abiotic stress-
responsive genes were significantly decreased in the transgenic plants compared with those in the
wild-type plants under drought and salt stress conditions. In summary, these results showed that
ectopic overexpression of AcWRKY31 reduced drought and salt tolerance in rice and Arabidopsis and
provided a candidate gene for crop variety improvement.

Keywords: pineapple; wrky transcription factors; AcWRKY31; RNA-seq; drought; salt

1. Introduction

Plants are often exposed to various environmental stresses during all stages of plant
growth and development. Abiotic stresses such as drought, salinity, high temperature and
cold can affect plant growth and development, yield, and quality [1]. In order to survive
these adverse conditions, plants have developed complex defense mechanisms to face
external environmental changes. Transcription factors (TFs) play crucial roles in plant
defense systems by regulating genes expression. The WRKY transcription factor family is
one of the largest transcription factor families in higher plants, and various family members
play important roles in many aspects of physiological processes and resist the adverse
environment [2–5].

Int. J. Mol. Sci. 2022, 23, 6269. https://doi.org/10.3390/ijms23116269 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23116269
https://doi.org/10.3390/ijms23116269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4713-6151
https://doi.org/10.3390/ijms23116269
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23116269?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 6269 2 of 17

A typical WRKY transcription factor contains the 60-amino-acids-long WRKY domain,
which has the highly conserved signature WRKYGQK in the n-terminal, followed by a
C2H2- or C2HC-type of the zinc-finger motif [6]. In some WRKY TFs, the WRKY residues in
the WRKY domain are replaced by WRRY, WSKY, WKRY, WVKY and WKKY residues [7,8].
In rice, the WRKY family has multiple WRKY domain variants, of which WRKYGEK and
WRKYGKK are the most common [7]. Both the heptapeptide sequence and the zinc-finger
motif are necessary for the binding of WRKY TFs to the consensus W-box cis-elements.
Based on the number of WRKY domains and the structure of the zinc-finger motif, the
WRKY TFs can be classified into three main groups (I-III). Group I WRKY TFs contain two
WRKY domains and a C2H2-type zinc-finger motif, and the DNA binding function of this
kind of WRKY transcription factor is mainly mediated by the C-terminal WRKY domain,
while the WRKY TFs in Group II contain only one WRKY domain, and its zinc finger
structure is also C2H2 type. In addition, the sequence of the WRKY domain in Group II is
more similar to that of the C-terminal WRKY domain of Group I WRKY transcription factors.
Group III members have one WRKY domain with a C2HC-type zinc-finger motif [6,7,9]. In
addition, in some higher plants, the members of Group II can be divided into IIa, IIb, IIc,
IId and IIe subgroups according to the main amino acid sequence composition [7].

Since the first WRKY gene SPF1 was identified from sweet potato [10], the functions of
WRKY proteins have been well studied from various plant species. Substantial evidence has
shown that WRKY TFs are involved in many different biological processes. For example,
in the process of seed germination, AtWRKY27 is a negative regulator in the GA signal
pathway [11]. AtWRKY2 mediates seed germination and post germination arrest of growth
and development through the ABA pathway [12]. Loss of AtWRKY53 can delay the
senescence of plants, while overexpression of AtWRKY53 will promote the senescence of
plants [13]. Furthermore, a large number of WRKY genes take part in the regulation of
plant tolerance to abiotic stress. In Arabidopsis, WRKY39 genetically interacts with SA- and
JA-signaling pathways to positively regulate response to heat stress, and overexpression
of WRKY39 can improve plant tolerance to heat stress [14]. VvWRKY11 from grapevine
is involved in the response to dehydration stress [15]. Overexpression of OsWRKY45
and OsWRKY72 in rice can significantly improve plant tolerance to drought and salt
stress [16,17]. Under the control of the rice HSP101 promoter, overexpression of OsWRKY11
will enhance the tolerance of heat and drought stresses of transgenic rice seedlings [18].

