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Novel coronavirus pneumonia (NCP) has become a global pandemic disease, and computed tomography-based (CT) image
analysis and recognition are one of the important tools for clinical diagnosis. In order to assist medical personnel to achieve an
efficient and fast diagnosis of patients with new coronavirus pneumonia, this paper proposes an assisted diagnosis algorithm based
on ensemble deep learning. The method combines the Stacked Generalization ensemble learning with the VGG16 deep learning to
form a cascade classifier, and the information constituting the cascade classifier comes from multiple subsets of the training set,
each of which is used to collect deviant information about the generalization behavior of the data set, such that this deviant
information fills the cascade classifier. The algorithm was experimentally validated for classifying patients with novel coronavirus
pneumonia, patients with common pneumonia (CP), and normal controls, and the algorithm achieved a prediction accuracy of
93.57%, sensitivity of 94.21%, specificity of 93.93%, precision of 89.40%, and F1-score of 91.74% for the three categories. The
results show that the method proposed in this paper has good classification performance and can significantly improve the

performance of deep neural networks for multicategory prediction tasks.

1. Introduction

In March 2020, COVID-19 caused by SARS-CoV-2 has
reached global pandemic levels. As of January 2021, the
World Health Organization issued a bulletin showing that
the cumulative number of confirmed cases worldwide ex-
ceeds 91 million, the cumulative number of deaths exceeds
1.9 million deaths, and up to 300,000 new confirmed cases
per day, and artificial intelligence methods are one of the
important tools for the diagnosis of clinical novel corona-
virus pneumonia (COVID-19) [1, 2]. In clinical practice,
etiological tests including sputum, pharyngeal swabs, and
lower respiratory secretions, such as reverse transcription-
polymerase chain reaction (RT-PCR) and gene sequences,
are the gold standard for the diagnosis of COVID-19, and
nucleic acid testing is widely considered to be the main
criterion for discharge after treatment. However, the current
epidemiological situation of COVID-19 is dramatically

increasing, and a large number of COVID-19 infections are
being confirmed every day. Diagnostic methods of nucleic
acid testing are faced with long waiting times for test results,
certain false negatives, and shortage of testing reagents, and
CT image analysis of the chest is also considered an im-
portant adjunctive diagnostic tool. For example, almost all
patients with COVID-19 have some typical radiological
features of chest CT, including ground-glass opacities,
multifocal patchy consolidation, and/or interstitial changes
in a peripheral distribution [3-8]. Therefore, until definitive
results are obtained, rapid differentiation of patient type,
based on chest CT images, may be a useful tool to improve
diagnosis and to better characterise disease effects.

Deep learning is a part of machine learning whose
concept originated from the study of artificial neural
networks. Deep learning discovers distributed feature
representations of data by combining lower-level features
to form more abstract higher-level representations of
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attribute categories or features. Researchers have made
important research progress in previous work by imple-
menting deep learning algorithms to predict and classify
pneumonia such as COVID-19 based on chest medical
images and other biological indicators. According to Ta-
ble 1, the existing studies on COVID-19 face the following
problems: Wang [10] used a three-dimensional deep neural
network to classify COVID-19 and a weakly supervised
approach to localize lesion regions by combining the ac-
tivated regions and unsupervised connected components in
the classification network, obtaining 90.1% accuracy and
95.5% ROC. However, this 3D classification model has
problems such as long training time. Han [11] designed an
attention mechanism-based pooling method applied to 3D
data instance prediction that achieved 97.9% accuracy and
99% AUC in COVID-19, CP, and normal classification
tasks, but there are problems of limited test set size, for
instance, prediction based on 3D data. HORRY [12] pro-
posed a COVID-19 detection method based on migration
learning and multimodal image data, but the performance
of the generated classification model is insufficient. Pathak
[17] proposed a deep bidirectional long-short memory
network with a hybrid density network model (DBM) for
COVID-19 and non-COVID-19 classification tasks
achieving 98.37% accuracy and 98.32% AUGC; its dataset
size is small with only 1790 sheets. Wang et al. [21]
designed an X-ray migration learning and model inte-
gration deep learning method for COVID-19, which
achieved good results of 96.1% in triclassification predic-
tion tasks, but there are only 140 images of COVID-19
patients in the dataset, and more than 7000 images of
common pneumonia patients and normal controls; but this
dataset is small and unbalanced.

