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BACKGROUND: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to
identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which
are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas
BFMI861-S2 is insulin sensitive.
METHODS: In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-
fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice
using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization
of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used.
RESULTS: Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome
(Chr) 3 (95.8–100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17
(9.5–26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood
glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for
Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17).
Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9–74.6 Mb) and for body weight on Chr
16 (3.9–21.4 Mb).
CONCLUSIONS: QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated
with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose
concentration in the insulin-resistant mouse line BFMI861-S1.

International Journal of Obesity (2022) 46:307–315; https://doi.org/10.1038/s41366-021-00991-3

INTRODUCTION
The metabolic syndrome is defined as a metabolic abnormality that
leads to high body weight, ectopic fat storage, insulin resistance,
high blood pressure, and chronic low-grade inflammation [1].
Heritability estimates for each trait of the metabolic syndrome are
high with some estimates exceeding 50% [2]. Nevertheless,
genome-wide association studies on body mass index and other
traits of the metabolic syndrome identified loci, that combined,
account for only 1–7% of the variance in the examined population
[2]. Therefore, studies on different populations are needed to
identify additional causal genes to better understand their direct
and interaction effects contributing to the metabolic syndrome.
The goal of the current study was to identify genetic factors

contributing to obesity and glucose homeostasis in the Berlin Fat
Mouse. Originally, the Berlin Fat Mouse population was selected
for juvenile obesity. After 58 generations of selection, different

Berlin Fat Mouse Inbred (BFMI) lines were generated through
repeated brother–sister mating [3]. In a cross between the most
obese inbred line BFMI860 and the lean control line C57BL/6NCrl,
we have previously identified a recessive genetic defect at a locus
on chromosome (Chr) 3 accounting for 40% of the variance in
adipose tissue weight at 6 weeks [4, 5]. This juvenile obesity locus
(jObes1) is fixed in all BFMI sublines.
In the current study, we used the inbred lines BFMI861-S1 (S1) and

BFMI861-S2 (S2). S1 and S2 are sublines created from the BFMI860, as
such the BFMI860 is the predecessor of the S1 and S2. The S1 and S2
lines were conspicuously different with respect to metabolic traits [6].
In particular, the S1 line showed high body weight, hepatic fat
storage, low insulin sensitivity, and impaired glucose tolerance. In
contrast, S2 is insulin sensitive despite being obese [6]. This
observation was particularly interesting since these two lines were
derived from one parental line that was divided into two sub-lines
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only after four generations of inbreeding. Therefore, these two lines
are genetically highly similar, and the remaining genetic diversity is
responsible for phenotypic differences. To identify genetic loci
accounting for the observed obesity, and glucose homeostasis in S1
mice, we performed a quantitative trait locus (QTL) mapping study in
an advanced intercross line (AIL) which was generated from an initial
cross between the BFMI861 lines S1 and S2. In this study, all AIL mice
were challenged with a high-fat, high-carbohydrate diet.

MATERIAL AND METHODS
Mouse population
We used male mice of the parental mouse lines BFMI861-S1 (S1) and
BFMI861-S2 (S2) and generation 10 of an AIL population. The AIL
population was generated from an initial cross between a BFMI861-S1
(S1) male and a BFMI861-S2 (S2) female followed by repeated random
mating in every generation. For randomization of mating pairs, the
program RandoMate [7] was used. The BFMI861 lines S1 and S2 were
generated as described in Heise et al. [6].

Animal husbandry
All experimental treatments of mice were approved by the German Animal
Welfare Authorities (approval no. G0235/17). Mice were kept under conven-
tional conditions with a 12:12 h light–dark cycle (lights on at 0600 h) and at a
temperature of 22 ± 2 °C. Mice had ad libitum access to food and water.