Pineapple (Ananas comosus (L.) Merr.) is a perennial monocotyledonous plant, which
is a famous tropical fruit. Pineapple grows in South America and now in almost all tropical
and subtropical regions in the world. It has been widely planted in 85 countries [19].
However, environmental stress seriously affects the growth and development of pineapple
plants. Pineapple fruits will be sunburned under high temperature, and low temperature
will slow down the growth of the plants, thus affecting the quality and yield of pineap-
ple [20]. Because pineapple has high nutritional and economic value, the identification
of its important functional genes has also aroused great interest. With the completion of
pineapple genome sequencing, the analysis of multiple pineapple gene families, including
WRKY transcription factors, has been reported [20–24]. At present, 54 members of the
pineapple WRKY transcription factor family have been identified [20], but there are few
reports on the function of pineapple WRKY transcription factors.

WRKY transcription factor is one of the most important transcription factors in
plants [2]. However, there are few reports on the function of the WRKY gene in pineapple. It
has been reported that the expression of AcWRKY31 (Aco000358.1) was induced under cold
and drought stress conditions [20], but the function of AcWRKY31 in still limited. In order
to investigate the role of AcWRKY31 in plant growth and development, AcWRKY31 was
identified and cloned from the pineapple genome. A comprehensive analysis, including
multiple sequence alignment, subcellular localization and transcriptional activation activity
analysis, was performed. Due to the immature genetic transformation system of pineapple,
it is still difficult to study the function of AcWRKY31 in pineapple. Since both rice and Ara-
bidopsis are important model plants, we constructed AcWRKY31 overexpression transgenic
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plants to further investigate the function of AcWRKY31. In addition, we provide evidence
that overexpression of AcWRKY31 in rice and Arabidopsis will affect plant growth and
development and change the expression levels of multiple stress-responsive genes under
drought and salt stresses. This is the first work showing the role of pineapple AcWRKY31
transcription factor in plant growth and development and stress response. This study laid
a theoretical foundation for the functional research of AcWRKY31 and provided new genes
and new ideas for crop breeding and improvement in both dicots and monocots.

2. Results
2.1. Sequence Alignment of AcWRKY31

AcWRKY31 (Aco000358.1) and its homologous protein sequences were downloaded
from Phytozome13. Multiple alignments showed that AcWRKY31 showed high sequence sim-
ilarity with AcWRKY25 (Aco005520.1), OsWRKY113 (LOC_Os06g06360.1) and AtWRKY53
(AT4G23810.1). AcWRKY31 and its homologous proteins contained a highly conserved
WRKY domain and C2HC-type of the zinc-finger motif (Figure 1).
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Figure 1. Multiple sequence alignments of AcWRKY31 and its ortholog proteins. The WRKY domain
is indicated by the black line, and black triangles indicate the C2HC zinc-finger motif.

2.2. Subcellular Localization and Transcriptional Activity of AcWRKY31

In order to investigate the subcellular location of AcWRKY31, the coding sequence of
AcWRKY31 was fused to the N-terminal of the green fluorescent protein (GFP) under the
control of the CaMV 35S promoter, generating a fusion protein vector 35S::AcWRKY31::GFP.
Then, the recombinant vector was transformed into Nicotiana benthamiana leaves, and
the empty vector 35S::GFP was used as control. Microscopic visualization showed that
AcWRKY31::GFP was exclusively localized in the nucleus, whereas the control GFP signal
was observed in the whole cell including the cell membrane and nucleus (Figure 2A). These
results suggested that AcWRKY31 is a nucleus-localized protein.

