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Tumour heterogeneity is an obstacle to effective breast cancer diagnosis

and therapy. DNA methylation is an important regulator of gene expres-

sion, thus characterizing tumour heterogeneity by epigenetic features can

be clinically informative. In this study, we explored specific prognosis-sub-

types based on DNA methylation status using 669 breast cancers from the

TCGA database. Nine subgroups were distinguished by consensus cluster-

ing using 3869 CpGs that significantly influenced survival. The specific

DNA methylation patterns were reflected by different races, ages, tumour

stages, receptor status, histological types, metastasis status and prognosis.

Compared with the PAM50 subtypes, which use gene expression clustering,

DNA methylation subtypes were more elaborate and classified the Basal-

like subtype into two different prognosis-subgroups. Additionally, 1252

CpGs (corresponding to 888 genes) were identified as specific hyper/hy-

pomethylation sites for each specific subgroup. Finally, a prognosis model

based on Bayesian network classification was constructed and used to clas-

sify the test set into DNA methylation subgroups, which corresponded to

the classification results of the train set. These specific classifications by

DNA methylation can explain the heterogeneity of previous molecular sub-

groups in breast cancer and will help in the development of personalized

treatments for the new specific subtypes.

1. Introduction

Breast cancer is a highly complex and heterogeneous

disease with different molecular profiles, clinical

responses to therapeutic agents and prognoses (Perou

et al., 2000). Tumour heterogeneity has led to the vari-

ous subtypes of breast cancer, which have different sen-

sitivities to chemotherapy and prognoses (Tazaki et al.,

2013), highlighting the importance of precision/person-

alized medicine. Precision medicine aims to optimize the

effectiveness of disease prevention and treatment by tai-

loring personalized treatments based on an individual’s

specific genetic lesions, biomarkers, environment and

lifestyle (Reitz, 2016). Precision medicine has been

applied in clinical practice since the initial efforts to clas-

sify disease subtypes and administer specific treatments

based on diagnoses. Precision medicine has been studied

in a variety of diseases including Alzheimer’s disease

(Reitz, 2016), Parkinson’s disease (Bu et al., 2016) and

cancer (Arnedos et al., 2015; Prados et al., 2015).
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Decades ago, molecular differences in breast cancers

were studied to improve treatments and make up for

the lack of histological types ofeast breast cancer.

Microarray-based gene expression profiling of breast

tumours identified at least five major intrinsic subtypes:

Basal-like, Luminal A, Luminal B, Human epidermal

growth factor receptor 2-positive/estrogen receptor-

negative (HER2+/ER�) and Normal Breast-like (Prat

and Perou, 2011). Currently, many research institutions

are dedicated to studying breast cancer molecular sub-

types. Chen et al. (2015) studied 187 young breast can-

cer patients (< 40 years old) by univariate and

multivariate analyses and proved, consistent with previ-

ous studies, that molecular subtypes are independent

prognostic factors for young breast cancer patients,

and that triple negative breast cancer has the highest

risk of recurrence and death. Using hierarchical cluster-

ing, Sorlie et al. (2001) identified at least two sub-

groups of ER+ breast tumours that showed differences

in gene expression profiles and prognosis. In addition,

they identified a luminal subgroup that had better

prognosis. Curtis et al. (2012) classified breast tumours

into 10 IntClust subclasses by combining gene expres-

sion and copy number data from 2000 breast tumours.

Although genetic alterations such as mutations, rear-

rangements and copy number changes are known to

influence carcinogenesis, epigenetic alterations includ-

ing DNA methylation also play an important role in

cancer development. DNA methylation occurs when

DNA is modified by the addition of a methyl group to

the 50 position of a cytosine preceding a guanosine

(CpG). CpGs are often found at high densities in

‘CpG islands’, particularly within the promoter regions

of genes. Hypermethylation of CpG islands can result

in the transcriptional silencing of tumour suppressor

genes in cancer, whereas CpG hypomethylation may

lead to oncogene activation (Antequera and Bird,

1993). Fleischer et al. demonstrated that epigenetic

changes are present in ductal carcinoma in situ

(DCIS), the earliest stage of breast cancer progression,

providing evidence for the possible use of DNA

methylation-based markers in the clinic and highlight-

ing the importance of epigenetic changes in cancer

(Fleischer et al., 2014). Moreover, DNA methylation

profiling beyond promoters could be a potential clini-

cal tool for characterizing the tumour microenviron-

ment and cell typing within tumours, including breast

cancer (Jeschke et al., 2015). This assay also has the

potential to evaluate tumour immune responses and

improve the diagnosis and treatment of breast and

other cancers (Jeschke et al., 2017). A previous study

showed that BRCA1 promoter methylation was corre-

lated with clinical breast cancer stages (Chen et al.,

2009). Thus, DNA methylation status can be used as a

marker for breast cancer molecular subtyping. In 2017,

Thomas et al. presented a DNA methylation signature

(SAM40) that includes 41 significantly differentially

methylated genes, and showed that it could segregate

Luminal A patients into two subgroups: a good prog-

nosis group and a poor prognosis group (Fleischer

et al., 2017). Ronneberg et al. (2011) identified three

major clusterings of breast tumours based on methyla-

tion profiles, one primarily consisting of tumours of

myoepithelial origin and two comprising tumours of

mainly luminal epithelial origin. Holm et al. (2010)

