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Abstract

Interest in modeling contemporary crime trends, a task that has historically been considered

valuable to the public, researchers, and policymakers, is resurging. Advancements in crimi-

nology have made it clear that understanding crime trends necessarily involves understand-

ing trends in how likely individuals are to report crimes to the police, as well as how likely the

police are to accurately record those crimes. In this paper, we use dynamic linear models to

simultaneously model the time series for several crime types in order to gain insight into

trends in crime and crime reporting. We analyze crime data from Chicago spanning 2007

through 2016 and show how correlations in the way crime trends evolve may contain infor-

mation about drivers of crime and crime reporting. We provide evidence of substantial differ-

ences in the relationships between the trends of crimes of different types depending on

whether crimes are violent or nonviolent and whether or not crimes are tracked in the FBI’s

Uniform Crime Report.

Introduction

In the 2018 Annual Review of Criminology Baumer et al. state in their paper, “Bringing Crime

Trends Back into Criminology: A Critical Assessment of the Literature and a Blueprint for

Future Inquiry,” a surprising fact: that “the study of crime trends is not part of mainstream

criminological theory or research” [1]. However, as one might expect from the title of their

paper, they argue that it ought to be. And, though there has been some research on contempo-

rary crime trends, with respect to this research the authors note a number of issues including

little attention to differences in crime trends based on crime type. They also note that crime

trends can depend heavily on the data source, and they cite an example of how police data

from the Uniform Crime Reports (UCR) has, in the past, differed from that of data from the

National Crime Victimization Survey (NCVS): a difference that has previously been noted and

analyzed [2]. Additionally, they describe a continued interest in comparing crime trends in

multiple cities or regions of cities: an interest that has also been previously addressed [3, 4].

Additionally, while there has been some research into trends in the reporting of crime at

the national level [5], to our knowledge there has been relatively little study on crime reporting

specifically in the city of Chicago. Yet, recent questions have been raised with regard to the

integrity of reported crime in Chicago. The Economist published an article in 2014 calling for
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skepticism when interpreting the sharp declines in reported crime in Chicago seen around

2013 [6]. Reasons for this skepticism include evidence published in Chicago magazine that

police officers were under pressure to under-report or downgrade certain types of crime [7].

Of particular interest were those crimes which are part of the FBI’s UCR. In both articles, one

possible suggestion for how misreporting might have taken place was that burglaries, tracked

in the UCR, could have been misclassified as criminal trespasses, a crime not similarly tracked.

Criminal trespasses are one of the types of crime reported in our dataset, and the question of

whether trends in criminal trespasses are negatively correlated with burglaries can be answered

probabilistically in the DLM framework we propose. More details about the UCR can be

found on the FBI’s UCR website [8].

Of multivariate analyses of multiple crime types that have been done, there has been some

focus on understanding spatial associations between different types of crime or comparing

spatio-temporal patterns across crime types using visualization tools [9, 10]. Other temporal

multivariate crime analyses, like ours, have examined the dynamic relationship of serious

crimes with mild crimes [11–13], but the goals in those analyses were largely to test the “bro-

ken windows theory” that mild and visible crime encourages more serious crimes. In this

paper, we propose the novel use of state-space models, specifically dynamic linear models

(DLMs), not only as a tool to simultaneously model multiple crime time series, but as a natural

way to quantify similarities and differences between crime trends. DLMs are generalizations of

ARIMA models [14]. While DLMs have often been used in a forecasting context, we take

advantage of them for the purpose of inference on historical crime trends and, critically, trend

correlations. Using recent data from Chicago, we show how clear relationships between crimes

emerge based on the categorization of crimes as either violent and tracked in the UCR, nonvio-

lent and tracked in the UCR, or nonviolent. Thus, we take aim at one of the the several short-

comings of modern analysis of crime trends, which, according to [1], has gained little

attention. Two significant differences between our analysis and the other multivariate tempo-

ral crime analyses are that we examine contemporaneous, rather than lagged, trend correla-

tions, and rather than focus on testing the “broken windows theory” by looking for positive
correlations between mild and serious crimes, we examine the hypothesis that misreporting of

serious crimes as mild crimes has yielded an artificial change in the trends of serious crimes by

looking for negative correlations between burglaries and criminal trespasses. While it remains

possible that crime in Chicago may, indeed, have been underreported in recent years, but it

seems unlikely that burglaries have been misclassified as criminal trespasses to any significant

extent. We stress, however, that many of the other issues raised by Baumer et al. could be

addressed through this methodology, as many extensions and variations on the relatively sim-

ple models presented here are possible.