To investigate the transcriptional activation activity of AcWRKY31, a yeast assay
system was used. The full-length coding DNA sequence (CDS) of AcWRKY31 was cloned
into the pGBKT7 vector. Then, we transferred pGBKT7-AcWRKY31 + pGADT7-T into the
AH109 yeast strains, and the yeast strains containing pGBKT7 or pGBKT7-AcWRKY31 were
used as control. As shown in Figure 2B, the yeast strains containing pGBKT7-AcWRKY31 +
pGADT7-T grew normally on the SD/-Trp/-Leu medium and turned blue on the SD/-Trp/-
Leu/-His/X-α-gal medium. The growth of the yeast cells harboring pGBKT7-AcWRKY31
were inhibited on the SD/-Trp/-Leu medium and SD/-Trp/-Leu/-His/X-α-gal medium.
However, the yeast cells transformed with pGBKT7 could not grow on the SD/-Trp/-Leu
medium and SD/-Trp/-Leu/-His/X-α-gal medium (Figure 2B). These results indicate that
AcWRKY31 has transcriptional activation activity.
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scriptional activation analysis of AcWRKY31.

2.3. Expression Profiles of Pineapple AcWRKY31 Response to Various Abiotic Stresses

Several studies have reported that some WRKY TFs were involved in abiotic stress
response [3,4]. To investigate the role of AcWRKY31 in abiotic stress response, the one-
month-old pineapple plants were exposed to various stress treatments, and the leaves
were collected for qRT-PCR analysis. After low temperature treatment, the expression
of AcWRKY31 showed the minimum level at 2 h, then increased gradually, and reached
the maximum level at 12 h (Figure 3A). High temperature treatment could inhibit the
expression level of AcWRKY31, and AcWRKY31 reached its minimum expression level at
48 h (Figure 3B). Under drought treatment, the expression level of AcWRKY31 reached the
maximum level at 6 h, then declined gradually, and reached the minimum level at 12 h
(Figure 3C). Under salt treatment, the expression level of AcWRKY31 was inhibited at 2
and 6 h and then increased significantly at 12 h (Figure 3D). These results suggest that
AcWRKY31 may be involved in abiotic stress response.

2.4. Phenotype Observation of AcWRKY31 Overexpression Rice Transgenic Plant

Since both rice and pineapple are important monocotyledonous plants, in order to
further investigate the function of AcWRKY31, we constructed AcWRKY31 overexpression
rice transgenic plants and obtained two independent lines, OE-3 and OE-31 (Figure S1A).
It was found that the panicle length of OE-3 and OE-31 was shorter than that of ZH11
(Figure S2). In addition, the statistical results showed that the total seed number of OE-3
and OE-31 was significantly decreased compared with that in ZH11 (Figure S2). These



Int. J. Mol. Sci. 2022, 23, 6269 5 of 17

results indicate that overexpression of AcWRKY31 in rice may affect plant growth and
development.
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comparisons based on Student’s t test (** p < 0.01).

2.5. Analysis of Differentially Expressed Genes (DEGs) in AcWRKY31 Rice Transgenic Plants

To investigate the mechanism of AcWRKY31 regulating rice growth and development,
total RNA-seq analysis was performed to analyze the transcriptome in the leaves of ZH11
and AcWRKY31 overexpression transgenic rice plants. Differential gene expression anal-
ysis showed that 1441 genes were upregulated and 1126 genes were downregulated in
transgenic rice plants compared with the corresponding gene in ZH11 (Table S2), and
their putative functions are shown in Table S3. To verify the accuracy of the RNA-seq
data, we performed qRT-PCR to compare the expression levels of six differential expressed
genes, including LOC_Os01g50890, LOC_Os10g40700, LOC_Os11g35300, LOC_Os01g06310,
LOC_Os11g05470 and LOC_Os11g06150. The expression trend of these six selected genes
was consistent with the results of RNA-seq, which indicated the reliability of the RNA-seq
data and its subsequent analysis (Figure S3).