found that the Basal-like, Luminal A and Luminal B

breast cancer molecular subtypes harbour specific

methylation profiles by analysing the methylation sta-

tus of 807 cancer-related genes in 189 fresh frozen pri-

mary breast tumours and four normal breast tissue

samples using an array-based methylation assay. Fur-

thermore, they also integrated different types of gen-

ome-wide data, not limited to methylation, to improve

the characterization of breast cancers (Holm et al.,

2016). Conway et al. (2014) obtained four DNA

methylation subtypes of breast cancer by DNA methy-

lation profiling; however, their classification may not

be detailed enough, and the specific sites associated

with each category are unclear.

In this study, we addressed breast tumour classifica-

tion by identifying specific prognosis-subtypes based on

DNA methylation profiles of breast cancer from The

Cancer Genome Atlas (TCGA) database (Tomczak

et al., 2015). This classification system may help find new

breast cancer markers or molecular subtypes to more

accurately subdivide breast cancer patients. Further-

more, our classification system provides guidance for

clinicians regarding diagnoses and personalized treat-

ments by identifying differences in prognoses for each

epigenetic subtype. Additionally, our criteria will pro-

vide more targets for breast cancer precision medicine by

finding specific molecular markers for each subtype.

2. Materials and methods

2.1. Data pre-processing and the initial screening

of DNA methylation loci in breast cancer

Breast cancer DNA methylation data generated with

the Illumina Infinium HumanMethylation450 Bead-

Chip array were downloaded from the TCGA data por-

tal (Cancer Genome Atlas Research et al., 2013). The

methylation level of each probe was represented by the

b-value, which ranges from 0 to 1, corresponding to

unmethylated and fully methylated, respectively. Probes

with missing data in more than 70% of the samples
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were removed. The remaining probes with not available

(NAs) were imputed using the k-nearest neighbours

(knn) imputation procedure. The ComBat algorithm in

sva R package (Leek et al., 2012) was used to remove

batch effects by integrating all the DNA methylation

array data and incorporating batch and patient ID

information. Unstable genomic sites, including CpGs in

sex chromosomes and single nucleotide polymorphisms,

were removed. Because DNA methylation in promoter

regions strongly influences gene expression, we selected

CpGs in promotor regions. Promoter regions were

defined as 2 kb upstream to 0.5 kb downstream from

transcription start sites. Finally, we selected samples

that had gene expression profiles. In total, 669 breast

tumours were used for the analysis.

Next, we separated the dataset into two cohorts: a

train set and a test set. The criteria for these grouping

were as follows: (a) the samples were randomly divided

into two groups; (b) age distribution, staging, follow-up

time and death ratio were similar in the two groups. Clin-

ical information was missing for 11 samples; these sam-

ples were randomly assigned to the train and test sets.

2.2. Data pre-processing of the breast cancer

expression dataset

RNA-SeqV2 level 3 expression data, quantified as

RNA-Seq by expectation-maximization (RSEM) were

downloaded from the TCGA database. The expression

data were processed as follows: zero-valued entries

were replaced by the minimal positive value of the

dataset; the expression values were logarithmically

transformed (base 2) to normalize the data; and batch

effects were processed using ComBat function in sva

package. Finally, we selected 669 breast tumour sam-

ples with both expression profiles and DNA methyla-

tion profiles for final analysis.

2.3. Determining classification features by COX

proportional risk regression models

The aim of this study was to obtain prognostically deter-

minant breast cancer molecular subtypes. Thus, CpG

sites that significantly influenced survival were used as

classification features. First, univariate COX propor-

tional risk regression models were constructed with

methylation levels of each CpG site, age, stage, ER sta-

tus and survival data of the cases. Then, the significant

CpGs obtained from univariate COX proportional risk

regression models were introduced into multivariate

COX proportional risk regression models, using age and

stage as covariates, which were also significant in the

univariate models. Finally, the CpG sites that were still

significant were used as classification features. COX pro-

portional hazard models were fitted with methylation

levels of CpGs using the coxph function in survival pack-

age R, with demographic and clinical attributes (age and

stage) as covariates in the multivariate analysis. For each

CpG i, the multivariate COX proportional risk regres-

sion model formula was defined as follows:

h t; xð Þi ¼ h0 tð Þ exp bmethymethyi þ bageageþ bstagestage
� �

ð1Þ
where methyi was the vector of the methylation level of

CpG i in samples, and age and stage represent the vec-

tors of age and stage of the cases, respectively, and

bmethy, bage and bstage were the regression coefficients.