Data

The dataset used in our crime analysis is publicly available and consists of all reported crime in

Chicago going back to 2001, which can be found on the city of Chicago’s website [15]. One of

the intended uses for these data is for academic research, and we have complied with the terms

of use of the data as specified on the city of Chicago’s website. We take a moment to re-empha-

size that reported crime, clearly, is not the same as crime. Any conclusions about multi-year

trends observable in the data do not necessarily correspond to multi-year trends in crime, but

they may have to do with trends in crime reporting. Therefore, while for convenience we often

refer to reported crimes simply as crimes, caution should be taken when interpreting our

results. In either case, however, we find results about trends in reported crime and the relation-

ships between these trends as being interesting and, hopefully, potentially useful.
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This dataset provides a rich set of information, allowing for much more sophisticated analy-

ses than are presented here. Along with other information, the date, type, and approximate

(anonymized) location of each individual crime is recorded. In order to address the issues

raised by The Economist and Chicago magazine, we need to at least include data for burglaries

and criminal trespasses since 2011: just before the years when the steep declines in crimes were

noticed. Further, the timescale at which these declines were noticed was that of years. There-

fore, we aggregated the data by months, as this allowed for a detailed analysis of the trends

over this time period while avoiding so many time periods that computation became trouble-

some. In order to provide additional context for the crime declines already mentioned, we

included four additional crime types: robberies, assaults, narcotics crimes, and motor vehicle

thefts. All off these additional crime types were included in the FBI’s UCR except for narcotics

[8]. Of the crimes reported in the UCR, robberies and assaults are considered violent crimes,

while burglaries and motor vehicle thefts are considered property crimes [8]. Thus, the crimes

that we analyzed could be grouped into one of three categories: violent and recorded in the

UCR, nonviolent and recorded in the UCR, or nonviolent and not recorded in the UCR. Addi-

tionally, we included data from January 2007 through December 2016. Including this addi-

tional data provides some points of reference for the patterns and relationship that we observe

with respect to burglaries and criminal trespasses.

Fig 1 plots monthly crime counts from all six crime types from 2007 through 2016. Monthly

crime counts range from about 500 to 5000, with assaults, burglaries, robberies, and motor

vehicle thefts often reaching similar numbers but with narcotics substantially exceeding the

others, especially in years 2007-2014. Similarly, seasonal trends are obvious and seemingly

Fig 1. Monthly aggregated counts of six types of reported crimes in Chicago from January 2007 through

December 2016.

https://doi.org/10.1371/journal.pone.0218375.g001
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account for substantial variability within assaults, robberies, and burglaries, but seasonality is

less obvious for the narcotics, motor vehicle theft, and criminal trespass time series, where

there appears to be much more random variability. Larger, multi-year trends do seem to exist

for all crime types, with reported narcotics crime apparently sharply declining over the 10 year

span. The remaining crime types do seem to more or less decline over time, but the nature of

this decline varies. For example, robberies don’t appear to decline at all from roughly 2007-

2011, at which point a sharp decline begins, which then levels out around 2014. Alternatively,

assaults seem to decline much more slowly and consistently from 2007-2014, at which point

they either level out or even begin to increase again.

Table 1 provides correlations between each pair of crime types. Most of the correlations

exceed 0.5, and several are approximately 0.9. For example, the correlation between robberies

and burglaries up to two decimal places is 0.90, and the correlation between motor vehicle

thefts and burglaries is approximately 0.88. This provides some immediate evidence that tem-

poral patterns in crime were similar between many of the crimes examined here and helps to

motivate the desire to perform a multivariate analysis.

Seemingly unrelated time series equations

The general class of models we will consider are called seemingly unrelated time series equa-

tions (SUTSE). Any ARIMA model can be expressed as a DLM [14, section 3.2.5]. In particu-

lar, an ARIMA representation as a DLM will have an error variance of zero, i.e. s2
i ¼ 0 8 i.

