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Abstract: During the process of disease diagnosis, overdiagnosis can lead to potential health loss
and unnecessary anxiety for patients as well as increased medical costs, while underdiagnosis can
result in patients not being treated on time. To deal with these problems, we construct a partially
observable Markov decision process (POMDP) model of chronic diseases to study optimal diagnostic
policies, which takes into account individual characteristics of patients. The objective of our model
is to maximize a patient’s total expected quality-adjusted life years (QALYs). We also derive some
structural properties, including the existence of the diagnostic threshold and the optimal diagnosis
age for chronic diseases. The resulting optimization is applied to the management of coronary heart
disease (CHD). Based on clinical data, we validate our model, demonstrate how the quantitative
tool can provide actionable insights for physicians and decision makers in health-related fields, and
compare optimal policies with actual clinical decisions. The results indicate that the diagnostic
threshold first decreases and then increases as the patient’s age increases, which contradicts the
intuitive non-decreasing thresholds. Moreover, diagnostic thresholds were higher for women than
for men, especially at younger ages.

Keywords: chronic diseases; partially observable Markov decision process; diagnostic threshold;
diagnostic policies; policies optimization

1. Introduction

Chronic diseases remain one of the major public health problems in the world, im-
posing a high cost burden on healthcare systems and reducing the quality of life of
patients [1–3]. About half of all adults have one or more chronic diseases, which are
responsible for 70% of deaths in the United States and account for more than 85% of total
healthcare expenses [4]. In China, chronic diseases contribute 86.6% to total deaths, and the
burden accounted for 70% of the total medical cost in 2017 [5]. Given that the population is
increasing and aging, especially due to the impact of COVID-19, people are more concerned
about their health. Therefore, how to take effective intervention strategies early enough to
be effectively diagnosed is of paramount importance [6].

There are many advanced medical examinations for screening and diagnosing chronic
diseases, including non-invasive and invasive tests, which makes it possible to make per-
sonalized diagnostic policies based on individual characteristics to detect chronic diseases
early [7]. Non-invasive examinations have important value for early screening of chronic
diseases. When a patient undergoes a non-invasive test for basic screening, a physician
will decide whether he needs further invasive tests based on the screening results, such as
coronary angiography (CAG), prostate biopsy, or breast biopsy. Such policies for invasive
tests made following basic screening are called diagnostic policies [8].

The latest screening program of the U.S. Preventive Services Task Force emphasizes
that the purpose of screening should be to maximize the life of the patient while minimizing
the damage to the body [9]. When diagnosing chronic diseases for patients, a trade-off is
required between the long-term benefits of early detection on the one hand and the short-
term side effects of invasive tests and the long-term side effects of subsequent treatment
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on the other hand. Meanwhile, overdiagnosis (unnecessary examinations) cause patients
anxiety and increases personal and national medical costs, whereas underdiagnosis (lack
of tests) means patients may not be treated in time [10–13]. Thus, the underdiagnosis–
overdiagnosis trade-off must be confronted for chronic diseases, which serves as our
motivation.

Therefore, we address the following research questions about chronic disease diagnosis
based on differences in specificity, sensitivity, and associated side effects of the above
different examinations:

1. Whether and when should a physician advise an individual patient to take an invasive
test based on basic screening results via non-invasive tests?

2. How should physicians and decision makers in health-related fields make diagnostic
policies for populations with various individual characteristics?

Our motivating example is CAG services for coronary heart disease (CHD) diagnosis.
The risk of CHD is predominant among all diseases, and about one in three adults has
CHD [14]. Furthermore, patients with CHD are at greater risk of death with COVID-19
than patients with other chronic diseases [15]. Common diagnostic methods include elec-
trocardiogram (ECG), computed tomography (CT), and CAG. ECG and CT are convenient
and non-invasive and are often used as a basic screening tool to detect CHD at its early
stages, yet they are prone to misdiagnosis and missed diagnosis due to low specificity and
sensitivity; CAG is invasive and expensive as well and entails related side effects.

The results of CAG in some patients, however, are normal in the clinic. Currently,
some studies show that the proportion of normal examination results is about 16.9–31.1%
in China [16]. Such overdiagnosis is not unique to China: For instance, data reports from
663 hospitals in the American College of Cardiology National Cardiovascular Data Registry
showed that 62.4% of patients had no obstructive coronary artery disease in 2010 [17,18].
Hatzidakis et al. [19] indicated that no lesions or nonsignificant lesions were found (47.4%
of patients). This implies that unnecessary tests can result in excessive diagnosis and
additional medical costs. Furthermore, individual characteristics have a significant impact
on the diagnostic rate of CAG [20–23].

To do so, we constructed a partially observable Markov decision process (POMDP)
model for quantitative trade-offs to optimize diagnostic policies for patients with sus-
pected chronic diseases, which can help governments to optimize the allocation of medical
resources. Our objective is to maximize a patient’s total expected quality-adjusted life
years (QALYs). Moreover, combined with clinical data, we evaluated the performance
of optimal policies on CAG diagnosis and compared them with physicians’ decisions in
clinical practice.

Different from the existing studies, we studied optimal diagnostic policies and an-
alyzed the impact of individual characteristics of patients on them. To the best of our
knowledge, this is the first study from two different perspectives (i.e., individual perspec-
tives and population perspectives) that determines optimal policies for clinical diagnosis
based on the POMDP model. The updating of belief state makes our model more consistent
with the imperfect nature of basic screening and partially observable health conditions in
chronic diseases, which is the difference between our POMDP model and other Markov
models in the related literature.

The remainder of our study is organized as follows. In Section 2, we review the
relevant literature about chronic diseases management and POMDP in medical decision-
making, especially about CHD. We characterize the problem of the diagnostic decision in
Section 3. In Section 4, we propose the POMDP model and describe the optimal equation
as well as some properties. In Section 5, a case study of CHD is presented to illustrate
the applicability of the proposed model. The discussion and conclusion are revealed in
Sections 6 and 7, respectively.
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2. Literature Review

This paper is related to chronic diseases management and POMDP applications in
medical decision-making. We review the related literature as follows, and then point out
the differences between our study and existing literature.