The P-values for the COX regression coefficients were

adjusted using the Benjamini–Hochberg false-discovery

rate for multiple comparisons.

2.4. Consensus clustering to obtain molecular

subtypes associated with breast cancer

prognosis

Consensus clustering was performed using the Concen-

susClusterPlus package in R (Wilkerson and Hayes,

2010) to determine subgroups of breast tumours based

on the most variable CpG sites. The algorithm began by

subsampling a proportion of items and features from

the data matrix, where each subsample was partitioned

into up to k groups by a user-specified clustering algo-

rithm: k-means, hierarchical clustering or a custom

algorithm. This process was repeated for a user-specified

number of repetitions, providing a method of represent-

ing the consensus across multiple runs of the clustering

algorithm and assessing the stability of the discovered

clustering. Pairwise consensus values, defined as ‘the

proportion of clustering runs in which two items are

grouped together’, were calculated and stored in a con-

sensus matrix for each k. Then, for each k, a final

agglomerative hierarchical consensus clustering using a

distance of 1 – consensus values was completed and

pruned to k groups, which were called consensus cluster-

ing. This algorithm determined ‘consensus’ clustering by

measuring the stability of clustering results from the

application of a given clustering method to random sub-

sets of data. In each iteration, 80% of the tumours were

sampled, and the k-means algorithm, with the Euclidean

squared distance metric was used:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

xk � ykð Þ2
vuut ð2Þ
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with k = 2 to k = 20 groups; these results were compiled

over 100 iterations. After executing ConsensusClus-

terPlus, we obtained the cluster consensus and item-

consensus results. The graphical output results included

heatmaps of the consensus matrices, which displayed

the clustering results, consensus cumulative distribution

function (CDF) plot and delta area plot, which allowed

us to determine an approximate number of clusters. The

criteria to determine the number of clusters we consid-

ered, were that the consistency within the cluster was

relatively high, the coefficient of variation was relatively

low, and there was no appreciable increase in the area

under the CDF curve. The coefficient of variation was

calculated according to the following formula:

CV = (SD/MN)*100%, where SD represents the stan-

dard deviation and MN represents the average of sam-

ples. The category number was selected as the area

under the CDF curve and showed no significant change.

In fact, for the purpose of fine classification of breast

cancer, we preferred to choose a larger number of cate-

gories. The heatmap corresponding to the consensus

clustering was generated by pheatmap R package.

2.5. Survival and clinical characteristics analyses

Kaplan–Meier plots were used to illustrate overall sur-

vival among breast cancer subgroups defined by DNA

methylation profiles. The log-rank test was used to

evaluate the significance differences among the clus-

ters. Survival analyses were performed using the sur-

vival package in R. Associations between clinical and

biological characteristics with DNA methylation clus-

tering were analysed using the chi-square test. All tests

were two-sided and for all statistical tests, P < 0.05

was considered significant unless otherwise noted.

2.6. Specific DNA methylation markers for breast

cancer subgroups

In this analysis, a quantitative approach for quantitative

differentially methylated regions (QDMRs), previously

developed to quantify methylation differences and iden-

tify DMRs from genome-wide methylation profiles by

adapting Shannon entropy (Zhang et al., 2011), was

used to find the specific DNA methylation CpGs that

were specifically hypermethylated or hypomethylated

within particular breast tumour subgroups as described

above. The quantification of DNA methylation differ-

ence across large numbers of samples and the identifica-

tion of sample specificity play important roles in

genomic functional analyses. DMRs with different

methylation status among multiple samples were

regarded as possible epigenetic functional regions

involved in transcriptional regulation. Thus, the identifi-

cation of DMRs among multiple samples provided a

more comprehensive survey for this study. With the

rapid development of high-throughput detection tech-

nology, there have been considerable efforts made to

identify DMRs from methylation profiles. However, the

development of DNA methylation measurements poses

significant challenges for concurrent DMR methods.

Shannon entropy, a quantitative measure of differences

and uncertainty in datasets, has been widely applied in

quantitative biology, such as identifying potential drug

targets and tissue-specific genes. To quantify methyla-

tion differences and further identify DMRs across mul-

tiple samples, Zhang et al. (2011) adapted the Shannon

entropy model and developed an improved approach,

termed the quantitative differentially methylated region

(QDMR). QDMR is an effective tool for quantifying

methylation differences and identifying DMRs across

multiple samples. This approach can give a reasonable

quantitative measure of methylation differences across

multiple samples as well. We used the threshold that

was determined by QDMR from the methylation proba-

bility model. QDMR can also measure the sample speci-

ficity of each DMR. For each DMR r, the entropy HQ

represents the methylation difference across all samples.