Gene ontology (GO) enrichment analysis described the biological process, cellular
component and molecular function of these 1457 upregulated genes. Among the biological
processes, these DEGs were mainly concentrated in the carbohydrate metabolism process,
response to endogenous stimulus, and response to stimulus. The cell components of these
DEGs were mainly distributed in an external encapsulating structure, cell wall, and ex-
tracellular region. The molecular function of DEGs included hydrolase activity, catalytic
activity and oxygen binding (Figure 4A). Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis indicated that these upregulated genes were mainly distributed
in phenylpropanoid biosynthesis, plant hormone signal transduction, and starch and su-
crose metabolism (Figure 4B). The GO analysis showed that 1140 downregulated genes
were mainly concentrated in the 21 GO terms, including secondary metabolic process, re-
sponse to abiotic stimulus, mitochondrion and transferase activity (Figure 4C). Furthermore,
the KEGG analysis showed that the downregulated genes were assigned to eight KEGG
pathways, including glutathione metabolism, biotin metabolism and MAPK signaling
pathway (Figure 4D).
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2.6. Overexpression of AcWRKY31 Decreased Drought and Salt Tolerance in Transgenic Rice Plants

To further confirm whether AcWRKY31 is involved in the process of drought stress
response, the seedings of ZH11, OE-3 and OE-31 were seeded in 1/2 MS medium with
or without 200 mM mannitol. The results showed that the growth of AcWRKY31 over-
expression rice seedlings was found to be severely repressed by application of 200 mM
mannitol compared to control plants (Figure 5). OE-3 and OE-31 exhibited lower plant
height, root length and fresh weight compared with those in wild-type plant ZH11 under
drought stress condition, which indicated that overexpression of AcWRKY31 increases rice
sensitivity to drought mimicked by mannitol application (Figure 5).

To explore whether AcWRKY31 is also involved in the process of salt stress response,
the seedings of ZH11, OE-3 and OE-31 were seeded in 1/2 MS medium with or without
150 mM NaCl. The results showed that the plant height, root length and fresh weight of
AcWRKY31 overexpression rice seedlings OE-3 and OE-31 was significantly reduced com-
pared with those in ZH11 after salt stress treatment, which indicated that overexpression of
AcWRKY31 increases rice sensitivity to salt stress (Figure 6).

2.7. Overexpression of AcWRKY31 Decreased Drought and Salt Tolerance in Transgenic
Arabidopsis Plants

In order to investigate whether heterologous overexpression of AcWRKY31 in Ara-
bidopsis also has similar function, we generated two AcWRKY31 transgenic Arabidopsis lines,
OE-10 and OE-12 (Figure S1B). The seedings of WT, OE-10 and OE-12 were planted in the
1/2 MS medium as the control group. Volumes of 200 and 250 mM mannitol were used
to simulate drought treatment. Then, 1/2 MS medium containing 75 mM and 100 mM
NaCl was used to mimic salt treatment. The results showed that compared with the WT,
the germination rate, root length and fresh weight of OE-10 and OE-12 were decreased
under 200 mM mannitol and 75 mM NaCl treatments, and further decreased under 250 mM
mannitol and 100 mM NaCl treatments (Figures 7 and 8).
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bidopsis also has similar function, we generated two AcWRKY31 transgenic Arabidopsis 
lines, OE-10 and OE-12 (Figure S1B). The seedings of WT, OE-10 and OE-12 were planted 
in the 1/2 MS medium as the control group. Volumes of 200 and 250 mM mannitol were 
used to simulate drought treatment. Then, 1/2 MS medium containing 75 mM and 100 
mM NaCl was used to mimic salt treatment. The results showed that compared with the 
WT, the germination rate, root length and fresh weight of OE-10 and OE-12 were de-
creased under 200 mM mannitol and 75 mM NaCl treatments, and further decreased un-
der 250 mM mannitol and 100 mM NaCl treatments (Figures 7 and 8). 