2.1. Chronic Diseases Management

Research on chronic disease policies has been primarily conducted in terms of three
aspects: screening, treatment, and diagnosis. Many studies mainly focus on cost–benefit
analysis of screening policies and treatment policies about chronic diseases, such as hyper-
tension [2], breast cancer [8,24], liver cancer [25], colon cancer [26], and glaucoma [3] based
on Markov models.

Disease diagnosis plays a critical role in designating screening and treatment poli-
cies [27]. In making diagnosis decisions, physicians must consider the trade-off between
detecting diseases early and sparing healthy people unnecessary procedures [28]. There are
many studies on diagnostic policies of prostate cancer [29] and breast cancer [8,30], which
demonstrate that the threshold to biopsy increases with age, implying less potential benefit
of a biopsy in older ages.

Regarding decision-making on CHD, while there have been many studies that focus
on the optimal screening policies [31,32] and treatment policies [33–36], there have been
relatively few studies that focus on improving CHD diagnosis based on quantitative
trade-offs. On the other hand, it is worth noting that the heterogeneity of patients is of
paramount importance in making decisions [2,29,37]. Due to the heterogeneity in the
patient population with CHD, the impact of treatment may vary among subgroups of the
overall population in terms of resource use, health benefits, and cost-effectiveness [38].

2.2. POMDP Applications in Healthcare

In healthcare, Markov models are extensively used for decision-making [39]. The use
of POMDP in the health context is rather recent, which has attracted much attention within
operations management.

As we all know, the POMDP model is a generalization of the Markov decision process
(MDP), which is the most popular stochastic sequential decision process in reinforcement
learning. Because patients’ condition evolves with time, the effects of diagnosis can be
accessed via POMDP, and it is not assumed that the state of the system is fully observable,
which is consistent with reality and makes it suitable to study chronic diseases.

POMDP has been used to study optimal disease decisions by considering different
factors in the literature, such as individual risk factors [37], heterogeneity of adherence
rates [40,41], and limited mammography resources [42]. In addition, some studies deter-
mine the best time for drug susceptibility testing [43] and analyze the telemedicine triage
system [44].

Among the aforementioned literature, Zhang et al. [29] is the study most related to our
study. They assumed that the biopsy rate was fixed at different ages. Notwithstanding the
relevance, our paper differs from it in three aspects. First, we not only consider the impact
of age and gender on the prevalence and deterioration rate, but also analyze dynamic
changes under various individual characteristics in the model. Second, we specifically
prove some unique structural properties including the optimal diagnosis time for a certain
patient with CHD and the belief threshold of diagnostic policies for different populations,
while they focused on population-based policies. Third, due to the specificity of CHD
and its examinations, our model differs from other literature. For instance, patients with
suspected CHD will have health loss, and the transfer of health status is different from other
diseases. In our study, the threshold first decreases and then increases as the patient’s age
increases, which is different from the non-decreasing thresholds in other studies. Finally,
combined with clinical data, we evaluate the performance of optimal policies on CAG
diagnosis and compare them with physicians’ decisions in clinical practice.
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3. Problem Definition

In our model, a patient is in one of five health states including health (H), pre-clinical
state (P), clinical state (C), deterioration (M), and death (D), as shown in Figure 1. The
state P indicates that the disease is present but not detected, while the state C indicates that
the disease is detected through an invasive test. In addition, the state M indicates that the
patient’s condition has deteriorated. The states in our model are associated with disease
incidence and progression as well as patient mortality.

Figure 1. State transition diagram.

If the patient is diagnosed with diseases, his health status will be transferred to state
C. In this state, he can be treated with drugs and possibly surgery. For example, if patients
are diagnosed with CHD, many of them may be treated with drugs, while some of these
patients with severe conditions may undergo PCI or CABG. This means they will exit the
diagnosis system and start treatment, and hence we assume a patient in a clinical state (C)
will not transition to a deteriorating state (M).

Patients in states H and P can be screened by non-invasive tests such as ECG and
CT. Due to the limitation and the inaccuracy of these tests, they cannot confirm whether
the patient has diseases, which implies that the patient’s condition is partially observable.
Because of this feature, we use a probability distribution to represent the belief on true
states and update the belief states in a Bayesian manner based on test results.

A diagnostic process is illustrated in Figure 2. When a patient undergoes non-invasive
tests, a physician assesses screening results and makes a decision from the two alternatives:
wait or administer invasive tests. That is, the physician decides whether to administer an
invasive test for the patient based on the results of the basic screening and the value of
updated risk. If the decision is to wait, the patient will continue to perform non-invasive
tests and make a decision for the same problem in the next year; if the decision is diagnosis
via an invasive test, the patient will have two results after the examination: (1) health,
the patient will stay in the current state and perform non-invasive tests at next decision
epoch; (2) diagnosed with diseases, the patient’s health status will be transferred to state C,
which implies that he will exit the diagnosis system and start treatment. Patients diagnosed
with diseases will be treated, implying that there are long-term side effects of subsequent
treatment.

In our model, QALYs is chosen as the criteria since it is extensively used in evaluating
the benefits of patients in the aforementioned literature. By capturing the decrements in
the quality of life due to side effects of related events such as tests and treatment, it can
consider both quality and quantity of life under different health conditions. Specifically,
QALYs is normalized to 1 with perfect health for a patient in a full year, and 0 for death [45].
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Figure 2. Decision-making process of diagnosis.

We describe various assumptions made throughout our model. Due to the high
accuracy of invasive tests, patients will leave this diagnostic system immediately once
they take an invasive test, which is consistent with previous medical decision-making
studies [29,37,40–42], and hence we assume a patient in state C will not transition to state
M. On the other hand, once a patient’s health status has deteriorated, we assume that he
will exit the diagnosis system because our model focuses on preventive diagnosis rather
than treatment, and therefore we assume a patient in state M will not transition to state C.
In addition, because it is not reported in the relevant literature that non-invasive tests will
reduce QALYs of patients, we assume that there is no QALYs decrement associated with
basic screening. In recent years, many patients have participated in physical examinations
every year in hopes of detecting diseases in China. In light of this case, we assume that
patients receive basic screening annually. Lastly, we assume that patients fully comply with
physicians’ diagnosis recommendations, since physicians are often altruistic and act in the
best interest of patients.