SUTSE models are defined through two equations called the observation equation and the evo-

lution, or state, equation. First, define Yc,t for c 2 {1, . . ., C} and t = 1, . . ., T to be the log of

the number of reported incidents of crime type c in month t. Then we assume Yt = (Y1,t, . . .,

YC,t)
> = Fθt + �t, where F is a C × p matrix, θt is a p × 1 vector of latent states, and �t is a C × 1

vector of Gaussian errors with mean 0 and covariance matrix S�. We have six crime types

(C = 6), and therefore S� is a 6 × 6 matrix. The state equation we consider is given by θt =

Gθt−1 + δt, where G is a matrix of dimension p × p, and δt is a p × 1 vector of (possibly degener-

ate) zero mean Gaussian random variables with covariance matrix Sδ. It is worth noting that

some elements of the δt vector may always be zero. This indicates that those elements of θt do

not evolve over time. The evolutions, δt, and the observation errors are assumed independent

of each other. Thorough treatments of SUTSE models can be found in [16] and [14]. For clar-

ity, we first introduce a simple model which will provide a platform for us to develop our final

model that will allow us analyze crime trends and their correlations.

A chief goal in modeling these time series is to extract macroscopic trends absent of sea-

sonal effects. A common way to model trends in a DLM framework is through a local linear

trend model [14, 16]. We define the local linear trend model with independent evolutions and

errors next. First, define θc,t to be the 2 × 1 state vector at time t for crime type c, and let θt
denote the concatenation of state vectors for all crime types at time t. This implies that θt is a

Table 1. Correlations of monthly crime counts from January 2007 to December 2016 in Chicago between burglaries, robberies, assaults, narcotics, motor vehicle

thefts, and criminal trespasses.

Burglary Robbery Assault Narcotics MVT Trespass

Burglary - 0.90 0.68 0.64 0.88 0.71

Robbery 0.90 - 0.68 0.38 0.76 0.63

Assault 0.68 0.68 - 0.51 0.61 0.79

Narcotics 0.64 0.38 0.51 - 0.62 0.80

MVT 0.88 0.76 0.61 0.62 - 0.68

Trespass 0.71 0.63 0.79 0.80 0.68 -

https://doi.org/10.1371/journal.pone.0218375.t001
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12 × 1 vector. In order to define the distribution of δt, we first define ~dt to be a 6 × 1 vector

such that ~dt �
iid N6ð0; diagðg2

1
; g2

2
; :::; g2

6
ÞÞ. Then, define dt ¼ ½I6�6 � ð0; 1Þ

>
�~dt . This implies that

δt is a 12 × 1 vector. Also, let �t �
iid N6ð0; diagðs

2

1
; s2

2
; :::; s2

6
ÞÞ. Then, the remainder of this model

is specified through the F and G matrices:

F ¼ I6�6 � ð1; 0Þ and G ¼ I6�6 �
1 1

0 1

� �

: ð1Þ

Then, the model can be written as above, namely, Yt = Fθt + �t and θt = Gθt−1 + δt.
While the above model can be used for trend modeling, it cannot be used to do inference

on the correlations between trends. This is because the evolutions, ~dt , and the errors, �t, are

assumed to be independent. This independence assumption essentially means that doing this

analysis is the same as doing six univariate analyses: one for each crime type. In order to do

our desired inference on the evolution (and hence trend) correlations, we must consider,

instead, a truly multivariate model. We can accomplish this by allowing for dependence of

both the residual errors as well as the state evolutions. This is done in our case by allowing the

covariance matrices for �t and ~dt to be unstructured. Stated mathematically, �t �
iid N6ð0;S�Þ,

~dt �
iid N6ð0;S~dÞ. In this way, we allow for any possible collection of correlations between pairs

of crime types. The dependencies between states or between observations carry different inter-

pretations, but both may be of interest. Dependence of the residual errors relates deviations

from the mean of the data model of different crime types to each other, whereas dependent

evolutions relate deviations in the modeled trend of each crime type from a strictly linear tra-

jectory to each other. Dependence of the residual errors will depend on spurious month-to-

month influences, whereas dependence of the state evolutions will capture deeper relationships

in long-term crime trends.

This interpretation of dependent evolutions should help to clarify how inference on the

evolution correlations can help to shed light on the specific suggestion in the article from The
Economist that declines in reported burglaries may be the result of misreporting as criminal

trespasses. If such misreporting were taking place, then we would expect the trend in burglar-

ies to decrease as the trend in criminal trespasses increased. This simultaneous change in

trends for burglaries and criminal trespasses would result in negatively correlated evolutions.

However, one would not necessarily need to see either an absolute increase in reported crimi-

nal trespasses or an absolute decrease in reported burglaries, as was reported in the case of

New York, in order for evidence of this reporting issue to be seen. For example, if criminal

trespasses consistently declined from 2007 to 2012, but the rate of decline then flatlined or slo-

wed, this could be evidence of misreporting if, at the same time after 2012, reported burglaries

declined more than was typical in 2007 to 2012.