To address the problems of insufficient accuracy, long
training time, and insufficient dataset size in multi-
classification prediction tasks [27-29], a COVID-19-assisted
diagnosis algorithm based on integrated deep learning is
proposed in this paper. The algorithm aims to train deep
learning models for small data sets to reduce the training
time and the requirements for machine performance.
Meanwhile, the integrated learning algorithm integrates
multiple deep learning models to improve the performance
of multiclassification prediction tasks. The CT image data on
this experiment were obtained from a large CT dataset
constructed by the China Consortium for Chest CT Image
Survey (CC-CCI), including 61,775 CT images from 4,154
patients [1]. Zhang compared them with the assistance of
senior radiologists in his study, and the experimental results
showed that the AI algorithm showed 92.49% accuracy in
many hospitals with practical applications and 98.13%
AUROC and also showed good sensitivity in diagnosing
COVID-19.

2. Materials and Methods

2.1. Ensemble Deep Learning Models. For the deep learning
model, the prediction performance of the classifier changes
when the size of the training set and the number of pre-
diction types of the classifiers change. In Table 2, all classifier
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types with the corresponding accuracies are shown; the best
accuracy is achieved by the classifier M24, which is a binary
classifier for classifying COVID-19 and common pneu-
monia; the worst accuracy is achieved by the classifier M31,
which is a triclassifier for classifying COVID-19, common
pneumonia, and normal control under subtraining set Ul.
We can learn that all binary classifiers trained on the sub-
training set using the VGG16 deep neural network have
better performance, while the multiclassifiers generated on
the subtraining set have poor prediction performance.
Therefore, our method integrates a triple classifier and five
binary classifiers to form a cascaded classifier. Finally, by
analyzing the performance differences among the classifiers,
we reduce the deviation before the predicted and true values
by the stacked idea and thus output the prediction results to
improve the classification performance. The overall flow
chart is shown in Figure 1.

In order to improve the performance of the classification
model trained by deep neural network for the recognition of
three different types of patients such as new coronavirus
pneumonia, our algorithm proposes to combine the stacked
algorithm with the VGG16 deep learning pretraining model.
Firstly, the training set is partitioned into several disjoint
subtraining sets, and several binary classifiers and a triple
classifier based on the VGG16 model are trained on different
subtraining sets; secondly, all classifiers are integrated by
stacked idea in ensemble learning to form a cascade classifier;
and finally, the prediction results are output according to the
cascade classifier. In this paper, the training set is divided into
six subtraining sets and a triclassifier, and five binary clas-
sifiers are trained, where the discriminant type of each
classifier is shown in Table 2.

2.2. VGG (Visual Geometry Group). VGG is a classic deep
convolution neural network jointly developed by Oxford
University’s Visual Geometry Group and Google DeepMind
researchers [30]. The network is a related research work on
Large Scale Visual Recognition Challenge 2014. Its main work
is to prove that increasing the depth of the network can affect
the final performance of the network to a certain extent. VGG
has two main structures: VGG16 and VGG19. An important
improvement on VGGI16 is that several continuous 3x3
convolution kernels replace the larger convolution kernels in
AlexNet. For a given receptive field, it is better to use an
accumulated small convolution kernel than a large convo-
lution kernel because a multilayer nonlinear layer can increase
the depth of the network to ensure learning more complex
patterns, and the cost is relatively small.

2.3. Transfer Learning. Transfer learning means to transfer
or extend the representations learned by the CNN in pre-
vious tasks to new tasks or new fields [31]. This paper is
based on the VGG16 deep neural network, and the VGG16
model has been pretrained on large tagged natural image
data sets such as ImageNet, so that the train time and the
amount of calculation can be significantly reduced. At the
same time, in order to better extract features, the size of the
training and test images input to the VGG16 model in this
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TaBLE 1: Overview of methods and quantitative results toward COVID-19 classification.

Author Dataset .No' of Method Quantitative results indicators
images
Gao [9] Internal 791 XGBoost Acc=94.34%; Sens =83.33%
Wang [10] Internal 540 3D CNN Acc=90.1% ;ROC=95.5%
Han [11] Internal 460  Attention mechanism + 3D multiple Acc=97.9%; AUC =99.0%
instance learning
J. HORRY [12] COVID-CT dataset 746 VGG19 Acc=84%
A. Waheed 13)  COVID-19 chest Xoray o, VGG16 + ACGAN Acc = 95%; Sens =90%
dataset [14-16]
Pathak [17] Chest CT images [18] 1790 DBM Acc=98.37%; AUC=98.32%
Y. Oh [19] JSRT [20] 502 ResNet-18 Acc =88.9%; Spec=96.4
Wang [21] RSNA [22[];36]}‘6“ Xray 567 ResNet-101 + ResNet-102 Acc=96.1%
Ouyang [24] Internal 2796 Attention mechanism + 3D CNN  Acc=87.5%; AUC =94.4%; Sens = 86.9%
[Tz' 5‘?’lswammmg Internal 170 CNN +SVM + NN Acc=95%
Acc=93.64+1.42% Sens=93.28 +1.5%
Dong [26] Internal 640 DCNN Spec=94.0+ 1.56%
= %: - o
Zhang [1] CC-CCI [1] 61775 3D Resnet-18 Acc=9249%; Sens = 94.93%;

Spec=91.13%

Internal is the nonpublic dataset.