For each sample S, the entropy HQ=S is the difference

across samples that do not include sample S. Thus, the

contribution of sample S to the whole methylation dif-

ference can be reflected by the entropy difference as:

DHr=S ¼ HQ=S �HQ ð3Þ
The categorical sample-specificity CSr/s can be

defined as:

CSr=S ¼
�
DHr=S � signr;S;DHr;S [ 0

0; DHr=S � 0

�
ð4Þ

where signr,s is the sign of the difference between

methylation level mr/s in sample S and the median

methylation level of vector mr in region r, as described

by Zhang et al. (2011). Thus, the subgroup with the

maximal absolute of the categorical sample-specificity

CSr/s was determined as the specific subgroup corre-

sponding to the particular CpG site.

2.7. Constructing the prognosis model based on

Bayesian network classification and the model

test

To validate specific CpG sites, a supervised Bayesian net-

work classification model was constructed using the train

set. The samples in the test set were assigned to the corre-

sponding subgroups using this classification model. An

1050 Molecular Oncology 12 (2018) 1047–1060 ª 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Breast cancer prognosis-subtype distinctions S. Zhang et al.



additional external validation dataset from Gene Expres-

sion Omnibus (GEO, accession number GSE72251;

Edgar et al., 2002), which included 119 breast cancer

samples, was also included in the test of the prognosis

model. All of the samples in the external validation data-

set were assigned a class label using the prognosis model

like the test set in TCGA. The performance of the model

was evaluated using the accuracy rate. The receiver oper-

ating characteristic curve (ROC) was obtained using the

pROC package in the R programme.

2.8. Functional classification of gene sets

g: Profiler (Reimand et al., 2016), a web server for

functional interpretation of gene lists, was used to per-

form gene enrichment analysis of Gene Ontology, Bio-

logical pathways, Regulatory motifs in DNA and

Protein databases of genes.

3. Results

3.1. DNA methylation features for classification

based on prognosis

The DNA methylation profiles of breast cancers from

the TCGA database were used to cluster breast cancer

prognostic molecular subgroups. First, a series of pre-

processing steps were performed, including adapting

missing values, removing batch effects, removing sex

chromosomes and single nucleotide polymorphisms,

and extracting CpGs in promoter regions (Section 2).

The samples were then separated into two cohorts: the

train and test sets (Section 2). For each of the CpG

sites in the train set (which contained 335 tumour sam-

ples), a univariate COX proportional risk regression

model was constructed with methylation levels of the

CpGs and survival information of cases. Through this

analysis, 6760 CpG sites were significant (P < 0.05), i.e.

influenced patient survival. Age (P = 0.0052) and stage

(P = 0.0008) were also significant factors. Next, the sig-

nificant CpGs were introduced into multivariate COX

proportional risk regression models using age and stage

as covariates to find independent prognostic factors.

Ultimately, 3869 CpG sites were significant and were

used as the final classification features (Table S1).

3.2. Consensus clustering of breast tumours

identified distinct DNA methylation prognosis

subgroups

Next, consensus clustering based on the b-values of

the 3869 independent prognosis-associated CpG sites

was performed to obtain distinct DNA methylation

prognostic molecular subtypes of breast cancer. To

determine the appropriate number of classes, the aver-

age cluster consensus and the coefficient of variation

among clusters were calculated for each category

number. The area under the CDF curve began to sta-

bilize after 10 categories (Fig. 1A). As can be seen

from the average cluster consensus curve, 10 cate-

gories led the curve to an upward inflection point

(Fig. 1B) and the coefficient of variation of 10 cate-

gories was within an acceptable range (Fig. 1B).

Therefore, we intended to use 10 as the appropriate

number of categories for further analysis. Addition-

ally, the consensus matrix was naturally a better visu-

alization tool to help assess the clustering’

composition and number. We associated a colour gra-

dient of 0–1, with white corresponding to 0 and dark

blue corresponding to 1, and assumed that the matrix

is arranged so that items belonging to the same clus-

ter are adjacent to each other. In this arrangement, a

matrix corresponding to a perfect consensus will show

a colour-coded heatmap characterized by blue blocks

along the diagonal on a white background. The col-

our-coded heatmap corresponding to the consensus

matrix obtained by applying consensus clustering to

these cases is shown in Fig. 2A, and represents the

consensus for k = 10, which displays a well-defined

10-block structure. The heatmap corresponding to the

dendrogram was generated using the pheatmap func-

tion with DNA methylation classification, PAM50

classification, estrogen receptor, progesterone receptor,

HER2 receptor status, TNM stages, clinicopathologi-

cal stages and histological type as the annotations

(Fig. 2B). Due to the small sample size of cluster 10

(only three samples included), we regarded these as

outliers and did not consider them in the subsequent

analysis.

Next, we compared the prognosis differences among

the remaining nine clusters. Kaplan–Meier survival

analysis showed that the outcome differences among

these clusters were significant (Fig. 3A). We also per-

formed a log-rank test between each pair of subgroups

and found that the differential prognoses between clus-

ters 2 and 7, clusters 4 and 7, clusters 6 and 7, clusters

2 and 8, clusters 3 and 8, clusters 4 and 8, clusters 5

and 8, and clusters 6 and 8 were all significant.