The above model allows us to smooth the time series and to make inference about the

dependencies in the trends as well as residual errors, but including an annual seasonal compo-

nent should allow for a more precise estimate of the trends, and hopefully of correlation

parameters. To represent seasonality, we chose to utilize the Fourier-form seasonal model

[14]. Expressing seasonality this way is an alternative to parameterizing monthly seasonal

effects with dummy indicator variables. An advantage to this parameterization is that it poten-

tially allows for a sparser representation of seasonality. The Fourier-form seasonal model is

defined in terms of periodic functions called harmonics and complementary functions called

conjugate harmonics. The number of harmonics, q, determines the flexibility of this represen-

tation to describe seasonal patterns. The maximum possible q is determined by the period, s,
which is the number of times after which the seasonal pattern repeats. In our case s = 12, and
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the maximum possible number of harmonics is s/2 = 12/2 = 6. Note that if we use q = 6 har-

monics, we will arrive at the same representation of seasonality if we were to use 11 dummy

month variables plus an intercept term. A given harmonic-conjugate harmonic pair arises for

a given Fourier frequency wj = 2πj/s, and j = 1, 2, . . ., s/2. Each of these harmonic-conjugate

pairs occupies two of the 12 − 1 = 11 degrees of freedom possible to fully characterize the

annual seasonality for a given crime type. Thus, at most six harmonics and five conjugate

harmonics can be included in the model per type of crime. For crime type c and j = 1, . . ., 6,

define the j-th harmonic to be ξc,j(t) = zc,j cos(twj) + ηc,j sin(twj). Then, for j = 1, . . ., 5 define

the j-th conjugate harmonic to be x
�

c;jðtÞ ¼ � zc;j sinðtwjÞ þ Zc;j cosðtwjÞ. Having defined the

harmonic and conjugate harmonic functions, the final model, which includes seasonality,

we will call the dependent linear trend model with seasonality. Defining this model requires

modifications to the θt vectors, the F and G matrices, as well as the matrix that we must

multiply ~dt by in order to get δt. First, if q< 6, then θt is a (12 + 12q) × 1 vector. Also, δt
becomes dt ¼ ½I6�6 � ð0; 1; 0; 0; :::; 0Þ

>

ð2þ2qÞ�1
�~dt. It will also be useful to define some

additional matrices in order to specify G. First, let G0 ¼
1 1

0 1

� �

. Then, for j = 1, . . ., q, let

Gj ¼
cosðojÞ sinðojÞ

� sinðojÞ cosðojÞ

� �

. Finally, the F and G matrices are as follows:

F ¼ I6�6 � ð1; 0; 1; 0; :::; 1; 0Þð2þ2qÞ�1

G ¼ I6�6 � blockdiagðG0;G1; :::;GqÞð2þ2qÞ�ð2þ2qÞ:
ð2Þ

Here, the blockdiag() function creates a block diagonal matrix such that the ordering of the

arguments from left to right corresponds to the order that the arguments appear in the result-

ing matrix from top left to bottom right. If q = 6, then we must define ξc,6(t) = −ξc,6(t − 1). We

would also need a 1 × 1 matrix G6 = −1, and we would have to set F to be F = I6×6� (1, 0, 1,

0, . . ., 1, 0, 1)13×1. This implies that θt is then of dimension (2 + 2(6) − 1)(6) × 1, or 78 × 1. This

is the final model that we will use for our analysis.

Estimation

We take a Bayesian approach to estimation for two main reasons. The first reason is that we

wish to do inference, including uncertainty, on the evolution and error correlations, as this

allows us to assess whether or not crime types are correlated. The second reason is that this

also allows us to account for uncertainty in hyperparameters like variances and correlations

when we try to estimate uncertainties in the latent states.

We chose to use independent half-Cauchy, Ca+(0, 1), priors on the evolution and residual

standard deviations, and we then put independent priors of the form p(O|v)/ |O|v−1 (v> 0)

on the correlation matrices for the residual and evolution vectors, O� and Oδ, respectively

[17]. With v = 1, this prior corresponds to a uniform distribution over correlation matrices,

and thus we chose this prior with v = 1 in order to express our a priori lack of knoweldge

over what the correlation structure might be. This prior, proposed by [17] is referred to as the