Therefore, on the one hand, from the patient’s perspective the optimal diagnosis age
for a certain patient should be determined based on his basic screening results, which
means that this patient should be recommended to diagnose via invasive tests in this time,
namely optimal diagnosis time. On the other hand, from the perspective of physicians
and the government as well as decision makers, we analyze optimal diagnostic policies,
denoted by the belief threshold between administering invasive tests and waiting, for
populations with various individual characteristics. Our objective is to maximize patient
health benefits, thereby efficiently balancing underdiagnosis and overdiagnosis.

4. Mathematical Model

As mentioned earlier, we developed a POMDP model to maximize a patient’s total ex-
pected QALYs for optimizing policies in chronic diseases diagnosis, which can characterize
the diagnosis progress. The model combines the health states of patients with decisions and
updates their belief states (i.e., the probability of being in various disease stages) at each
decision epoch according to basic screening results. Next, we detail our POMDP model.

The decision epochs in our model are denoted by t ∈ T = {40, 41, 42, . . . , 100}. That
is, the starting age of screening is 40 years old, and the ending age is 100 years old. Assume
that each screening is conducted at the beginning of each year.

At period t, health states of patients are denoted by st ∈ S = {H, P, C, M, D}. H and
P are partially observable, whereas the other states are completely observable. Patients
have a basic screening via non-invasive tests once a year, so the state transition interval is
one year.

The action is taken by a patient aged t, denoted by at ∈ A = {G, W}. The action space
A consists of two decisions: diagnosis via an invasive test (G) or wait (W) until the next
decision epoch. Specifically, if the health state of the patient st ∈ {H, P} at the start of year
is t, he will undergo basic screening, and then the physician advises whether he will be
subjected to invasive testing (at = G) or not (at = W) based on basic screening results in
that year.
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4.1. Observation States and Observation Probabilities

The health states of patients can be obtained through observable health statuses and
basic screening results. Due to the imperfect nature of basic screening, states H and P are
partially observable. However, some observation information can be obtained that can be
used to make further decisions. The observation space is defined as O = {PH, PP, C, M, D}.
We use PH to denote an observed health state by results, and PP to denote an observed CHD
present but not diagnosed state according to results. All other states are fully observable.

We let lt denote the observation when the patient is in a true state st at time t, and use
qt(lt|st ) to denote the probability of observing lt. We define the observation probability
matrix as Qt(lt|st ). Note that Qt(lt|st ) is independent of the actions because actions are
only taken for the patient in states st ∈ {H, P} and these actions do not affect basic
screening results. If he is in health state st ∈ {C, M, D}, it implies that the disease has
been diagnosed and thus no invasive test is needed and the observation on the state is
deterministic and reflects the true state, i.e., qt(lt|st ) = 1 for lt ∈ {C, M, D} and qt(lt|st ) = 0
for lt ∈ {PH, PP}, e.g., qt(C|C ) = 1. With a certain probability (specificity), the result of
a healthy patient will be negative; with a certain probability (sensitivity), the result of a
patient with CHD will be positive. We let p1 and p2 denote the specificity and the sensitivity
of basic screening, respectively, and then

Qt(lt|st ) =

(
p1 1− p1

1− p2 p2

)
, (1)

where rows refer to states H and P and columns refer to observed states PH and PP.

4.2. Transition Probabilities

We let pt(st+1|st, at ) denote health state transition probability, i.e., the probability of
the patient in state st+1 at age t + 1, given that he was in state st and took action at at age
t. Taking CHD as an example, if at = W, the patient’s CHD-related health state evolves
naturally. CHD is caused by a narrowing of the blood vessels in the heart resulting in
inadequate blood supply. Even if patients take drugs for a long time, it can only slow down
the progression of CHD, not cure it. The patient’s health condition will not be reversed but
will only remain the same or deteriorate. There are some parameters used to construct the
state transition probability matrices in our model. We let it and et be the annual incidence
of CHD and the probability of health deterioration which are age-specific, and d1 and d2 be
the annual mortality from CHD and other reasons, respectively.

If at = G, CAG test changes the course of CHD natural disease progression in that it
triggers treatment at a clinical state. We assume that the CAG test can diagnose CHD and
identify the patient’s state with certainty.

For st ∈ {H, P}, if the patient is diagnosed with certainty by CAG (at = G), the patient
will be transferred to state C with certainty and the probability of transitioning to any other
states is 0.

For st ∈ {C, M, D}, no CAG is needed and pt(st+1|st, at ) does not depend on at.
Hence, the patient’s health state evolves naturally, which can be modeled by setting
pt(st+1|st, W ) = pt(st+1|st, G ).

4.3. Belief States and Belief Update

We denote a belief state (or belief vector) to be bt = (bt(H), bt(P), bt(C), bt(M), bt(D)),
where bt is the probability with which a person is in one of the five health states at epoch t.
We let B be the set containing all possible belief states, i.e., bt ∈ B ≡ {bt ∈ R5|∑s∈S bt(s) =
1, 0 ≤ bt(s) ≤ 1, s ∈ S}, where R denotes the set of real numbers. Note that, if a patient
has an observation lt ∈ {C, M, D}, his belief state is bt(st) = 1 for st ∈ {C, M, D}. This
indicates that our five-state POMDP model includes two partially observable states (H and
P) and three absorbing states (C, M, D). For a patient without a positive result of invasive
tests, his belief state can be represented as bt = (1− bt(P), bt(P), 0, 0,0).
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If lt ∈ {PH, PP}, we apply Bayesian updating for the patient’s belief state bt based on
lt and at, which can be used to revise the belief state bt+1. Based on [29,41,42], the updated
belief can be obtained by the following transformation

bt+1(st+1) =
qt+1(lt+1|st+1 )∑st∈S pt(st+1|st, at )bt(st)

∑s′ t+1∈S qt+1(lt+1|s′t+1 )∑st∈S pt(s′t+1|st, at )bt(st)
; (2)

If lt ∈ {C, M, D}, no belief needs to be updated because the true disease state can be
observed.