Experiment and phenotyping
Data from parental strains S1 and S2 were collected at 20 weeks on a
standard diet containing 16.7 MJ/kg of metabolizable energy, 11% from
fat, 26% from protein, and 53% from carbohydrates (V1534-000, ssniff EF R/
M; Ssniff Spezialdiäten GmbH, Soest, Germany) and blood glucose
was measured at 25 weeks after 5 weeks exposure to a high-fat, high-
carbohydrate diet containing 21.9 MJ/kg of metabolizable energy, 28%
from fat, 20% from protein and 40% from carbohydrates [8].
To emphasize the difference in glucose homeostasis, all AIL animals were

challenged with a dietary regime that provides a gluco-lipotoxic environment
for the β-cells and thereby provokes differences in β-cell resilience [9]. This
dietary regime challenge was undertaken to provoke differences in the
phenotypes studied. Until the age of 20 weeks, AIL mice were fed the rodent
standard diet. In weeks 21 and 22, mice were fed a high-fat, low-carbohydrate
diet, containing 16.9MJ/kg of metabolizable energy, 34% from fat, 19% from
protein, and 47% from carbohydrates (C1057; Altromin Spezialfutter GmbH &
Co. KG, Lage, Germany) to increase obesity but to protect β-cells. Afterward,
animals were fed for 3 weeks a high-fat, high-carbohydrate diet containing
21.9MJ/kg of metabolizable energy, 28% from fat, 20% from protein, and 40%
from carbohydrates [8] to challenge β-cells with carbohydrates and thereby
increase differences in glucose metabolism.
AIL mice were phenotyped between the age of 3 (after weaning) and

25 weeks. Body mass was recorded weekly. To investigate glucose metabolism,
an oral glucose tolerance test (oGTT) was performed in week 18 and an
intraperitoneal insulin tolerance test (ITT) in week 20 as described before [6].
The area under the curve (AUC) for blood glucose concentration of oGTT and
ITT was calculated. At 25 weeks, final blood glucose concentration was
recorded after fasting for two hours. Afterward, mice were anesthetized with
isoflurane and sacrificed [10]. Gonadal adipose tissue (GonAT), subcutaneous
adipose tissue, liver, and skeletal muscle (quadriceps) were dissected and
weighed. Tissues were collected in liquid nitrogen and stored at −80 °C.
Protein content and triglycerides of homogenized liver samples were
determined as described in Hesse et al. [11].
Outliers, defined as individuals who have a measurement that deviates

from the population mean by more than four standard deviations (SD),
were removed from the data. Pearson’s correlation coefficients were
calculated between normal distributed traits. For non-normal distributed
traits, Spearman’s correlation coefficients were calculated.

Genotyping
Out of the 397 males that were phenotyped, selective genotyping was
performed; 200 mice representing the two tails of the phenotypic
distributions of gonadal adipose tissue weight and liver weight were
selected for genotyping with the Giga Mouse Universal Genotyping Array
(GigaMUGA; Illumina, San Diego, CA, USA) [12]. Genotyping was done at
Neogen GeneSeek (Lincoln, NE, USA). Due to high genetic similarity of the

parental lines S1 and S2 of the AIL population, only 5215 out of 143,259
SNPs on the array were informative and passed the quality control
(supplementary Fig. 1, supplementary File 1).
Remaining 197 males of the AIL population were genotyped for 7 top

markers. For these markers, KASP genotyping assays were developed as
described previously [13] (supplementary File 2). The additional animals
were genotyped to counteract any bias in the estimates of allele effect
sizes introduced by selective genotyping.

QTL mapping
QTL mapping was performed in two steps: First, a QTL scan was performed
using the 200 males that were genotyped with the GigaMUGA Array.
Afterward, a final QTL scan was performed including all animals
(genotyped by GigaMUGA and KASP).
Covariates (subfamily and litter size) were investigated for a significant

influence on each phenotype. Covariate analysis showed that litter size
significantly influenced liver weight (p < 0.02), as such, litter size was added
as a covariate to the model when QTL mapping liver weight. No other
significant covariates were found. Using pedigree information of the AIL
population, we tested the sub-family effect on the phenotype, but no
significant influence was found (code available upon request).
To confirm that QTL mapping models are valid, residuals of the models

were tested for normality using a Shapiro-Wilk test. If residuals were found
to not be normally distributed, a nonparametric Kruskal–Wallis one-way
analysis of variance was performed to validate the top marker.
The number of independent statistical tests was estimated by simpleM

[14] which determined the number of independent tests to be 849
(window size = 820, mEff = 849). Afterwards Bonferroni correction for
multiple testing correction [15] was performed using the number of
independent SNPs as determined by simpleM. P values were converted to
LOD scores, using LOD=−log10(p value). LOD scores above 4.9 and 4.2
were deemed to be genome-wide highly significant and significant,
respectively. The 95% confidence interval of a QTL was determined by a
1.5 LOD drop from the top SNP position [16]. Start and end positions
were defined as the first SNP upstream or downstream of the 1.5 LOD-
drop confidence interval.