LKJ distribution. One feature of this distribution, however, is that the implied marginal priors

on any given correlation is that of a linearly transformed Beta d
2
; d

2

� �
distribution on (−1, 1),

where d × d is the dimension of the correlation matrix [17]. This means that this prior does

enforce some shrinkage towards zero for our correlations. A primary goal of our analysis is

the detection of correlations between crimes, and so our prior can be thought of as slightly

conservative in this setting. We note that our implied prior for the covariance matrix has a

distrinct advantage over the common inverse Wishart distribution in that when the true
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marginal variances are close to zero, the inverse Wishart distribution has a tendency to bias

the posterior variances upward. This also has the effect of biasing the correlations to zero

[18]. Also, for a given covariance matrix S with diagonal elements s2
1
; . . . ; s2

6
and corre-

sponding correlation matrix O, the following transformation holds: S = diag(σ1, σ2, . . ., σ6)

Odiag(σ1, σ2, . . ., σ6). Lastly, we put a diffuse Gaussian prior on the initial state, specifically,

p(θ0) = N6(2+2q)(0, 107 I) where I is the identity matrix. Thus, the full posterior distribution

can be written out as pðy;S�;SdjYÞ / ½
QT

t¼1
NðYt; Fyt;S�ÞNðyt;Gyt� 1;SdÞ�Nðy0; 0; 107IÞ.

To perform inference in our model, we used the package rstan through the statistical

software environment R to do a Bayesian analysis via Markov chain Monte Carlo (MCMC)

[19, 20]. We used the default variant of Hamiltonian Monte Carlo (HMC), a type of MCMC,

implemented in Stan called the No-U-Turn Sampler to efficiently sample from the posterior

distribution p(S�, Sδ|Y) [21]. In order to target this marginal posterior distribution, Stan com-

putes the integral
R
p(θ, S�, Sδ|Y)dθ using the Kalman filter [22]. Here, Y denotes all observed

data obtained up to time T. Given these samples, the R package dlm [23] was used to get sam-

ples from p(θ|S�, Sδ, Y) through the forward filtering backward sampling (FFBS) algorithm

[24, 25].

We used the potential scale reduction factor of Gelman and Rubin [26] to assess conver-

gence of the three chains. Additionally, we calculated the number of effective samples for each

sampled parameter to ensure reasonable accuracy in the tails of the posterior distribution.

Analysis

We included four harmonics in the model as inference on the correlations between trends, our

main concern in this analysis, was effectively identical to that which would have been based on

including all six harmonics, and density plots of the evolution, error, and partial evolution cor-

relations for the six harmonic model can be found in the supplementary information as S1–S3

Figs. In addition, we calculated the deviance information criterion (DIC), for both the six and

four harmonic models. Much like the Akaike Information Criterion (AIC), DIC is a model fit

criterion that penalizes models with many parameters, and models with lower values are pre-

ferred to ones with high values. Our DIC calculation results in values of approximately 182.29

for the six harmonic model and −141.03 for the four harmonic model.

Three chains consisting of 1000 warm-up iterations and 4000 inferential iterations (5000

total iterations per chain) were run. Effective sample sizes were all in excess of 5000, and the

upper 95% confidence limits for all Gelman-Rubin diagnostics were< 1.01. Hence, following

rough guidelines given in [27], starting values did not appear to impact convergence, and the

effective samples were large enough to ensure accurate inference.

Additionally, as an empirical check for the validity of the distributional assumption on the

observed data, estimated residual errors were calculated by subtracting the posterior time

series means from the data, and the energy test for multivariate normality was performed [28],

resulting in a p-value of approximately 0.194. Thus, we proceed assuming that our data is

approximately normal.

Results

Fig 2 shows the estimated posterior means and pointwise 95% credible intervals for the

smoothed time series means. The extracted trends clearly show substantial decreases in crime

over this time period, though, as noted previously, there are noticeable differences in the

shapes of the time series trajectories. Criminal trespasses, for example, show a reliable decline

over the decade. Alternatively, robberies appeared to be on a slight upward trajectory from

2007 to roughly 2011, at which point some large change in reporting or criminal activity took

Crime modeling with dynamic linear models
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place, leading to a roughly 50% drop in reported robberies over the subsequent four or five

years.