Figure 6. Salt stress tolerance of AcWRKY31 overexpression rice plants. (A) Performance of ZH11 and
AcWRKY31 overexpression rice plants with or without salt treatment for 10 days; scale bar = 5 cm.
The plant height (B), root length (C) and fresh weight (D) of all lines in (A). Bars show standard
deviations of at least 10 seedlings. Asterisks indicate significant differences between the ZH11 and
the AcWRKY31 overexpression lines evaluated with Student’s t test (* p < 0.05, ** p < 0.01).
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Figure 7. Phenotypic analysis of AcWRKY31 overexpression Arabidopsis plants in response to drought
stress. (A) Performance of WT and AcWRKY31 overexpression Arabidopsis plants with or without
drought treatment for 7 days; scale bar = 1 cm. The germination rate (B), root length (C) and fresh
weight (D) of all lines in (A). Error bars indicate ± SD of three biological replicates. Asterisks indicate
significant differences between the WT and the AcWRKY31 overexpression lines evaluated with
Student’s t test (** p < 0.01).

2.8. Expression Analysis of Stress-Related Genes in AcWRKY31 Transgenic Plants

To investigate the potential molecular pathway affected by AcWRKY31 in regulating
stress tolerance, two-week-old ZH11, OE-3 and OE-31 seedings were exposed to drought
and salt treatments, respectively. We performed qRT-PCR to monitor the expression levels
of six abiotic stress-responsive genes in rice plants, including OsAPX2, OsCAT1, OsCATB,
OsDREB2A, OsDREB2B and OsABA1. These results showed that compared with ZH11,
the expression levels of OsAPX2, OsCAT1, OsCATB, OsDREB2A, OsDREB2B and OsABA1
were decreased in OE-3 and OE-31 under normal conditions (Figure 9). Furthermore, after
drought and salt treatments, the expression levels of these abiotic stress-responsive genes
were increased in OE-3 and OE-31, and further increased in ZH11 (Figure 9).
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CATB, OsDREB2A, OsDREB2B and OsABA1. These results showed that compared with 
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Figure 8. Phenotypic analysis of AcWRKY31 overexpression Arabidopsis plants in response to salt
stress. (A) Performance of WT and AcWRKY31 overexpression Arabidopsis plants with or without salt
treatment for 7 days; scale bar = 1 cm. The germination rate (B), root length (C) and fresh weight (D)
of all lines in (A). Error bars indicate ± SD of three biological replicates. Asterisks indicate significant
differences between the WT and the AcWRKY31 overexpression lines evaluated with Student’s t test
(** p < 0.01).

Furthermore, we also performed qRT-PCR to analyze the expression levels of five
stress-related genes (AtCAT1, AtCAT3, AtPOD1, AtPOD2 and AtRD22) in WT, OE-10 and
OE-12. It was found that the expression levels of AtCAT1, AtCAT3, AtPOD1, AtPOD2
and AtRD2 were inhibited in OE-10 and OE-12 compared with those in WT under normal
condition (Figure 10). Furthermore, the expression levels of these genes were increased in
the OE-10 and OE-12 and more strongly increased in WT after drought and salt treatments
(Figure 10). These results showed that the expression levels of the stress-related genes were
affected upon AcWRKY31 overexpression in rice and Arabidopsis.
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Figure 9. The expression of abiotic stress-related genes in the ZH11 and AcWRKY31 transgenic rice
plants in response to drought (A–F) and salt stresses (G–L). The error bars indicate ± SD (n = 3
replicates). Asterisks indicate significant differences for the indicated comparisons based on Student’s
t test (* p < 0.05, ** p < 0.01).
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Figure 10. The expression of abiotic stress-related genes in the WT and AcWRKY31 transgenic
Arabidopsis plants in response to drought (A–E) and salt stresses (F–J). The error bars indicate ± SD
(n = 3 replicates). Asterisks indicate significant differences for the indicated comparisons based on
Student’s t test (* p < 0.05, ** p < 0.01).