The PAM50 subtypes, also known as ‘intrinsic’ sub-

types of breast cancer (Basal-like, HER2-enriched,

Luminal A, Luminal B and Normal Breast-like), have

been identified and intensively studied (Perou et al.,

2000). These groups show critical differences in inci-

dence (Carey et al., 2006), survival (Cheang et al.,

2008) and response to treatment (Prat et al., 2010).

Some of the DNA methylation subgroups (e.g. clusters
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3, 8 and 9) reflected different PAM50 (Cancer Genome

Atlas, 2012) subtypes (Fig. 3C), which indicated that

patients in different PAM50 subtypes share the same

DNA methylation characteristics. Hence, DNA methy-

lation can serve as a commendable biomarker for

breast cancer classification. Conversely, different DNA

methylation characteristics were also found in the

same PAM50 subtype (Fig. 3D). For example, clusters

4 and 7, which have different DNA methylation pro-

files, were two distinct subgroups of the Basal-like sub-

type; and clusters 1 and 5 contained the highest

proportion of Luminal A subtype. These results indi-

cated that DNA methylation status represents a more

elaborate classification analysis for breast cancers. This

is a more detailed explanation of the heterogeneity of

breast cancer. Additionally, sometimes the same DNA

methylation cluster was classified into different sub-

types (e.g. cluster 2 was classified into Luminal A and

Luminal B). This might explain the reason for the fail-

ure of some therapeutic options, as different therapeu-

tic options are considered for different subtypes,

although they may have the same underlying aetiology,

such as DNA methylation abnormalities.

3.3. Characterizing different characteristics of

DNA methylation clustering

Next, we wanted to test whether our DNA methyla-

tion subgroups of breast tumours subdivided cases

more accurately than the PAM50 classification. In

other words, we wanted to estimate whether our DNA

methylation clustering corresponding to the same

PAM50 subtype had different characteristics including

methylation level, pathological parameters and clinical

outcome. First, we analysed the DNA methylation

clustering which represented enrichment in the same

PAM50 subtype.

The methylation levels of the Basal-like subgroups,

clusters 4 and 7, were clearly distinct (Fig. 2B).

Moreover, the 5-year survival rate of the two clus-

ters was significantly different (Fig. S1A). This sug-

gested that patients in the same PAM50 subtype had

difference prognoses, albeit that all their prognoses

were poor, consistent with previous studies that

showed that a poor prognosis for the Basal-like sub-

type. We conducted the same survival analyses for

Luminal A subgroups (clusters 1, 2 and 5) and

Luminal B subgroups (clusters 2 and 6); no signifi-

cant difference between them was found. For the

Luminal A subgroups, clusters 1, 2 and 5, we found

that the histological types were significantly different

between the three subgroups (P = 0.015, chi-square

test), though they did not have any significant differ-

ence in prognosis. For the Luminal B subgroups,

race (P = 0.037), N stage (P = 0.005), pathological

stage (P = 0.036), progesterone receptor status

(P = 0.026) and presence of metastases (P = 0.028)

were significantly different between cluster 2 and

cluster 6.

The chi-square test was also used to analyse globally

the associations between clinical and biological charac-

teristics with DNA methylation clustering (Table 1).

The results showed that race, age, M stage, N stage,

pathological stage, ER status, PR status, HER2 status,

histological type, and whether there was a distant

metastasis were significantly different among the DNA

methylation prognosis clusters (P < 0.05). This indi-

cated that the heterogeneity of our DNA methylation

Fig. 1. Criteria for the selection of the number of categories. (A) Delta area curve of consensus clustering, indicating the relative change in

area under the cumulative distribution function (CDF) curve for each category number k compared with k – 1. The horizontal axis represents

the category number k and the vertical axis represents the relative change in area under CDF curve. (B) The average cluster consensus and

coefficient of variation among clusters for each category number k. The blue line represents the average cluster consensus and the red line

represents the coefficient of variation among clusters.
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prognosis clustering could be explained by clinical and

biological characteristics.

Lymphocytic infiltration is associated with a better

prognosis in breast cancer. Quigley et al. (2015)

demonstrated that an elevated CTL expression signa-

ture, which was used as a surrogate of lymphocytic

infiltration, was associated with longer survival in

Basal-like tumours. Next, we explored the lymphocytic

infiltration of our classification results using TCGA,

with the average expression of CTL used to represent

lymphocyte infiltration, as described by Quigley et al.