Causal modeling
In case of an overlapping QTL between multiple traits, we applied pairwise
causal modeling as previously described [17, 18]. In short, when a common
QTL is found for two (or more traits), we model the effect of the QTL on these
traits in a pairwise manner. Causal modeling was performed by comparing the
independent model (QTL directly affects both T1 and T2) with the causal/
reactive model (QTL directly affects T1 which in turn affects T2). Of course, it
can happen that none of the models fit the data satisfactory, we then assume
causality is undetermined. Statistical models used for causal modeling are
described in more detail in supplementary File 3.
Direct QTL effects are defined as caused by a QTL which directly affects

the variability of both traits (independent model fits best, QTL directly
affects T1 and T2). Indirect effects were defined as effects on a trait (T1)
caused by a QTL through another trait (T2) (causal model fits best). In this
case, the QTL is defined as having a direct effect on T2, and an indirect
effect on T1. Causal modeling to determine direct and indirect effects of
QTL on traits was performed for GonAT weight, liver weight, and blood
glucose concentration on Gatlgq and for GonAT weight and blood
glucose concentration on Gatq1.

Whole-genome sequencing
The two parental lines of the AIL (S1 and S2) were paired-end sequenced using
the “Illumina HiSeq” (Illumina) platform. Obtained DNA reads were trimmed
and aligned to the mouse genome (MM10, GRCm38.p3), sequence variants
were called using BCFtools and annotated using the Ensembl Variant Effect
Predictor (VEP) [19, 20]. VEP provided information on the position of SNPs
within known motifs such as promoters, regulatory sites, and protein domains.
DNA sequencing data were deposited at the NCBI Sequence Read Archive
under BioProject ID: PRJNA717237.

Gene expression analysis
RNA was isolated from gonadal adipose tissue (S1: n= 7, S2: n= 8), liver
(S1: n= 7, S2: n= 8) and skeletal muscle (S1: n= 7, S2: n= 8) of males of
the parental lines S1 and S2 at 10 weeks. Pancreatic islets (S1: n= 6, S2:
n= 6) were isolated as described in Gotoh et al. [21] and RNA was
extracted as described [10]. Gene expression was measured with the

M. Delpero et al.

308

International Journal of Obesity (2022) 46:307 – 315



Clariom S assay for mouse (Thermo Fisher Scientific) using service (ATLAS
Biolabs, Berlin, Germany). The intensity values of the arrays were
transformed to the logarithm of base 2 and quantile normalized for each
tissue separately. To test for expression differences between S1 and S2
mice, t-tests were performed for each probe on the array in each tissue.
Benjamini-Hochberg correction was applied for multiple testing. R was
used for statistical analysis and graphical presentation [22]. Quantitative
real-time PCR was performed as described in Heise et al. [6]. Relative
transcript amounts were calculated using the relative quantification
method (ddCT-method) [23]. Gene-specific primers are available in
supplementary File 4.

Candidate gene prioritization
Genomic DNA sequences of all protein-coding positional candidate genes
were downloaded using bioMART [24]. To include regulatory regions such as
promoters, we considered additional 1000 base pairs from the start and end
position of each gene. Monomorphic genes without sequence variants
between S1 and S2 were removed from the list of positional candidate genes.
All other genes were scored for potential functional effects of sequence
variants, gene expression differences between S1 and S2 in gonadal adipose
tissue and liver, and their contribution to KEGG pathways [25]. Coding
sequence variants leading to stop gain/stop loss codons and missense
mutations located in functional protein domains were awarded 3 points to
the gene score. A missense variant with either a deleterious or a tolerated SIFT
(Sorting Intolerant From Tolerant) value obtained 3 or 1 point, respectively.
Non-coding variants were scored based on their location in potential
functional sites. If a non-coding variant was located in the promoter or in a
splice site, 3 points were awarded; if located in untranslated regions (UTRs),
enhancers, or CTCF binding sites (involved in 3D structure of chromatin) 1
point was awarded. Genes differentially expressed in at least one tissue were
awarded 2 points. Genes annotated in relevant KEGG metabolic pathways
were awarded 1 point. Genes in KEGG pathways were downloaded using the
R package “StarBioTrek” [26]. To find further evidence for potential causality,
the highest scored candidate genes were screened for metabolic processes or
diseases using Gene Ontology, public literature, and databases such as Mouse
Genome Informatics and the International Mouse Phenotyping Consortium.