3. Discussion

Plant growth, yield and quality are seriously threatened by various abiotic stresses [25,26].
To cope with these environmental challenges, plants have to develop effective stress response
mechanisms [27,28]. As one of the TF superfamilies in plants, WRKY TFs are involved in various
plant biological processes [2–4]. At present, a large number of studies have reported that WRKY
TFs play important roles in various plant species growth and development, such as soybean
(Glycine max), rice (Oryza sativa L.) and cotton (Gossypium barbadense L.) [29–32]. Pineapple is
an important tropical and subtropical fruit with high nutritional and economic value. It is
widely planted in China and other countries. However, there are few studies on the function
of the WRKY gene in pineapple. In this study, AcWRKY31 was isolated and cloned from the
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pineapple genome. The sequence alignment of AcWRKY31 exhibited that the AcWRKY31
protein contained a highly conserved WRKY domain and C2HC-type of zinc-finger motif.
AcWRKY31 shared high sequence similarity with AcWRKY25, OsWRKY113 and AtWRKY53
in pineapple, rice and Arabidopsis, respectively (Figure 1). Several studies have reported that
AcWRKY25, OsWRKY113 and AtWRKY53 are involved in stress response. The expression of
AcWRKY25 was induced by cold stress [20]. OsWRKY113 was involved in iron toxicity tolerance
mechanisms [33]. AtWRKY53 plays an important role in the senescence of plants, and activated
expression of AtWRKY53 negatively regulates plant drought tolerance [13,34]. In the present
study, the expression profiles of the pineapple AcWRKY31 gene show some kind of “up and
down” patterns after different stress treatments (Figure 3), which is similar to the previous
study [20]. The change in AcWRKY31 expression may be caused by the plant circadian clock,
which can coordinate the internal metabolic and physiological processes of plant and change
gene expression to adapt to the external environment [35].

Increasing evidence have demonstrated that WRKY TFs play important roles in plant
growth and development. It has been demonstrated that AtWRKY71, GsWRKY20 and Os-
WRKY11 are crucial components affecting plant flowering [36–38]. The rice gene OsWRKY78
was involved in seed germination and stem elongation [30]. Overexpression of TaWRKY71
in wheat can improve the rate of seed germination [39]. AtWRKY75 can not only regulate
the aging process of plant leaves, it can also affect the elongation of plant roots [40]. Since
the genetic transformation system of pineapple is still limited, we constructed AcWRKY31
overexpression transgenic plants to further study the function of AcWRKY31. In this study,
we found that overexpression of AcWRKY31 in rice will affect plant panicle length and
total seed number (Figure S2). Furthermore, AcWRKY31 was also involved in plant stress
response. Under drought and salt conditions, the plant height, root length and fresh weight
of AcWRKY31 overexpression rice plants were reduced significantly compare with those in
ZH11 (Figures 5 and 6). After drought and salt stress treatment, AcWRKY31 overexpression
Arabidopsis plants exhibited lower seed germination rate, shorter root length and lighter
fresh weight compared with those in WT (Figures 7 and 8). These results showed that the
transgenic plants with higher AcWRKY31 expression levels were more sensitive to drought
and salt stress, which indicated that overexpression of AcWRKY31 inhibited plant growth
and development under drought and salt stresses.

When plants are exposed to unfavorable environmental conditions, they can establish
an effective defense mechanism depending on the precise regulation of various stress-
responsive genes, including hormones biosynthesis, signaling transduction and osmo-
protectants metabolism-related genes, and this regulatory mechanism comprises a series
of transcriptional activators or repressors [41,42]. The WRKY transcription factors have
been well recognized for their roles in a regulatory network that integrates internal and
environmental factors to regulate plant stress tolerance [43,44]. For instance, overexpression
of TaWTKY19 in Arabidopsis enhanced plant salt and drought tolerance by upregulating
the expression level of DREB2A, RD29A and RD29B [45]. Overexpression of GsWRKY20
and GmWRKY16 in Arabidopsis can enhance the drought tolerance of transgenic Arabidopsis
plants through the ABA signaling pathway [46,47]. Conversely, ectopic overexpression of
GhWRKY33 can enhance the sensitivity of transgenic Arabidopsis to drought stress by down-
regulating the expression of several stress-responsive genes, such as RD29A, DREB2A and
ABI1 [48]. Similarly, we performed qRT-PCR to investigate the expression level of several
stress-related genes in AcWRKY31 transgenic plants and wild-type plant controls. In our
study, the expression levels of various stress-responsive genes, including OsAPX2, OsCAT1,
OsCATB, OsDREB2A, OsDREB2B and OsABA1 in rice, AtCAT1, AtCAT3, AtPOD1, AtPOD2
and AtRD22 in Arabidopsis, were significantly lower in AcWRKY31 transgenic plants than
those in wild-type plants under normal or stress conditions (Figures 9 and 10). These
findings indicated that AcWRKY31 affects plant stress tolerance by altering the expression
of the stress-related genes.