The list of CTL genes (103 genes) used was generated

using Nanodissect (http://nano.princeton.edu/) in the

study of Ju et al. (2013). By calculating the lympho-

cyte infiltration score for each sample of the train set,

we found that the overall infiltration of clusters 4 and

7 was lower in the Basal-like subgroup than in other

groups. The result is consistent with the poor progno-

sis of Basal-like subtype in previous studies as well as

in ours (Fig. 3B). In two subgroups including clus-

ters 3 and 8, with a higher degree of infiltration, the

prognosis of these two groups was also relatively bet-

ter. It is noteworthy that these two subgroups do not

belong to any single PAM50 subtype but rather are a

mixture of multiple PAM50 subtypes. This indicating

that our DNA methylation molecular typing separated

subgroups with a high degree of lymphocyte infiltra-

tion from the PAM50 subtypes. Cluster 3, particularly,

was the only subgroup which consisted of samples

from all five PAM50 subtypes, and it had the highest

degree of lymphocyte infiltration. Actually, there was

a slight positive correlation between the degree of

Fig. 2. Consensus matrix for DNA methylation classification with the corresponding heat map. (A) The colour-coded heatmap corresponding

to the consensus matrix for k = 10 obtained by applying consensus clustering. The colour gradients were from 0 to 1, representing the

degree of consensus, with white corresponding to 0 and dark blue to 1. (B) The heatmap corresponding to the dendrogram in (A) which

was generated using the pheatmap function with DNA methylation classification, PAM50 classification, estrogen receptor, progesterone

receptor, HER2 receptor status, TNM stage, clinicopathological stage and histological type as the annotations.
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subtype mixing and lymphocyte infiltration (r = 0.71,

P = 0.032).

3.4. Identifying specific DNA methylation markers

and analysing DNA methylation prognosis

subgroups of breast cancer

To identify the specific hyper/hypomethylation CpG

sites that defined particular DNA methylation sub-

groups of breast cancer, QDMR software developed as

a quantitative approach was employed. The 3869 CpG

sites across the nine subgroups were used to find speci-

fic CpGs in each subgroup. For each subgroup, the

mean DNA methylation level of samples for each of

the 3869 CpGs was calculated, and a matrix with

3869 9 9 dimensions was input to QDMR. To find

the specific CpGs for every subgroup, we lowered the

threshold of the SD parameter to 0.04. Finally, 1252

specific hyper/hypomethylation CpG sites, correspond-

ing to 888 genes, were identified (Table S2). These

were DNA methylation markers for the different sub-

groups in breast cancer. The results showed that the

Fig. 3. Survival curves of DNA methylation subtypes and the comparison of lymphocyte infiltration between DNA methylation clusters and

their PAM50 classifications. (A) The survival curves of DNA methylation subtypes in train set. The horizontal axis represents the survival

time (months), and the vertical axis the probability of survival. The numbers in parentheses in the legend represent the number of samples

in each cluster . The log-rank test was used to assess the statistical significance of the difference. (B) Lymphocyte infiltration score

distributions of nine DNA methylation clusters in the train set. The horizontal axis represents the DNA methylation clustering. (C) PAM50

subtypes with enrichment in each DNA methylation cluster. (D) The reverse orientation of (C).
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number of specific CpGs within each subgroup ranged

from 13 to 519 (Fig. 4A,B, Table 2); cluster 7 had the

largest number of specific hypermethylated CpGs.

Additionally, we explored gene expression within the

particular DNA methylation subgroups. We obtained

expression values in 332 samples in the train set for

855 of the 888 genes (some of these genes were not

detected) from the expression dataset. Among these

genes, 285 genes (approximately one-third) had an

average expression value within a particular subgroup

that was the maximum or minimum of that in the

other subgroups. This strict standard indicated that

the specificities of these genes were consistent as to

DNA methylation level and gene expression level.

Moreover, we conducted a functional enrichment

analysis for the genes corresponding to the specific

CpGs for each of DNA methylation clusters, respec-

tively. The top significant terms in each category for

each cluster are shown in Fig. S2. The genes of clus-

ters 3, 5, 6 and 8 were collected into a smaller number

of terms due to the small gene numbers. As the results

showed, specific genes of clusters 1 and 7 were mainly

involved in glucuronidation and metabolic process, the

genes of cluster 2 were mainly involved in developmen-

tal and differentiation processes, the genes of cluster 4

were involved in cortisol metabolic and biosynthetic

processes, and the genes of cluster 9 were mainly

involved in cell adhesion and signaling. This implies

that our different DNA methylation subgroups

were involved in different functions and biological

pathways.

3.5. Constructing and evaluating the prognosis

prediction model

To confirm the discriminatory ability of the specific

CpGs for each subgroup obtained by us, a Bayesian

network classification was constructed using the train

set, with the 1252 specific CpGs used as features. The

10-fold cross-validation method was used to evaluate

the performance of the model, which obtained a classi-

fication accuracy of 90.96% (Table 3). The area under

Table 1. The results of chi-square test on the global level.