RESULTS
Response of parental lines S1 and S2, and AIL males to
high-fat, high-carbohydrate diet
According to SNP chip data (GigaMuga), S1 and S2 animals are
96.4% genetically identical (supplementary Fig. 1b). However, with a
standard diet S1 males had significantly higher body weight (p <
0.001, n= 10) and higher liver weight (p < 0.001, n= 10) compared
to S2 males at 20 weeks of age (Fig. 1). To challenge the glucose
homeostasis, we fed 20 weeks-old S1 and S2 mice a high-fat, high-
carbohydrate diet for 5 weeks and observed extreme high blood
glucose concentration in S1 males (369 ± 54mg/dl) compared to S2
males (178 ± 31 mg/dl) (Fig. 1). To elucidate the genetic impact on
the response to this challenge the AIL population was exposed to a
gluco-lipotoxic environment provoking differences in β-cell resi-
lience [9]. Therefore, the diet was switched at 20 weeks from a
standard diet to a lipotoxic high-fat, low-carbohydrate diet (two
weeks) to increase obesity, followed by a gluco-lipotoxic high-fat,
high-carbohydrate diet for additional three weeks to challenge
β-cells. At 25 weeks AIL mice showed an average blood glucose
concentration of 210 ± 79mg/dl. In addition, gonadal adipose tissue
weight was 1.72 ± 0.69 g and liver weight was 3.07 ± 0.65 g on
average. Liver triglycerides/protein content was 124 ± 64 μg/μg,
and body weight was 47.17 ± 4.00 g on average (Fig. 1).

Correlation between traits
In metabolically healthy individuals of our AIL we would expect
high body weights associated with high adipose tissue weight,
unchanged liver weight, and normal glucose clearance. In contrast,
the correlation analysis showed no correlation of body weight with
gonadal adipose tissue weight (r= 0.02, p= 0.65), but a positive
correlation with liver weight (r= 0.65, p= 2.20E-16) and liver
triglycerides (r= 0.39, p= 1.94E−15) (Table 1) (Supplementary Fig.
2). Moreover, a negative correlation was found between gonadal

Fig. 1 Response of parental lines S1 and S2, and AIL males to high-fat, high-carbohydrate diet. GonAT, gonadal adipose tissue; BGc, blood
glucose concentration; ITT, insulin tolerance test; AUC, area under the curve; HFD-CHO, high-fat/low-carbohydrate diet; HFD+ CHO, high-fat/
high-carbohydrate diet.
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adipose tissue and liver weight (r=−0.47, p= 2.2E-16), and gonadal
adipose tissue weight and liver triglycerides (r=−0.33, p= 2.88E
−11). Low adipose tissue weight together with high body weight
and high liver weight was also associated with a large area under
the curve for the blood glucose concentration in the ITT (r=−0.41,
p= 2.2E−16) and high blood glucose concentration (r=−0.59, p=
2.2E-16). Consistent with the negative correlation coefficients for
adipose tissue weights and the other parameters, positive correla-
tions were found between liver weights and the same parameters
(Table 1) (supplementary Fig. 2).

QTL mapping
QTL mapping was performed for body weight, gonadal adipose tissue
weight, liver weight, liver triglycerides, and blood glucose concentra-
tion at the end of the experiment and for ITT AUC at 20 weeks before
the diet switch. The QTL analysis on selectively genotyped 200 AIL
males revealed significant loci on Chr 3, 15, 16, and 17 (supplemen-
tary Table 1). The follow-up analysis after KASP genotyping including
all 397 males confirmed all four QTL and provided true estimates for
the genetic effects (Table 2).
Three significant QTL for gonadal adipose tissue weight were