4.4. Rewards

We define the rewards which incorporate the expected future longevity and side effects
associated with tests. Let rt(st, at) be the immediate reward (measured in QALYs) when the
patient’s true health state is st and action at is selected at time t, and hence the belief state
expected immediate reward is computed by rt(bt, at) = ∑st∈S bt(st)rt(st, at). In addition,
let p3 be the diagnostic rate of invasive tests for patients, i.e., the probability of detecting the
disease through an invasive test (such as CAG) in state P, µ be the expected loss associated
with a single invasive test, and let α, β, and γ denote the annual expected loss of QALYs in
states P, C, and M, respectively. We assume that all parameters and immediate rewards
have values in [0, 1]. Meanwhile, we assume µ + α(1− p3) + βp3 < 1 and α ≤ β ≤ γ.
Immediate rewards are provided in Table 1.

Table 1. Immediate rewards.

st
at

W G

H 1 1− µ
P 1− α 1− µ− α(1− p3)− βp3
C 1− β 1− β
M 1− γ 1− γ
D 0 0

4.5. Optimality Equation

Our objective is to determine optimal diagnostic policies for chronic diseases, which
maximizes the patient’s total expected discounted QALYs. The optimal value function of
the model can be written as

vt(bt) = max
at∈{G,W}

{
rt(bt, at) + λ ∑

lt+1∈O
vt+1(bt+1)pt(lt+1|bt, at )

}
, ∀bt ∈ B, (3)

where pt(lt+1|bt, at ) = ∑st+1∈S qt+1(lt+1

∣∣∣st+1)∑st∈S pt(st+1|st, at )bt(st) and λ ∈ [0, 1] de-
notes the annual discount factor. In the optimality equation, the first component represents
the expected immediate reward of a patient at decision epoch t, and the other represents
the total expected future rewards. Thus, the diagnostic policy depends not only on current
immediate rewards but also on future rewards. The larger the discount factor, the more
important future rewards.

As previously assumed, patients will leave our diagnostic system immediately once
they take an invasive test, and hence the optimal diagnostic policy can be viewed as a
partially observable optimal stopping time problem. Let vt(bt, W) and vt(bt, G) be the total
expected discounted QALYs for actions W and G in belief state bt, respectively. At each
decision epoch, the physician will choose between the expected reward associated with
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invasive tests, vt(bt, G), or deferral of the decision to invasive tests to the next decision
epoch, vt(bt, W). Thus, the optimality equation can be rewritten as

vt(bt) = max{vt(bt, W), vt(bt, G)}, ∀t, ∀bt ∈ B. (4)

Let Rt(s) denote the expected discounted future reward given the patient is never
referred for invasive tests (i.e., at = W), and is in state st, in age t. On the contrary, Rt(s)
is the expected discounted future reward given at = G in decision epoch t. Lastly, the
difference between a patient’s health rewards under two strategies (wait and diagnosis)
can be calculated as:

∆QALYs = vt(bt, G)− vt(bt, W). (5)

4.6. Structural Properties

In this section, we discuss the structure of our POMDP and prove relevant propositions
to provide insights to decision makers on optimal diagnostic policies of chronic diseases.
POMDPs are computationally difficult to solve. However, it was shown by Smallwood and
Sondik (1973) [46] that the value functions for POMDPs are finite, piecewise linear, and
convex, and POMDPs can be converted into an equivalent completely observable Markov
decision process on the continuous belief states [9,29,47,48], which greatly simplifies the
solution of our model.

According to previous assumptions, we first analyze optimal diagnostic decisions by
measuring the difference of health rewards under different strategies. Next, we demonstrate
that optimal policies of chronic diseases diagnosis follow a control-limit type policy with
respect to a belief threshold. The proofs of all results in this section are presented in
Appendix A.

Proposition 1. Under the assumptions above, for any∀t ∈ T, we have d∆QALYs
dbt(P) ≥ 0.

Proposition (1) presents that ∆QALYs increases with bt(P) (the probability of having
chronic diseases) at each period t. As a result, compared to waiting, patients with high risk
tend to diagnose by invasive tests. This suggests that an increased risk of chronic diseases
naturally increases the future reward of diagnosis and reduces the relative effect from side
effects of an invasive test and subsequent treatment on patients.

Proposition 2. There exists an optimal diagnosis time t∗for the patient with the probability of
having chronic diseases bt(P), and the optimal time is uniquely determined by the following
equation

t∗ ∈ argmax(vt(bt, G)− vt(bt, W)). (6)

Proposition (2) indicates that there is the maximum incremental rewards in QALYs
of chronic diseases diagnosis at time t∗ between two diagnostic decisions in belief state
bt(P), and the patient’s optimal policy is diagnosis by an invasive test, i.e., a∗t = G. From
the patient’s perspective, Proposition (2) shows how a physician determines the optimal
time for a single patient in belief state bt(P) based on ∆QALYs. Next, Proposition (3) will
make optimal diagnostic policies for populations from the perspective of physicians and
governments.

Proposition 3. There exists a threshold b∗t (P) such that

1. If bt(P) ≤ b∗t (P), the optimal policy is wait, i.e., a∗t (bt) = W;
2. If bt(P) > b∗t (P), the optimal policy is diagnosis, i.e., a∗t (bt)= G;

where the threshold equals

b∗t (P) =
µ

Rt(P)− Rt(P) + µ
. (7)
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Proposition (3) states that optimal diagnostic policies exhibit a threshold structure.
This implies that b∗t (P) is the maximum probability that the patient who chooses to wait is
in state P. When a patient’s belief state bt(P) is lower than this threshold, the optimal policy
is wait, while when bt(P) is higher than this threshold, the optimal policy is performing an
invasive test.

Propositions (2) and (3) provide insights for physicians and governments as well as
policymakers to make diagnostic decisions more effectively. Specifically, from the patient’s
perspective, Proposition (2) indicates that a given patient should be recommended to
diagnose in the optimal diagnosis time based on his basic screening results. In addition,
from the government and policy makers’ perspective, Proposition (3) shows that optimal
diagnostic policies are denoted by the belief threshold between diagnosis and waiting for
different populations with various individual characteristics, thereby efficiently improving
health and balancing between overdiagnosis and underdiagnosis. For example, if available
resources are restricted, such as essential medical supplies and well-trained personnel,
diagnostic policies can be made for patients with different disease probabilities in an
optimized manner to effectively use resources and improve overall QALYs.