Based on the smoothed time series means, it is clear that some trends are more similar than

others, but correlations in the evolutions give a way of probabilistically quantifying how likely

it is that any two given crimes co-evolve in a dependent fashion. We have approximate samples

from our posterior distribution allowing us to estimate the probability that two crimes are pos-

itively correlated by computing the proportion of MCMC samples of the relevant correlation

parameter that are positive. Mathematically, let r
ði;jÞ
d be the (i, j)-th evolution correlation. Then

an estimate of the probability that the evolutions between crime type i and crime type j are pos-

itively correlated is given by Pðrði;jÞd > 0jYÞ � 1

12000

P12000

k¼1
I rði;jÞ

ðkÞ

d > 0
h i

, where r
ði;jÞðkÞ

d is the k-th

MCMC sample for the evolution correlation between crime type i and crime type j. Table 2

Fig 2. Smoothed time series means and 95% pointwise credible intervals for monthly crime counts of robberies,

burglaries, assaults, motor vehicle thefts, criminal trespasses, and narcotics crimes in Chicago from January 2007

to December 2016. Changes to the police superintendent are indicated (vertical lines).

https://doi.org/10.1371/journal.pone.0218375.g002

Table 2. Estimated posterior probabilities of positive evolution correlations (above the diagonal), and lower bounds for one sided 95% credible intervals (below the

diagonal) for monthly aggregated robberies, burglaries, assaults, motor vehicle thefts, criminal trespasses, and narcotics crimes in Chicago from January 2007

through December 2016.

Robbery Burglary Assault Narcotics MVT Trespass

Robbery - 0.87 0.61 0.18 0.86 0.22

Burglary -0.16 - 0.83 0.18 0.27 0.61

Assault -0.42 -0.22 - 0.28 0.82 0.39

Narcotics -0.71 -0.71 -0.67 - 0.28 0.19

MVT -0.20 -0.65 -0.27 -0.66 - 0.24

Trespass -0.71 -0.42 -0.60 -0.72 -0.73 -

https://doi.org/10.1371/journal.pone.0218375.t002
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gives estimates of the posterior probabilities that the evolution correlation between any two

crime types is positive (above the diagonal), as well as lower bounds for one-sided 95% credible

intervals of these correlations (below the diagonal). The four largest estimated probabilities are

all fairly similar and exceed 0.8. These correspond to correlations in the trends between rob-

beries and burglaries, robberies and motor vehicle thefts, assaults and burglaries, and assaults

and motor vehicle thefts. Interestingly, these crimes are exactly the four crimes in our dataset

that are tracked in the UCR. The next largest estimated probability is approximately 0.61,

which is substantially smaller. Also, there are a number of small estimated probabilities that

are near 0.2. Three estimated probabilities are below 0.2, implying estimated probabilities of

negative evolution correlations in excess of 0.8. These estimates correspond to narcotics and

robberies, narcotics and burglaries, and criminal trespasses and narcotics. Thus, we find some

evidence of positive trend associations with robberies, assaults, burglaries, and motor vehicle

thefts, but perhaps these crimes are inversely related to narcotics crimes. There are not any

noteworthy differences in the posterior correlations either within or between violent and non-

violent crimes in our dataset.

For a more complete picture of these posterior correlations, Fig 3 gives a matrix of esti-

mated posterior densities as well as estimated posterior medians for the correlations of any

two given crime types. The estimated posteriors seem to be fairly wide, indicating a relatively

large degree in uncertainty as to what the associations between crime trends over our period of

interest might actually be. Posterior modes of correlations are at most near 0.4, and at the least

they are near −0.3.

By contrast, we can examine similar density plots (Fig 4) and estimated posterior probabili-

ties (Table 3) for the residual error correlations between crime types. Here, the estimated pos-

terior distributions suggests much stronger evidence that there is a moderate degree of

positive association between most of the crime types shown here. In fact, the only estimated

probabilities of positive correlation that are below 0.9 are for motor vehicle thefts and narcot-

ics, narcotics and burglaries, and assaults and robberies. However, in the case of narcotics and

burglaries, there is some evidence that they are negatively associated on a monthly basis, as

this probability is approximately 1 − 0.179 = 0.821.

Again, for a more complete picture of the error correlations, Fig 4 gives the estimated poste-

rior error correlation densities as well as estimated posterior medians. The estimated posterior

distributions here look reasonably symmetric, and the posterior modes tend to vary a bit more

than in the case of the evolution correlations, even for crime pairs with high probabilities of

being positive. Such a phenomenon can also be seen by looking at the lower 95% credible

bounds in Table 3. For example, an estimate of the median posterior correlation between rob-

beries and burglaries is around 0.684, whereas another crime pair with high probability of

being positive, burglaries and criminal trespasses, has an estimate of the median correlation of

approximately 0.259.