identified on Chr 17 (Gatlgq) at 25.25Mb (LOD= 7.3), Chr 3 (Gatq1)
at 98.19Mb (LOD= 6.3), and on Chr 15 (Gatq2) at 68.46Mb (LOD=
4.2). Interestingly, for these three QTL, the S1 allele always decreased
the amount of adipose tissue. Gatlgq had also an effect on liver
weight (LOD= 7.5) which could be caused by an increased hepatic
fat storage. Indeed, liver triglycerides show a significant effect on
Gatlgq based on genome-wide multiple testing correction when we
consider the selectively genotyping of the initial 200 selected
animals (LOD= 4.8). Mapping liver triglycerides using the whole
population there is still an effect (LOD= 2.4). However, this effect

does not reach the threshold for genome-wide significance (<0.05)
but is still suggestive (P < 0.1). Furthermore, Gatlgq and Gatq1
affected the blood glucose concentration (LOD Gatlgq = 8, LOD
Gatq1= 4.2). For Gatlgq the allele of the insulin-resistant S1 line was
responsible for low adipose tissue weight, elevated liver weight,
higher liver triglycerides, and high blood glucose concentration. The
S1-allele effects of the Gatlgq on gonadal adipose tissue weight and
liver weight and on gonadal adipose tissue weight and liver
triglycerides were in opposing direction, supporting the negative
correlation between the traits. In contrast, for Gatq1 the S1-QTL
allele decreased the adipose tissue weight, reduced the blood
glucose concentration (Table 2, Fig. 2b), and was associated with
faster glucose clearance in the ITT (LOD= 3.8).
A QTL for body weight was mapped on Chr 16 (Bwq26) at

11.12 Mb (LOD= 7.1). At this locus, the S1 allele was increasing
body weight (Table 2).
Since Gatlgq and Gatq1 showed pleiotropic effects on several

traits, causal modeling was performed. Causal modeling of Gatlgq
suggests direct effects on gonadal adipose tissue, liver weight, and
blood glucose concentration. Causal modeling of Gatq1 showed a
direct effect of Gatq1 on gonadal adipose tissue weight, which in
turn affects blood glucose concentration.

Candidate gene prioritization
The confidence intervals of the four significant QTL contain 534
protein-coding potential candidate genes. Sixty-two genes were
polymorphic between S1 and S2; 27 in Gatlgq, 27 in Gatq1, 4 in
Bwq26, 4 in Gatq2. Mutations in these genes were scored for
their potential functional effects on the quality or expression
level of the encoded protein according to the decision tree
(Fig. 3a). None of the genes carried a stop gain or stop loss

Table 1. Correlation coefficients between the collected traits in the AIL population.

Liver weight Liver triglycerides/protein BGc ITT AUC Body weight

(r and P value) (r and P value) (r and P value) (r and P value) (r and P value)

GonAT weight −0.47, 2.20E-16 −0.33, 2.88E-11 −0.59, 2.20E-16 −0.41, 2.20E-16 0.02, 0.65

Liver weight 0.55, 2.20E-16 0.71, 2.20E-16 0.27, 3.98E-08 0.65, 2.20E-16

Liver triglycerides/protein 0.45, 2.20E-16 0.28, 1.41E-08 0.39, 1.94E-15

BGc 0.34, 9.55E-13 0.31, 2.55E-10

ITT AUC 0.21, 2.56E-05

GonAT, gonadal adipose tissue; BGc, blood glucose concentration; ITT, insulin tolerance test; AUC, area under the curve.

Table 2. Position and effects of QTL identified in the AIL population of 397 mice.

Traits QTL confidence interval LOD(BH) Var % Mean S1 Δ Mean
S1-HET

Δ Mean
S1-S2

QTL name Chr StartPos TopPos StopPos

GonAT weight [g] Gatlgq 17 9 483 181 25 258 903 25 391 933 7.3 8.2 1.26 −0.54 −0.61

Liver weight [g] 17 9 483 181 25 258 903 25 391 933 7.5 8.3 3.32 0.26 0.43

BGc [mg/dl] 17 11 934 634 25 258 903 26 054 796 8 9 260 54 73

GonAT weight [g] Gatq1 3 95 763 020 98 196 163 100 780 367 6.3 6.4 1.49 −0.27 −0.47