Taken together, the above findings revealed the potential function of pineapple
AcWRKY31. Compared with wild-type plants, AcWRKY31 overexpression plants are
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more sensitive to drought and salt stresses, which may be related to the decrease in the
expression levels of stress-related genes. This study provided a theoretical foundation for
the further functional characterization of AcWRKY31. However, much more work needs
to be conducted to further investigate the molecular mechanisms of AcWRKY31 under
stress conditions.

4. Materials and Methods
4.1. Plant Materials and Abiotic Treatments of Pineapple

Arabidopsis thaliana ecotype Columbia-0 (Col-0) and rice (Oryza sativa L.) ZH11 (Zhong
Hua 11) were used as wild-type plants in this study. AcWRKY31 transgenic rice and
Arabidopsis lines were obtained through Agrobacterium-mediated transformation [49,50].
The T3 generation transgenic lines with high transcription level were obtained for further
analysis. Pineapple (A. comosus var MD-2) was provided by the Qin Lab (Center for
Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fujian, China).
The pineapple seedings were grown under 16 h light/8 h dark photoperiod and 70% relative
humidity at 25 °C. The one-month-old pineapple plants were exposed to the following
treatments: cold stress (4 °C), heat stress (45 °C), drought stress (350 mM mannitol) and
salt stress (150 mM NaCl). The pineapple leaves were collected after 2, 6, 12, 24 and 48 h
treatments and were stored at −80 °C for subsequent analysis.

4.2. Bioinformatics Analysis

The AcWRKY31 protein and its homologous protein sequences were downloaded
from Phytozome13 (https://phytozome-next.jgi.doe.gov/) (accessed on 25 May 2022).
Multiple sequence alignment was performed by DNAMAN software (version 9) [51].

4.3. Vector Construction and Subcellular Localization

The coding sequences of AcWRKY31 gene was amplified from pineapple cDNA using
the primers listed in Table S1. The PCR fragment was constructed into pENTR™/D-
TOPO vector (CAT: K2400-20, Invitrogen), and then recombined into the plant expression
vector pGWB605 with CaMV 35S promoter and GFP (green fluorescent protein) using LR
clone II enzyme (Invitrogen). The vector 35S::AcWRKY31::GFP was transformed into the
Agrobacterium tumefaciens GV3101 and then infiltrated to Nicotiana benthamiana leaves with
the infection buffer (10 mM MES, 50 mM MgCl2, pH = 5.8, 100 µm AcetoSyringone) [52–54].
The 35S::GFP empty vector was used as a negative control. After dark growth for 36 to 48
h, the fluorescence signal of the recombinant proteins in the leaves was observed using
LAICA SP8 confocal microscope, with a 488 nm wavelength for GFP signal.

4.4. Transactivation Activity Assays

The CDS of AcWRKY31 was introduced into the pGBKT7 vector to generate pGBKT7-
AcWRKY31. The yeast strain AH109 was transformed with pGBKT7, pGBKT7-AcWRKY31
and pGBKT7-AcWRKY31 + pGADT7-T. The transformed cells were grown on SD/-Trp/-
Leu for 2 to 4 days and then transferred to SD/-Trp/-Leu/-His/X-α-gal medium for further
culture. The transcriptional activity of proteins was detected by the yeast strains’ growth
status and X-α-gal activity.