In a temporal setting like ours, we can also examine conditional dependence between crime

types by simply looking at the posterior distribution of components of inverted covariance

matrices. Table 4 gives estimates of the probability that the partial correlation between the evo-

lutions of two crime types is positive. The assumption that the states and data are Gaussian

means that very large or very small probabilities correspond to evidence in favor of condition-

ally dependent trends. Interestingly, crime pairs with high probabilities of positive marginal

correlation often have high probabilities of negative conditional correlation. Robberies and

burglaries, for example, have a probability of negative partial correlation of 1 − 0.088 = 0.912.

Assaults and burglaries also have high probability of negative partial correlation 1 − 0.097 =

0.903. Criminal trespasses and narcotics crimes and motor vehicle thefts and burglaries both

have probabilities of positive partial correlations of around 0.89. Additionally, assaults and
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robberies have a somewhat high probability of having positive partial correlation at around

0.83.

A noticeable pattern emerges by looking at the estimated posterior partial correlation densi-

ties in Fig 5. Here we see several obviously peaked and skewed densities, some mostly flat den-

sities, and few inbetween. Interestingly, the peaked densities that are skewed left (indicating

high probabilities of positive partial correlation) are seen only between pairs of crimes which

both occur in one of the three crime categorizations we’ve used. Similarly, the peaked densities

that are skewed right (indicating high probabilities of negative partial correlation) are seen

only between pairs of crimes for which each crime is categorized differently. In particular,

these strong negative conditional associations are seen between violent and nonviolent UCR

crimes.

Discussion

We utilized dynamic linear models to model crime trends, and we inferred dependencies

between trends of different crime types. We found that the only four crime pairs for which

the estimated posterior probabilities of positive evolution correlation exceeded 0.8 were all

Fig 3. Smoothed estimated posterior evolution correlation densities for monthly aggregated robberies, burglaries,

assaults, motor vehicle thefts, criminal trespasses, and narcotics crimes in Chicago from January 2007 through

December 2016.

https://doi.org/10.1371/journal.pone.0218375.g003
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counted in the FBI’s UCR, and every UCR-tracked crime that we modeled showed up in at

least one crime pair where this probability exceeded 0.8. An even more obvious pattern

emerged when we analyzed the evolution partial correlations. Some partial correlation distri-

butions are very clearly peaked and concentrated near −1 or 1, others are very flat, and there

are very few in between. Highly positive, peaked partial correlation distributions occur for

Fig 4. Smoothed estimated posterior residual error correlation densities for monthly aggregated robberies,

burglaries, assaults, motor vehicle thefts, criminal trespasses, and narcotics crimes in Chicago from January 2007

through December 2016.

https://doi.org/10.1371/journal.pone.0218375.g004

Table 3. Estimated posterior probabilities of positive error correlations (above the diagonal), and lower bounds for one-sided 95% credible intervals (below the diag-

onal) for monthly aggregated robberies, burglaries, assaults, motor vehicle thefts, criminal trespasses, and narcotics crimes in Chicago from January 2007 through

December 2016.

Robbery Burglary Assault Narcotics MVT Trespass

Robbery - 1.00 1.00 0.50 1.00 1.00

Burglary 0.58 - 1.00 0.18 1.00 1.00

Assault 0.49 0.37 - 0.99 1.00 1.00

Narcotics -0.17 -0.25 0.06 - 0.74 1.00

MVT 0.24 0.30 0.17 -0.11 - 1.00

Trespass 0.30 0.01 0.37 0.34 0.19 -

https://doi.org/10.1371/journal.pone.0218375.t003
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burglaries and motor vehicle thefts, assaults and robberies, and narcotics crimes and criminal

trespasses. In addition, highly negative, peaked partial correlation distributions occur for bur-

glaries and assaults, burglaries and robberies, assaults and motor vehicle thefts, and robberies

and motor vehicle thefts. Thus, we found evidence that there is considerable shared informa-

tion between different types of crimes. Moreover, high positive conditional associations appear

Table 4. Estimated posterior probabilities of positive evolution partial correlations (above the diagonal), and lower bounds for one-sided 95% credible intervals

(below the diagonal) for monthly aggregated robberies, burglaries, assaults, motor vehicle thefts, criminal trespasses, and narcotics crimes in Chicago from January

2007 through December 2016.