BGc [mg/dl] 3 95 763 020 98 196 163 100 543 098 4.2 4.2 194 −13 −44

Body weight [g] Bwq26 16 3 892 297 11 120 784 21 355 904 7.1 7.2 48.28 1.73 3.15

GonAT weight [g] Gatq2 15 67 855 285 68 461 862 74 582 319 4.2 4.1 1.49 −0.23 −0.37

GonAT gonadal adipose tissue; BGc, blood glucose concentration; QTL quantitative trait locus; Chr chromosome number; StartPos, TopPos, and StopPos,
position of the start of the QTL confidence interval, position of the SNP with the highest LOD score, and position of the end of the QTL confidence interval in
base pairs, respectively; Positions are given according to the Mouse Genome Version MM10, GRCm38.p3. SNP, single-nucleotide polymorphism. The
confidence interval gives the 1.5 LOD drop region of the top SNP position. A LOD score above 4.9 was deemed to be “genome-wide highly significant” and
above 4.2 was deemed “genome-wide significant”; BH, Bonferroni Benjamini–Hochberg correction; LOD, logarithm (base 10) of odds; Var %, percentage of
total variance explained; The Δ Mean columns show the phenotypic difference between homozygous S1 and heterozygous BFMI animals (S1-HET) and the
difference between homozygous S1 and S2 animals (S1–S2).
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Fig. 2 Significant QTL identified in the AIL population. LOD score profiles and effect plots for top SNPs of significant traits (n = 397) for A
Gatlgq, B Gatq1, C Bwq26, D Gatq2. Blue line - gonadal adipose tissue weight, black line – liver weight, red line - blood glucose concentration,
dark green line – body weight, light green line – liver triglycerides. QTL, quantitative trait locus; GonAT, gonadal adipose tissue; BGc, blood
glucose concentration; SNP, single-nucleotide polymorphism; Chr, chromosome number; HET, heterozygous.
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mutation. Nevertheless, different mutations influencing protein
sequence or gene regulation occurred (supplementary Table 2).
According to microarrays analysis, considering the 62 candidate
genes, we found 37 genes differentially expressed between S1
and S2 in the gonadal adipose tissue, 8 in the liver, 8 in
pancreatic islets, and 3 in skeletal muscle (Supplementary Files 5,
6, 7, and 8, respectively). Since correlation analysis of gene
expression data between all examined animals showed that
mice of the same mouse line clustered together only with gene
expression data of the gonadal adipose tissue (Fig. 3b), gonadal

adipose tissue is suggested as the main tissue contributing to
obesity and glucose homeostasis in the S1 line.
Genes with the highest and second-highest score in every QTL

confidence interval were regarded as top candidates (Table 3).
Differences in the expression of the top candidate genes for each QTL
were confirmed by quantitative real-time PCR in both gonadal
adipose tissue and liver (supplementary Fig. 3). Plg (plasminogen) and
Acat2 (acetyl-CoA acetyltransferase 2, cytosolic) are the top candidates
in Gatlgq. Plg was not differentially expressed but contains one
tolerated missense variant in the low-complexity region, one SNP in

Fig. 3 Prioritization of positional candidate genes and identification of the main causal tissue. A Decision tree for prioritization of
candidate genes located in a QTL region. Genes in a QTL region containing sequence variants between the parental lines S1 and S2 were
ranked according to the sum of scores based on the functional annotation of coding and non-coding variants, gene expression data, and
KEGG information. B Heatmap and dendrogram of microarrays gene expression data from four different tissues (gonadal adipose tissue,
skeletal muscle, pancreatic islets and liver) of the parental lines (S1 and S2).
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the promoter, and additional SNPs in enhancers and CTCF binding
sites in mice of the S1 line. Acat2 was lower expressed in gonadal
adipose tissue of S1 mice (p= 7.45E-06) and carries a deleterious
missense variant in the thiolase, N-terminal domain. In Gatq1 Fmo5
(flavin-containing monooxygenase 5) and Notch2 (notch homolog 2)
were prioritized. Fmo5 was lower expressed in gonadal adipose tissue
(p= 3.83E-03) and liver (9.11E-08) of S1 versus S2 mice. The Fmo5
gene in S1 mice carries one tolerated missense variant in the FMO-like
domain, SNPs in the promoter, and additional SNPs in enhancers and
untranslated regions. Notch2 (p= 1.29E-03) was higher expressed in
gonadal adipose tissue of S1 mice and carries one deleterious
missense variant located in the EGF-like domain plus SNPs in
untranslated regions in S1 mice. Trap1 (TNF receptor-associated
protein 1) and Rrn3 (RRN3 homolog, RNA polymerase I transcription
factor) ranked highest in Bwq26. Both candidate genes Trap1 (p=
5.50E-05) and Rrn3 (p= 2.05E-06) were lower expressed in gonadal
adipose tissue, and Rrn3was additionally significantly lower expressed
in the liver (p= 1.28E-06) of S1 mice. Both Trap1 and Rrn3 carry one
tolerated missense variant. For Gatq2 Trappc9 (trafficking protein
particle complex subunit 9) and Zfat (zinc finger and AT hook domain
containing) ranged as top candidates. Trappc9 was lower expressed in
S1 versus S2 mice in both gonadal adipose tissue (p= 5.89E-05) and
liver (p= 1.92E-04). Trappc9 possesses variants in UTRs, CTCF binding
sites, enhancer, and promoter. Zfat was higher expressed (p= 2.36E-
03) in gonadal adipose tissue of S1 mice and it carries one deleterious
missense variant in the low-complexity region in S1 mice.