Clinical attributes Subclasses P-value*

Age Young 0.0433

Old

Race White 0.0054

Asian

Black or African American

American Indian or Alaska Native

N stage N0 0.0045

N1

N2

N3

M stage M0 0.0173

M1

Stage Stage I 0.0009

Stage II

Stage III

Stage IV

ER Negative 1.0232e-32

Positive

PR Negative 2.0291e-25

Positive

HER2 Negative 0.0103

Positive

Histological type Infiltrating ductal carcinoma 0.0003

Infiltrating lobular carcinoma

Medullary carcinoma

Mucinous carcinoma

Infiltrating carcinoma NOS

Metastatic Yes 0.0117

No

*P-value: the P-value of chi-square test.

Fig. 4. Specific hyper/hypomethylation CpG sites for each DNA

methylation cluster. (A) Display of specific CpG sites for each DNA

methylation prognosis subtype. The red bars and blue bars

represent hypermethylation CpG sites and hypomethylation CpG

sites, respectively. (B) The heat map for the specific sites in nine

DNA methylation clusters.
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receiver operating characteristic curve reached 0.946

(Fig. 5A).

Next, we employed this prognostic model to predict

cases in the test set. The samples in the test set were

assigned a class label corresponding to the train set.

Survival analysis of the nine clusters in the test set

showed that they were significantly prognostically dif-

ferent (Fig. 5B). This indicated that the specific CpGs

in this study could be used as prognostic biomarkers

for breast cancer. Furthermore, we compared our clas-

sification test with the PAM50 subtypes, and explored

the degree of lymphocyte infiltration. We used the

same method as the train set and obtained consistent

results (Fig. 5C). In particular, clusters 4 and 7, as

predicted in the test set, still belonged to the Basal-like

subtype, whereas clusters 1, 2 and 5 were subgroups of

the Luminal A subtype, and clusters 2 and 6 were sub-

groups of the Luminal B subtype. The degree of lym-

phocyte infiltration of the clustering in the test set was

also consistent with the train set (Fig. 5D). These

results further illustrate the predictive accuracy of our

model and the stability of its features. In addition, we

conducted survival analyses for the PAM50 subgroups

and obtained consistent results for Luminal A and

Luminal B subgroups. However, in the Basal-like sub-

group, clusters 4 and 7 were no longer significant,

which may be due to the very small sample sizes

in cluster 7 (only four samples were predicted for

cluster 7).

Because the limitation of the survival data in the

TCGA for breast cancer may reduce the merit of our

results, we added an additional external validation

dataset from the Gene Expression Omnibus (GEO,

accession number GSE72251), which included 119

breast cancer samples. As in the TCGA database test

set, all samples in the external validation dataset were

assigned a class label using the prognosis model con-

structed from the train TCGA dataset. Survival analy-

sis of the nine clusters was then performed. The result

showed that the prognoses among them were signifi-

cantly different (P = 0.0188, Fig. S3). We also

explored the survival between the PAM50 subgroups

and obtained results consistent with the TCGA test

set. This indicated the portability of our prognosis pre-

diction model. To check whether prognoses of cluster-

ing in test set and the external validation dataset were

similar to the corresponding clustering in the train set,

we compared the same labelled clusters in the train

and test sets or external validation dataset, respec-

tively; there was no significant difference between any

of the groups (Figs S4 and S5). These results show

that cases that were classified or predicted to be in the

same DNA methylation subgroups, had the same

prognosis.

4. Discussion

Recent developments in sequencing technologies have

made it possible to analyse genome-wide DNA methy-

lation profiles at high resolution. Whole genome bisul-

fite sequencing is the best method to investigate DNA

methylation; however, its efficacy is limited by high

cost and analytical burden. DNA methylation arrays

are a good alternative for investigating genome-wide

DNA methylation in a large collection of tumours.

The TCGA database is a publicly available resource

covering a wide variety of data types in a variety of

cancers. The Infinium HumanMethylation450 Bead-

Chip array dataset of breast cancer contains a large

number of samples that were downloaded from TCGA

for our classification analysis. The large sample sizes

allowed us to explore the molecular subtypes of breast

cancer more comprehensively.

Precision medicine in cancer treatment is based on the

assumption that every patient has a unique variation of

Table 2. The numbers of specific CpGs for clustering.

Cluster Number of specific CpGs

Cluster 1 87

Cluster 2 200

Cluster 3 15

Cluster 4 177

Cluster 5 13

Cluster 6 44

Cluster 7 519

Cluster 8 53

Cluster 9 144

Table 3. The confusion matrix of Bayesian network classification.

Each row of the matrix represents the instances in a predicted

cluster, and each column represents the instances in an actual

cluster. C1–C9 are the logograms for clusters 1–9.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 52 0 0 0 2 0 0 0 0

C2 2 51 0 0 0 0 0 1 0

C3 0 0 26 3 3 0 1 1 0

C4 0 0 0 33 0 0 1 0 1

C5 2 4 2 0 78 0 0 2 0

C6 1 1 0 0 0 17 0 0 0

C7 0 0 0 0 0 0 13 1 0

C8 0 0 0 0 0 1 0 24 0

C9 0 0 0 0 0 0 0 1 8

The bold text in the table represent the numbers of instances in

each class that have the same prediction cluster and actual cluster.
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genetic alterations and should be treated accordingly.