Robbery Burglary Assault Narcotics MVT Trespass

Robbery - 0.09 0.83 0.70 0.17 0.80

Burglary -0.98 - 0.10 0.58 0.89 0.38

Assault -0.39 -0.98 - 0.64 0.15 0.70

Narcotics -0.62 -0.82 -0.70 - 0.62 0.89

MVT -0.97 -0.29 -0.98 -0.83 - 0.55

Trespass -0.49 -0.93 -0.64 -0.28 -0.90 -

https://doi.org/10.1371/journal.pone.0218375.t004

Fig 5. Smoothed estimated posterior partial evolution correlation densities and estimated posterior medians for

monthly aggregated robberies, burglaries, assaults, motor vehicle thefts, criminal trespasses, and narcotics crimes

in Chicago from January 2007 through December 2016.

https://doi.org/10.1371/journal.pone.0218375.g005
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almost exclusively within each of the crime categories we considered, while high negative con-

ditional associations appear almost exclusively between categories. Thus, forces that affect

crime or its reporting may do so differently depending on the nature of the crime. There was

no noticeable consistent pattern when comparing trend correlations between and within vio-

lent and nonviolent crimes. Further, based on our correlation analyses, we found little evi-

dence of the suggested misreporting of burglaries as criminal trespasses. In contrast to the

evolution correlations, we found that the correlations between the residual errors to be almost

universally positively correlated with extremely high probability. These correlations carry dif-

ferent interpretations, and, in general, either or both may be of interest when comparing mul-

tiple time series.

The analysis of [11] found support for the “broken windows theory” by finding positive cor-

relations between thefts (considered a mild crime) and robberies and between thefts and bur-

glaries on a quarterly scale. [12] examined correlations between mild and serious crimes and

found that, on the scale of days, there was little evidence of positive correlations between crime

types and hence did not find support for the “broken window theory”. Similarly, [13] found lit-

tle evidence for the “broken windows theory” on the scale of weeks when comparing many of

the same serious crimes considered in our analysis. Other than the residual error correlations,

which were positive for nearly all pairs of crimes, our analysis found little in the way of positive

correlations between crimes not included in the UCR and crimes included in the UCR, though

our analysis also sought to examine correlations in the form of contemporaneous trend devia-

tions between crimes as opposed to correlations between different crimes at different lags.

Contemporaneous trend deviations are sensible to examine if the hypothesis to be assessed is

that serious crimes are being misreported as mild crimes, as one would not expect, for exam-

ple, burglaries in one month to be reported as criminal trespasses in a different month.

Many studies, including those of [11–13] allude to other factors that may affect crime itself,

rather than crime reporting, such as weather, economic conditions, and police activity. Most

such factors should arguably correlate positively with all crime. This may one reason why the

residual error correlations seemed almost to be universally positive. However, the fact that we

see such distinctly different partial evolution correlations when looking within a given class of

crime versus between a two given classes of crime seems to suggest some additional factor at

play. Supposing that the observed correlations in these data are indicative of correlations in

actual crimes committed, the patterns in partial correlations observed here appear consistent

with observations made in [29] that burglaries and robberies are substitutes while burglaries

and auto thefts are complementary. However, given that our initial analysis objective was not

to test for these types of effects, this observation should not be taken as confirmatory.

In a spatial setting, [10] proposed a way to study conditional linear associations between

crime types using graphical models, where nodes in a graph represent one component of a

multivariate point process, and edges represent non-zero conditional linear associations. His

method, dubbed the spatial dependence graph model, uses the partial spectral coherence in

order to calculate the linear relationship between components of a multivariate point process

after the elimination of the linear effect of all other components. Eckardt applied his method

to crime in London and, like in our analysis, found that a small number of subgraphs emerged.

All crimes included in our model, with the exception of criminal trespasses, were either also

modeled by Eckardt, or there was a close analog. Taking this into consideration, both we and

Eckardt found evidence for conditional dependencies between burglaries, robberies, and

motor vehicle thefts. However, we found evidence of temporal conditional dependence

between assaults and burglaries and between assaults and motor vehicle thefts, whereas Eck-

ardt found no spatial conditional linear association between the London analog to assaults and

any other crime.
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One caveat to DLMs is the required assumption that the data be Gaussian. This restricts the

usage of DLMs to situations where crime counts are sufficiently large in any given time period.

Often this is not a problem, but the Gaussian assumption can be difficult to justify for infre-

quent crimes or crimes at small time scales. The assumption of normality can be replaced by

the more natural assumption that crime counts follow a Poisson distribution. This would

enable much of the same analysis that was done here, but one could also consider much less

frequent crimes at shorter time scales. This generalization takes us to the realm of dynamic

generalized linear models (DGLMs): a set of time series models where the data model is non-

Gaussian. A Bayesian analysis in these models is also possible, but computation becomes less

straightforward. Nevertheless, state-space models such as DLMs and DGLMs are interesting

and sensible methods for the modeling of crime and the analysis of its trends.
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