DISCUSSION AND CONCLUSIONS
To better understand the differences in insulin sensitivity in two sub-
lines of the Berlin Fat Mouse independent of a major obesity QTL on
Chr 3 (jObes1) and to unravel the genetic architecture underlying the
observed aspects of the metabolic syndrome we investigated an
advanced intercross population of the BFMI861 mouse lines S1 and
S2. Besides being genetically closely related and sharing the known
obesity locus on Chr3 [5], the two parental mouse lines differ
extremely in their metabolic phenotype. The mouse line S1 showed
clear features of the metabolic syndrome while S2 was also obese,
but had normal glucose homeostasis even under a high-fat, high-
carbohydrate diet feeding. The extreme phenotypic data propose
the examined mouse lines as an excellent model for studying the
genetic determinants of traits of the metabolic syndrome. Due to
the random mixture of the genomes of the BFMI861-S1 and -S2
lines, the AIL individuals showed a wide range of phenotypes.
Different from expectations in metabolically healthy individuals,
we found no correlation between body weight and gonadal adipose
tissue weight and negative correlations between gonadal adipose
tissue weight and all other traits in AIL males, while liver weight was
positively correlated with all other traits. These findings indicate
ectopic fat storage in the liver which was indeed confirmed by the
assessment of hepatic triglycerides in our AIL. Hepatic fat storage is
also present in individuals of the S1 line [6]. Ectopic fat storage in the
liver instead of storage in the adipose tissue as the major fat storage
organ has been reported repeatedly as causal defect for later
impaired glucose clearance [27, 28]. Therefore, we suggest this shift
as the likely driver for impaired glucose homeostasis in our mouse
model. Gene expression data further supported the assumption of
impaired adipose tissue function being causal for the observed
phenotypes of the metabolic syndrome in S1 mice. For example, we
found distinguished clusters of differentially expressed genes in
gonadal adipose tissue between S1 and S2 animals but not in liver,
muscle, and pancreatic islets.
The overlap of QTL effects in some regions is consistent with

the correlations that we found between the affected traits. For
Gatlgq, the S1 allele reduces adipose tissue weight and increases
the liver weight and hepatic fat content. Moreover, by shifting fat
storage from adipose tissue to ectopic storage in the liver blood
glucose concentration is increased. In contrast, the S1 allele onTa
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Gatq1 contributes to lower adipose tissue weight, lower blood
glucose concentration, and increased insulin sensitivity.
To disentangle the direct and indirect genetic effects of the