5. Case Study

In this section, we perform numerical analyses on CHD that investigate how patient
characteristics and model parameters may impact diagnostic policies by CAG as well as
health rewards of patients. The primary goal of this research is to verify the feasibility of
the proposed model and provide relevant insights obtained from the results to physicians
and decision makers in health-related fields for diagnosing CHD, effectively.

First, we summarize parameters from the available clinical data and present optimal
policies in the basic model. Second, to achieve a more personalized diagnostic decision, we
consider the influence of individual characteristics on optimal policies. Third, we evaluate
the performance of optimal diagnostic policies on CAG diagnosis and compare them with
physicians’ decisions in clinical practice. Last, we use sensitivity analysis to evaluate the
influence of changes in each of the model parameters to identify which parameters most
significantly affect optimal diagnostic policies.

5.1. Parameter Estimation

Our clinical data were obtained from a dataset of CAG examinations from a large
general hospital in Kaifeng, Henan Province, collected between January and December 2019.
The data consists of 1291 patients. Because we focused on primary diagnosis, we removed
unrelated records, which included 399 patients who were in states of percutaneous coronary
intervention (PCI) or coronary artery bypass grafting (CABG), and 59 patients with acute
myocardial infarction. Finally, our data set consisted of 833 effective records. The results of
data statistics showed that 495 patients did not suffer from CHD. Therefore, we assumed
that the average diagnostic rate of CAG was 41% in the basic model. Table 2 summarizes
the above parameters used to construct the transition probability and the rewards in our
model, and all parameters are nonnegative and not greater than 1 by definition.
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Table 2. Model parameters.

Parameter Description Value Source

it Annual incidence of CHD
ages 40–60 0.0102 Center for Health Statistics and

Information [49]ages 60–100 0.0278

et Probability of health deterioration ages 40–60 0.0051 Center for Health Statistics and
Information [49]; Yin et al. [50]ages 60–100 0.0139

d1 Annual mortality from CHD 0.0012 National Center for Cardiovascular
Diseases [51]

d2 Annual mortality from other reasons 0.06 National Bureau of Statistics [52]

p1 Specificity of basic screening 0.62 Hatzidakis et al. [19]

p2 Sensitivity of basic screening 0.74 Hatzidakis et al. [19]

α Annual loss in state P 0.2 QALYs Amemiya and Takao [53]

β Annual loss in state C 0.2 QALYs Kansara et al. [35]

γ Annual loss in state M 0.3 QALYs Gillespie et al. [38]

λ Discount factor 0.97 Li et al. [26]

µ Loss associated with a single CAG 0.03 QALYs Average length of stay per patient

p3 Diagnostic rate of CAG 0.41 Clinical data

5.2. Baseline Analysis

We discuss some interesting observations and general insights under the baseline
scenario that can be drawn below. bt(p) at age t = 40 is 0.01, which is based on the
annual incidence of CHD for ages 40–60, as reported by the Center for Health Statistics and
Information [49]. The belief threshold between diagnosis and waiting in the basic model is
illustrated in Figure 3. Obviously, it can be seen that optimal policies have the following
properties.

Figure 3. Optimal policies for diagnosis.

First, there is a threshold for optimal policies. Second, the change in the optimal
threshold will be related to the age of the patient. Third, the threshold is higher for younger
patients. This is because when a patient is at a young age, the health loss of undergoing a
CAG is generally greater than the health loss of waiting. Fourth, there is a termination age
for diagnostic decisions. If the patient is over age 88, namely the termination age, it will
not be recommended to diagnose.

It can be seen from Figure 4 that not everyone benefits from CAG. When the patient
is between age 41 and 84, the benefit of undergoing a CAG is greater than that of waiting.
Especially for patients between age 43 and 66, the health rewards are significantly higher
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given the decision to diagnose, and the patient aged 61 who receives a CAG has the greatest
health rewards. Furthermore, if patients are older than 84 years, taking CAG tests results
in a decrease of their rewards, for which physicians currently hesitate to recommend
patients receive a CAG for diagnosing CHD. The change is intuitive because with the
increasing probability of death from other causes such as patients’ age, their remaining
lifetime QALYs following treatment will be lower, which is similar to the related literature
and guidelines [8,40]. Therefore, the government and decision makers in health-related
fields should pay attention to patients between age 43 and 66 to promote early screening
and diagnosis of CHD to reduce health loss and medical costs relating to CHD.

Figure 4. ∆QALYs in baseline analysis.

Unlike chronic diseases studied in other literature, we can find interesting results from
Figures 3 and 4. If the patient is under the age of 41, the side effects of undergoing a CAG
are higher than that of waiting. Note that in this case patients will not be recommended
for diagnosis, which is consistent with low adherence rates of younger patients receiving
a CAG in reality. We can explain this as follows. First, because CAG is an invasive
examination, it has potential risks and side effects such as bleeding or hematoma at the
puncture site and arrhythmia. Secondly, CAG has proven to have a significant role in
measuring the degree of vascular stenosis, and patients may be treated by PCI or CABG
during the diagnosis process by performing a CAG, which is another important role. In
clinical practice, a patient does not need to be treated if the degree is less than 50%. Finally,
because of the lower prevalence of CHD for patients at a young age compared with other
diseases, they are relatively less likely to receive treatment after diagnosis, and hence their
threshold is higher. This is different from the optimal screening policies proposed in other
literature, which recommend more aggressive screening for younger patients.

5.3. Optimal Policies Considering Individual Characteristics

In this section, in order to investigate the impact of individual characteristics on
optimal policies, we updated the diagnostic rate of CAG based on the dataset described
above, as shown in Table 3. The updated diagnostic rates are disaggregated according to
different ages and genders.
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Table 3. Diagnostic rate based on individual characteristics.