Thus, for personalized medicine to be effective, it is nec-

essary to achieve a detailed classification of the cancer

genome and epigenome. Many studies have suggested

that epigenetic modifications (DNA methylation) play a

pivotal role in early detection, improved molecular clas-

sification, prognosis and adjuvant treatment of breast

cancer. These opinions suggest that the level of analysis

could have important biological and clinical implica-

tions in the era of precision medicine (Hu and Zhou,

2017; Pasculli et al., 2018). Moreover, classifications

based solely on the tissue of origin or pathological fea-

tures have shown limitations. We therefore conducted

this study to obtain detailed classifications of the breast

cancer epigenome based on DNA methylation. We first

selected prognosis-associated CpG sites within gene pro-

moter regions for cluster analysis. Nine different prog-

nosis subgroups were obtained by consensus clustering,

with either molecular or clinical differences among

Fig. 5. The prognosis model and prediction results. (A) The ROC curve displayed the sensitivity and specificity of the prognosis model. The

area under the curve (AUC) reached 0.946. (B) Survival curves of nine clusters predicted from the test set using the prognosis model. The

numbers in parentheses in the legend represent the number of samples in each cluster. The log-rank test was used to assess the statistical

significance of the difference. (C) PAM50 subtypes with enrichment in each DNA methylation cluster. (D) Lymphocyte infiltration score

distributions of DNA methylation clusters in the test set.
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them, which confirmed the heterogeneity of breast

tumours and the necessity of meticulous classification.

Consensus clustering provided the recommended

number of clusters as well as determining the cluster

assignments compared with other unsupervised cluster-

ing methods, such as hierarchical clustering. It is note-

worthy that the results of consensus clustering were

dependent on the inner-loop clustering of choice (k-

means in the experiments), with consensus clustering

based on k-means producing slightly better results

than others (including HC and SOM). This indicates

that every clustering method has its own idiosyn-

crasies, related to the measure of similarity used to

compare and group data items. We first suggest divid-

ing breast tumours into nine prognosis-subgroups on

the basis of DNA methylation. This level of detail

brings about a high intra-class consistency to better

guide personalized medicine.

Among these nine subgroups, we found two Basal-

like subgroups, three Luminal A subgroups and two

Luminal B subgroups. The differences at the molecular

level, clinical attributes and prognosis indicated that

there is still significant heterogeneity within the

PAM50 subtypes of breast cancer. A more detailed

classification could contribute to the realization of per-

sonalized medicine.

In QDMR analysis, we found 1252 specific hyper/hy-

pomethylation CpG sites, corresponding to 888 genes,

which defined particular DNA methylation subgroups

of breast cancer. These sites can be regarded as targets

for precision medicine and biomarkers for diagnosing

breast cancer. Moreover, the prognosis model using

these specific CpGs as features could distinguish the test

and external validation datasets into different prognosis

clusters that were consistent with the classification

results. Many of these specific CpG sites have previously

been reported to be associated with breast cancer.

Among them, the ketone body production enzyme

BDH1 has been proved to be preferentially expressed in

the stroma of human breast cancer samples (Martinez-

Outschoorn et al., 2012). ABCA1 expression was shown

to be regulated by miR-96 in breast cancer cell lines

(Moazzeni et al., 2017) and AGTR1 was suggested to

be a marker of resistance to neoadjuvant chemotherapy

in HER2� breast cancer (de Ronde et al., 2013),

whereas it was shown to be a therapeutic target in ER+

and ERBB2� breast cases (Ateeq et al., 2009). In addi-

tion, HRH2 activation in breast cancer cells was sug-

gested to increase tumour proliferation (Cricco et al.,

1994; Davio et al., 1994), whereas blocking HRH2 was

reported to improve disease-free survival in breast can-

cer patients (Parshad et al., 2005). Tumour cell MMP3

expression was reported to be a prognostic factor for

poor survival in breast cancer (Mehner et al., 2015), and

MAP2 expression was shown to be significantly associ-

ated with pathological responses to neoadjuvant

chemotherapy, regardless of breast cancer subtype

(Kolacinska et al., 2012). Eterno et al. (2014) suggested

that expression of the HGF receptor c-Met could be

predictive of recurrence after autologous fat graft in

post-surgery breast cancer patients.

5. Conclusions

Our research identified nine different prognosis-sub-

groups using the data of breast tumours in TCGA that

were different at either the molecular level or in epi-

demiology. This gives a more detailed explanation of

the heterogeneity of breast cancer. The specific CpG

sites and genes for particular subgroups can serve as

biomarkers for personalized treatments. Changes in

DNA methylation (hypo/hypermethylation) can be

used as markers to diagnose particular subgroups, and

clinicians can develop personalized treatments accord-

ing to these prognoses. Our methods can also be used

to study other tumours.
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