different QTL, we performed causal modeling. Using causal inference,
we were able to provide evidence that out of the two QTL associated
with blood glucose concentration in our population, likely only Gatlgq
has a direct influence on blood glucose concentration. The second
QTL, Gatq1, influences blood glucose concentration indirectly through
the regulation of fat storage in adipose tissue, whose weight is
directly affected by this QTL. A possible explanation for the
discrepancy in the correlation of adipose tissue weight to blood
glucose concentration of the two QTL could be that a reduced
adipose tissue mass via the S1 allele of Gatlgq could indicate a shift
towards ectopic fat storage which is reflected in elevated liver weight
and liver triglycerides and thereby contributes to higher blood
glucose concentration. In contrast, Gatq1 and Gatq2 could harbor S1
alleles protecting against obesity resulting in lower adipose tissue
weight which for Gatq1 is accompanied by lower blood glucose
concentration. However, the overall phenotype of the insulin-resistant
S1 line appears to be driven mainly by the larger effects of Gatlgq.
These findings provide strong evidence for the importance of direct
genetic effects on adipose tissue, which indirectly contribute to the
etiology of impaired glucose homeostasis.
The AIL population used in this study has the advantage of having

a high mapping resolution with respect to the call of positional
candidate genes. Because the examined AIL accumulates chromoso-
mal recombination over ten generations, the physical length of the
QTL regions is relatively short and thereby the number of positional
candidate genes low. In our study, the number of positional candidate
genes could be further reduced because long chromosomal stretches
are identical between the closely related mouse lines S1 and S2 and,
therefore, genes in these regions are not polymorphic and can be
excluded from further studies, resulting in 62 out of 534 protein-
coding genes as positional candidate genes.
In our prioritization approach, Plg and Acat2 are the top

candidate genes for direct effects of Gatlgq on gonadal adipose
tissue weight, liver weight, and blood glucose concentration. Plg
possesses one tolerated missense variant in the low-complexity
region of the protein in S1 mice, a region that is significant for the
functionality of this protein [29]. Plg-knockout mice have lower
amounts of adipose tissue [30]. During cell differentiation
plasminogen binding is increasing in 3T3 cells and isolated
adipocytes suggesting a role in adipose tissue development [31].
In humans, Plg was reported to be relevant for the development of
insulin resistance and diabetes [32–34]. Thus, Plg could be causal for
the impaired glucose homeostasis by modifying adipose tissue in
S1 mice. Acat2 is involved in the biosynthesis of fatty acids and
cholesterol and is mainly expressed in the liver and intestine [35]. In
S1 mice, Acat2 carries one deleterious mutation that leads to a
Valine/Methionine substitution at amino acid position 216 located
in the conserved N-terminal domain. This domain is important for
the thiolase activity and a mutation in this region could have effects
on the protein function. Thus, Acat2 is a good candidate for the
observed hepatic fat storage in S1 mice.
Fmo5 and Notch2 were identified as the most likely candidate

genes in Gatq1 affecting gonadal adipose tissue weight directly. S1
mice carry two SNPs in the promoter of Fmo5. According to the
Ensembl database one SNP affects a transcription factor binding site
for Elf5. The other SNP affects two transcription factor binding sites;
one for Rxra and one for multiple transcription factors such as Nr2f6,
Rara, Rarb, and Rarg. According to Bgee database, all identified
transcription factors that potentially bind to the promoter region of
Fmo5 are expressed in adipose tissue. The identified SNPs in the
promoter of Fmo5 could therefore be responsible for its lower
expression in the gonadal adipose tissue and liver of S1 mice.
Consistent with the QTL allele effect of S1 mice leading to lower
adipose tissue weight and lower blood glucose concentration, Fmo5
knockout mice store less fat in gonadal adipose tissue and have

lower blood glucose concentration at 20 weeks [36]. Notch2 is
important for developmental processes by controlling cell fate
decisions [37] and lipid storage [38]. Notch2 has been linked to type
2 diabetes in humans [39]. S1 mice carry a deleterious mutation
leading to a Glycine/Serine substitution at amino acid position 136.
This mutation resides in the EGF-like domain which is important for
Notch2 activation [40] and could be causal for the low-fat deposition
in gonadal adipose tissue found in S1 mice.
Based on the findings of this genetic study, additional research is

necessary to further validate the suggested candidate genes. This
could be done by knockout of certain genes, or through continuation
of the AIL to reduce the physical length of QTL regions and thereby
the number of candidate genes. It is important to note that, although
we have prioritized candidate genes using all available information,
we cannot completely rule out that one of the polymorphic genes or
even an unannotated gene was wrongly discarded.
The human metabolic syndrome is a complex disease with many

actors, many still unknown, contributing to its expression. The
identification of new potential partners in the network by QTL analysis
and subsequent data analysis could help to replenish the gaps.
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