Age Males Females

40–50 0.38 0.15
51–60 0.45 0.31
61–70 0.52 0.36
71–80 0.67 0.42
81–90 0.78 0.71

91–100 1.00 0.00

As shown in Figure 5, optimal diagnostic policies vary with individual characteristics
of patients; that is, the belief threshold and the termination time are different with various
characteristics. In general, as the patient’s age increases, the threshold first decreases and
then increases, which is different from non-decreasing thresholds in the age seen in other
literature. Furthermore, females have a higher diagnostic threshold than males, especially at
a younger age, and the termination time for diagnosis becomes smaller for female patients.
Thus, at such low belief levels, aggressive policies would lead to many false positives and
unnecessary CAG tests, and the diagnosis rate would not increase significantly, which in
turn would lead to a reduction in QALY.

Figure 5. The threshold affected by individual characteristics.

For evaluating the difference of health rewards, Figure 6 compares the influence of
individual characteristics on the improvements in the QALY criterion under two diagnostic
policies. Obviously, we find that ∆QALYs of males undergoing diagnosis is higher than
that of females, which implies that having aggressive diagnosing between the ages of 50
and 75 is especially critical for males. However, the benefits for females are less because the
efficacy of the screening test is lower for them. For example, the improvement between
two strategies of a male aged 61 is 0.1008 QALYs, and hence a man has 0.0405 QALYs more
than a woman of the same age. In addition, the diagnostic benefits of young patients may
be negative due to the side effects of examinations and the low probability of having CHD,
implying that the optimal policy is to wait in this case.

Therefore, physicians and decision-makers in health-related fields should focus on
diagnosing patients with a high probability of having CHD via CAG to avoid underdiagno-
sis and delays in treatment, especially between the ages of 50 and 75. At the same time,
unnecessary testing of patients with a low probability, especially young females, could be
reduced, which would avoid overdiagnosis. This is in line with diagnostic guidelines and
the literature [22,54,55]. It should be noted that in clinical practice, however, physicians
need to consider other factors comprehensively when deciding whether a patient should
go for further testing to avoid delays in diagnosis and treatment.
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Figure 6. ∆QALYs affected by individual characteristics.

5.4. Comparison with Other Policies

We measured the total health rewards of CHD diagnosis by estimating how much
the total expected QALYs for a 40-year-old patient improves when the optimal policy is
adopted as opposed to other policies.

Table 4 shows that the improvement and percentage improvement in QALYs between
optimal decisions and decisions in clinical practice. Based on our experiments, we found
that the optimal strategies we proposed can result in higher QALY gains for patients than
others. For example, the optimal policy for male patients in b40(P)= 1 is diagnosis by CAG.
Compared with the decision to wait, the incremental benefit of the optimal policy is 0.1067
QALYs per person for the male population. As a result, males in a higher belief state get
more rewards when taking the optimal policy than when taking others.

Table 4. Comparison of QALYs between the optimal policy to other policies.

b40(P)
Optimal
Policy

QALYs under
Optimal Policy

Improvements Compared with
the Other Policies

Percentage
Improvement

Males
0 W 23.6907 0.0300 0.127

0.5 G 21.6686 0.0383 0.177
1 G 19.6765 0.1067 0.545

Females
0 W 23.6907 0.0300 0.127

0.5 W 21.6303 0.0036 0.017
1 G 19.5927 0.0228 0.116

Note that optimal policies are different for patients of different genders. When b40(P)
is equal to 0.5, male patients are expected to have up to 0.177% more QALYs by following
the optimal policy rather than waiting, while female patients should be advised to wait.
We focused on two different perspectives, i.e., individual patients and populations with
various individual characteristics. Thus, the improvement in quality-adjusted life years of
an individual patient is not obvious, whereas the health benefits at the population level
will increase significantly as the benefits of each patient increase.

5.5. Sensitivity Analysis

Because some parameters in our model are subject to variation due to differences in
actual conditions, patient preferences, and physiology, we conducted sensitivity analysis
for these parameters in Figure 7. The variation range of these parameters is based on
relevant literature or ±20% of the basic values [26,29].
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Figure 7. Sensitivity analysis for parameters.

The optimal policy is particularly sensitive to the annual loss of QALYs per person
(namely α, β, and γ) in states P, C, and M, respectively, as illustrated in Figure 7e,g. In
Figure 7c,d, optimal policies are sensitive to the change in specificity p1 and sensitivity p2
of basic screening. In addition, Figure 7i is the sensitivity analysis of the discount factor, λ.
As illustrated in Figure 7a,b,h, we observe that ∆QALYs is insensitive to changes in d1, d2,
and µ.

The above sensitivity analysis shows that it is crucial to assess patients’ health loss
under each of the states when studying the diagnosis of chronic diseases. Therefore, model
parameters are well estimated, which can help effectively optimize diagnostic policies
based on various personal characteristics. Furthermore, improving the sensitivity of basic
screening and reducing the side effects of CAG and subsequent treatment can effectively
improve health rewards for undergoing a CAG, which implies that patients will be willing
to diagnose.

6. Discussion

From the patient’s perspective, there exists an optimal diagnosis time based on basic
screening results via non-invasive tests. When patients are in the recommended age, they
will be encouraged to diagnose via invasive tests for maximizing their health rewards.

From the perspective of physicians and the government as well as decision makers,
optimal policies of chronic disease diagnosis follow a control-limit type policy with respect
to a belief threshold for different populations with various individual characteristics. This
can lead to better resource utilization for healthcare providers and governments. Unlike
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most studies in the literature, due to the specificity of CHD and its examinations, the
diagnostic threshold first decreases and then increases as the patient’s age increases. In
addition, not everyone benefits from non-invasive tests, and we were able to identify
patients that could benefit from tests through this model.

Therefore, physicians should focus on the diagnosis of males with a high probability
of having CHD to efficiently avoid underdiagnosis and a delay in treatment, particularly
between the ages of 50 and 75. In contrast, unnecessary examinations for patients with a low
probability, especially young females, should be reduced which can avoid overdiagnosis.

In clinical practice, however, physicians need to comprehensively consider other
clinical factors to avoid delays in diagnosis and treatment. Therefore, decision makers can
make personalized decisions based on the characteristics of different populations. This
can not only help high-risk patients to be diagnosed and treated as soon as possible, but
also make effective use of medical resources. This further emphasizes the importance of
individual characteristics, which would be of great significance for the government and
policymakers in health-related fields when setting health care policies and for insurance
companies when designing insurance programs.