4.5. Assessment of Drought and Salt Tolerance in Transgenic Plants

Seeds of ZH11 and AcWRKY31 overexpression transgenic rice plants were planted in
the sterilized glass cans containing 1/2 Murashige and Skoog (MS) medium with 200 mM
mannitol and 150 mM NaCl, respectively. The control group did not receive any stress
treatment. The seedings grew under 16 h light/8 h dark photoperiod at 30 °C. Plant height,
root length and fresh weight were measured after 10 days. For Arabidopsis, WT and the
transgenic lines were planted in the 1/2 MS medium as the control group. Volumes of
200 and 250 mM mannitol were used to simulate drought treatment. Then, 1/2 MS medium
containing 75 and 100 mM NaCl were used to mimic salt treatment. The seedings grew

https://phytozome-next.jgi.doe.gov/
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under a 16 h light/8 h dark photoperiod at 22 °C. After 7 days, plant fresh weight and
germination rates were counted, and the root length was measured.

For the analysis of stress-related gene expression, the two-week-old rice seedings were
grown in the nutrient solution with or without 200 mM mannitol or 150 mM NaCl [55].
For Arabidopsis, one-month-old WT and transgenic plants were grown in soil watered with
deionized water with or without 200 mM mannitol or 150 mM NaCl. The leaves of rice and
Arabidopsis were collected at 0 and 6 h post-treatment for further analysis.

4.6. RNA-Seq and Data Analysis

RNA was isolated from the leaves of ZH11 and AcWRKY31 overexpression (AcWRKY31-
OE) rice plants using plant RNA extraction kit (OMEGA, Shanghai, China) following
the manufacturer’s protocol. The RNA-seq data of rice leaves were downloaded from
Phytozome13, and the sequencing and data processing were conducted as previously
described [56]. We used the TRIMMOMATIC v0.3 to filter the raw reads and remove the
adapter sequence [57]. The clean reads were aligned using Tophat software with default
parameters, and then the transcripts were assembled and quantified using Cufflinks [58].
Differentially expressed genes (DEGs) were obtained by using Cuffdiff (fold change ≥ 2; a
value of FDR ≤ 0.05 was considered to be statistically significant) [58]. Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs was performed
using TBtools v1.09 software [59]. The final results were visualized by using R package
UpSet v1.0.0.

4.7. Quantitative Real-Time PCR Analysis

Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA, USA) and were
reverse-transcribed using AMV reverse transcriptase (Takara, Japan), following the manu-
facturer’ instructions [53]. Quantitative real-time PCR was performed based on the SYBR
Premix Ex Taq II system (Takara, Japan) and Bio-Rad Real-Time PCR system. The reaction
was carried out in a 20 µL volume containing 10 µL of 2× SYBR Premix, 8.2 µL of RNase
free water, 1 µL of template, 0.4 µL of each specific primer (Table S1), and performed with
the following parameters: 95 °C for 30 s; 40 cycles of 95 °C for 5 s and 60 °C for 34 s; 95 °C
for 15 s [60,61]. The genes AcPP2A, AtHK2 and OsUBQ5 were used as reference genes in
pineapple, Arabidopsis and rice, respectively [54,62,63]. Three biological replicates were
performed, and every biological replicate was confirmed by three technical replicates. The
relative expression levels of these selected genes were calculated using the comparison
threshold period (2−∆∆Ct) method [64].

5. Conclusions

In this study, we cloned and characterized pineapple AcWRKY31. Our results revealed
that ectopic overexpression of AcWRKY31 will reduce plant drought and salt tolerance by
altering the expression levels of stress-responsive genes in transgenic rice and Arabidopsis.
These findings enhanced the understanding of the role of pineapple AcWRKY31 transcrip-
tion factor in the complex abiotic stress molecular mechanisms, and provided a theoretical
basis for the functional characterization of AcWRKY31 genes in different plant species.
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