The contribution of this paper is two-fold. First, we extended the POMDP model to a
new problem and studied personalized diagnostic decisions of chronic diseases considering
individual characteristics of patients. This model can also be extended to other diseases
and other medical decisions such as screening and treatment policies. Second, we derived
some structural properties, including the optimal diagnosis time for a certain patient with
chronic diseases and the belief threshold of diagnostic policies for different populations,
and investigated the effect of individual characteristics on properties.

7. Conclusions

Diagnostic policies of chronic diseases have become a critical research issue for patients
and physicians as well as decision makers in health-related fields, which currently has
potential problems such as overdiagnosis and underdiagnosis. We constructed a POMDP
model for chronic diseases to optimize diagnostic policies incorporating individual charac-
teristics of patients and derived some structural properties, including the existence of the
diagnostic threshold and the optimal diagnosis age.

More specifically, from the patient’s perspective, we determined the optimal diagnosis
time for a certain patient based on basic screening results; from the perspective of physicians
and the government as well as decision makers, we analyzed optimal diagnostic policies,
denoted by the belief threshold for populations with different individual characteristics.
Our proposed model maximizes health benefits for patients and achieves the trade-off
between underdiagnosis and overdiagnosis from a systematic point of view. Furthermore,
the application of this model can improve overall public health QALYs and can be an
efficient use of resources, especially where available resources, such as essential medical
supplies and well-trained personnel, are constrained.

There are several future research directions of this study. Firstly, we only considered
the impact of age and gender on the decision-making of invasive examinations, while
other risk factors such as family medical history, smoking, and drinking are related to
chronic diseases. Secondly, we assumed 100% adherence rate of patients to diagnosis
recommendations in POMDP, and hence the impact of adherence behavior on the diagnostic
policies is a potential topic for further exploration. Thirdly, an increasing number of patients
prefer to play an active role during the decision-making process in clinical practice, which
suggests it is critical to incorporate various risk preferences into the process for individuals
or populations. Finally, because this paper focused on diagnostic policies, in terms of
extending the analysis another research direction is to comprehensively analyze optimal
policies of patients during the entire process including screening and treatment.
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Appendix A

To prove the aforementioned propositions, we need to prove related lemmas. First,
we present the expected discounted future rewards under two policies after age t for five
states H, P, C, M and D, respectively. The rewards can be written as

Rt(H) = rt(H, W) + λ
(

pt(H|H, W )Rt+1(H) + pt(P|H, W )Rt+1(P)
)
,

Rt(P) = rt(P, W) + λ
(

pt(P|P, W )Rt+1(P) + pt(M|P )Rt+1(M)
)
,

Rt(H) = rt(H, G) + λ
(

pt(H|H, G )Rt+1(H) + pt(P|H, G )Rt+1(P)
)
,

Rt(P) = rt(P, G) + λ
(

pt(P|P, G )Rt+1(P) + pt(C|P )Rt+1(C) + pt(M|P )Rt+1(M)
)
,

Rt(C) = rt(C) + λpt(C|C )Rt+1(C),

Rt(M) = rt(M) + λpt(M|M )Rt+1(M),

Rt(D) = rt(D).

Lemma A1. Rt(P) ≥ Rt(M) for all t ∈ T.

Proof. From the above reward functions and the assumption α ≤ β ≤ γ, we have

Rt(P)− Rt(M) = rt(P, W) + λ
(

pt(P|P, W )Rt+1(P) + pt(M|P, W )Rt+1(M)
)
− (rt(M) + λpt(M|M )Rt+1(M))

= γ− α + λ(1− d2)(1− et)
(

Rt+1(P)− Rt+1(M)
)
+ λ(1− d2)d1Rt+1(M)

≥ λ(1− d2)(1− et)
(

Rt+1(P)− Rt+1(M)
)
.

When the patient is in state M, Rt(M) is greater than 0, thereby the above inequality holds.
Expanding this inequality for t + 1, t + 2, . . . , 100, we have

Rt(P)− Rt(M) ≥ (γ− α)(λ(1− d2))
100−t ∗

100

∏
j=t

(1− ej) ≥ 0,

which implies Rt(P) ≥ Rt(M) for all t ∈ T. Lemma (A1) means that the patient in state P
has expected QALYs no less than that in state M given the decision to wait.

Lemma A2. Rt(H) ≥ Rt(P) for all t ∈ T.

Proof. From the above reward functions, we have
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Rt(H)− Rt(P) = rt(H, W) + λ
(

pt(H|H, W )Rt+1(H) + pt(P|H, W )Rt+1(P)
)
−(

rt(P, W) + λ
(

pt(P|P, W )Rt+1(P) + pt(M|P, W )Rt+1(M)
))

= α + λ(1− it)(1− d2)Rt+1(H) + λ(1− d2)Rt+1(P)(it − 1) + λet(1− d2)
(

Rt+1(P)− Rt+1(M)
)

≥ λ(1− it)(1− d2)
(

Rt+1(H)− Rt+1(P)
)
.

From Lemma (A1), the above inequality holds. Expanding this inequality for t + 1, t +
2, . . . , 100, we have

Rt(H)− Rt(P) ≥ α(λ(1− d2))
100−t ∗

100

∏
j=t

(1− ij) ≥ 0,

hence the result holds. Lemma (A2) means that the patient in state H has expected QALYs
no less than that in state P given the decision to wait.

Lemma A3. Rt(C) ≥ Rt(P) for all t ∈ T when α = β.

Proof. From the above reward functions and the assumption α ≤ β ≤ γ, we have

Rt(C)− Rt(P) = rt(C) + λpt(C|C )Rt+1(C)−
(
rt(P, W) + λ

(
pt(P|P, W )Rt+1(P) + pt(M|P, W )Rt+1(M)

))
= α− β + λ(1− d2)

(
Rt+1(C)− Rt+1(P) + et

(
Rt+1(P)− Rt+1(M)

))
≥ α− β + λ(1− d2)

(
Rt+1(C)− Rt+1(P)

)
.

From Lemma (A2), the above inequality holds. Expanding this inequality for t + 1, t +
2, . . . , 100, we have

Rt(C)− Rt(P) ≥ (α− β)(λ(1− d2))
100−t ≥ 0,

hence the result holds when α = β. Lemma (A3) means that the patient in state C has
expected QALYs no less than that in state P.

Lemma A4. Rt(C) ≥ Rt(M) for all t ∈ T.

Proof. From the above reward functions and the assumption α ≤ β ≤ γ, we have

Rt(C)− Rt(M) = rt(C) + λpt(C|C )Rt+1(C)− (rt(M) + λpt(M|M )Rt+1(M))
= γ− β + λ(1− d2)(Rt+1(C)− Rt+1(M)) + λ(1− d2)d1Rt+1(M)
≥ λ(1− d2)(Rt+1(C)− Rt+1(M)).

When the patient is in state M, Rt(M) is greater than 0, thereby the above inequality holds.
Expanding this inequality for t + 1, t + 2, . . . , 100, we have

Rt(C)− Rt(M) ≥ (γ− β)(λ(1− d2))
100−t ≥ 0,

hence the result holds. Lemma (A4) means that the patient in state C has expected QALYs
no less than that in state M.

Lemma A5. Rt(H) ≥ Rt(P) for all t ∈ T.

Proof. From the above reward functions and the assumption α ≤ β ≤ γ, we have

Rt(H)− Rt(P) = rt(H, G) + λ
(

pt(H|H, G )Rt+1(H) + pt(P|H, G )Rt+1(P)
)

−
(
rt(P, G) + λ

(
pt(P|P, G )Rt+1(P) + pt(C|P )Rt+1(C) + pt(M|P )Rt+1(M)

))
= α(1− p3) + βp3 + λ(1− d2)(1− it)

(
Rt+1(H)− Rt+1(P)

)
+λ(1− d2)

(
(p3 + et(1− p3))Rt+1(P)− p3Rt+1(C)− et(1− p3)Rt+1(M)

)
.
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From Lemmas (A1) and (A3), we have k ≥ 1, where k = Rt+1(C)−Rt+1(P)
Rt+1(P)−Rt+1(M)

. Because the
probability of health deterioration in a CAG diagnosis of healthy is not more than k times
the probability of a CAG diagnosis of having CHD, we have p3k ≥ et(1− p3), and hence
the above inequality holds. Expanding this inequality for t + 1, t + 2, . . . , 100, we have

Rt(H)− Rt(P) ≥ α(λ(1− d2))
100−t ∗

100

∏
j=t

(1− ij) ≥ 0,

which implies Rt(H) ≥ Rt(P) for all t ∈ T. Lemma (A5) means that the patient in state H
has expected QALYs no less than that in state P given the decision to diagnosis.

Lemma A6. Rt(P)− Rt(P) ≥ −µ for all t ∈ T.

Proof. From the above reward functions, we have

Rt(P)− Rt(P) = rt(P, G) + λ
(

pt(P|P, G )Rt+1(P) + pt(C|P )Rt+1(C) + pt(M|P )Rt+1(M)
)

−
(
rt(P, W) + λ

(
pt(P|P, W )Rt+1(P) + pt(M|P )Rt+1(M)

))
= −µ + (α− β)p3 + λ(1− d2)

(
p3
(

Rt+1(C)− Rt+1(P)
)
+ et p3

(
Rt+1(P)− Rt+1(M)

))
.

From Lemmas (A1) and (A3), hence the result holds.

Proof of Proposition A1. Due to Rt(H)−Rt(H) = −µ, we have ∆QALYs = bt(P)(Rt(P)−
Rt(P) + µ)− µ. For any ∀t ∈ T, by taking the derivative of ∆QALYs with respect to bt(P),
we have d∆QALYs

dbt(P) ≥ 0 according to Lemma (A6). Then, we have ∆QALYs increases with
bt(P) at each period for any t.

Proof of Proposition A2. By Lemma (A5), we have dvt(bt ,G)
dbt(P) = −(Rt(H)− Rt(P)) ≤ 0.

Similarly, we conduct the derivation for vt(bt, W), dvt(bt ,W)
dbt(P) = −

(
Rt(H)− Rt(P)

)
≤ 0 by

Lemma A2. Because bt(P) ∈ [0, 1], the value of ∆QALYs is finite in T. As a result, there
exists an optimal diagnosis time t∗ ∈ T for the patient with the probability of having CHD
bt(P), which maximizes the incremental rewards in QALYs of CHD diagnosis. And the
optimal time is uniquely determined by the following equation

t∗ ∈ argmax(vt(bt, G)− vt(bt, W)) = argmax
(
bt(P)

(
Rt(P)− Rt(P) + µ

)
− µ

)
. �

Proof of Proposition A3. According to Lemma (A6), we have Rt(P) − Rt(P) + µ ≥ 0.
If bt(P) ≤ µ

Rt(P)−Rt(P)+µ
, ∆QALYs = bt(P)

(
Rt(P)− Rt(P) + µ

)
− µ ≤ 0 holds, which

implies that the optimal diagnosis decision is wait, namely a∗t = W. In contrast, if bt(P) >
µ

Rt(P)−Rt(P)+µ
, we have vt(bt, G) > vt(bt, W), i.e., ∆QALYs > 0 holds, which implies that

the optimal diagnosis decision a∗t = G.
This proposition can be categorized and proved by considering the two different cases

presented below.
Case 1 (a∗t (bt(P) = 1) = G): In this case, vt(bt = 1, W) < vt(bt = 1, G). From Propo-

sition (2), vt(bt, G) and vt(bt, W) are non-increasing in bt(P). From Lemmas (A1) and
(A3), we have dvt(bt ,G)

dbt(P) ≥
dvt(bt ,W)

dbt(P) . It follows that vt(bt, W) and vt(bt, G) have at most
one intersection of b∗t (P). As a result, if bt(P) > b∗t (P), a∗t (bt) = G; if bt(P) ≤ b∗t (P),
a∗t (bt) = W.

Case 2 (a∗t (bt(P) = 1) = W): By the condition of this case, ∆QALYs is not greater
than 0. From Proposition (1), ∆QALYs is positively correlated with bt(P). As a result, the
optimal diagnosis decision is wait at any bt(P), which implies a∗t (bt) = W, if bt(P) ≤ b∗t (P)
and a∗t (bt) = G, if bt(P) > b∗t (P), where b∗t (P)= 1.
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