TaBLE 2: Functions and accuracy of all classifiers.

Classifier name Classifier type Discriminate type Training set Accuracy (%)

M3 Multiclassifier [COVID-19, CP, normal] U 88.12
M31 Multiclassifier [COVID-19, CP, normal] Ul 85.57
M21 Binary classifier [COVID-19, (CP, normal)] U2 95.69
M22 Binary classifier [CP, (COVID-19, normal)] U3 94.07
M23 Binary classifier [Normal, (COVID-19,CP)] U4 95.91
M24 Binary classifier [COVID-19, CP] U5 96.49
M25 Binary classifier [CP, normal] U6 95.73

Normal

5; Q@ —‘Ensemble classifier H Judgemen trule

COVID-19

FiGure 1: Overall flow of the algorithm. Train multiple deep learning models by dividing subsets, integrate models by stacked idea, and
finally output classifier prediction results by setting the threshold probability to 0.5.

experiment is not adjusted to the model preset 224 * 224, but
the size of the original chest CT image is maintained, which
is 512 * 512.

2.4. Stacked Generalization. Stacked generalization is an
important ensemble learning idea proposed by David
H. Wolpert in 1992 [32]. Stacking generalization refers to the
scheme of providing information from one group of clas-
sifiers to another group of classifiers before forming the final
prediction result. The prominent feature of stacking gen-
eralization is that the information constituting the classifier

network comes from multiple subsets of the training set, and
the original training set is divided into multiple subsets of
training sets. Each subtraining set is used to collect bias
information about the generalization behavior of the data set
so that this bias information fills the classifier network.
Stacking generalization is a method to estimate and correct
the deviation from the constituent classifier to the training
set provided.

2.5. Training Set Partition. Based on the idea of stacked
generalization in ensemble learning, the total set U is divided
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TaBLE 3: Introduction to dataset size.
Cohort COVID-19 Common pneumonia Normal
ohor

Patients Scans Slices Patients Scans Slices Patients Scans Slices
Train 115 183 4800 128 303 4800 85 108 4800
Validate 115 183 480 128 303 480 85 108 480
Test 675 1180 76000 256 441 18852 158 364 45000
Total 790 1363 80800 384 744 23652 243 472 49800

Normal CP COVID-19 Normal CP COVID-19

85.45% 14.43%

Normal

98.24%

CP

12.47% 87.18%

COVID-19

()

Normal

90.92%

COVID-19

(®)

FiGgure 2: Compare the accuracy, sensitivity, precision, F1-score, and specificity under deep learning based on VGG16 and based on the

combination of ensemble learning and VGGl16.

into m subsets, U; are the subsets, and intersection of all
subsets is null; the number of subsets U; is the number of
total set U divided by m:

U=U1UU2UU3"‘Um,

¢=Uanan3"‘Um, (1)
N .

—=Num(U;), i=123,...,m.

m

3. Results and Discussion

3.1. Dataset. As shown in Table 3, CT images of 1417 patients
with NCP, common pneumonia, and normal controls were
used to train and test the prediction model proposed in this
paper. The prediction model was trained with 14,400 images
of 328 patients [1], including 128 patients with common
pneumonia, 115 patients with NCP, and 85 normal controls.
Performance tests were conducted using 139,852 slices of
1,089 patients, including 76,000 slices from 675 NCP patients,
18,852 slices from 256 patients with common pneumonia, and
45,000 slices from 158 normal controls to test the im-
provement of the performance of the triclassifiers trained by
the deep learning algorithm.

3.2. Evaluation Measures. This method used accuracy, pre-
cision, recall (or sensitivity), Fl-score, and specificity to
measure and analyze the performance of the ensemble

learning model. Accuracy is the classifier’s ability to correctly
predict all samples, and precision is the classifier’s ability not
to predict negative samples as positive. Recall is the clas-
sifier’s ability to classify all those with the disease correctly
(true positive rate). Fl-score is the weighted average of
precision and recall. Specificity is the ability of the classifier
to correctly identify patients without the disease (true
negative rate). TP is true positives, TN is true negatives, FP is
false positives, and FN is false negatives. The formulas of the
measures are given below:

TP + EN
accuracy = s
Y = TP+ TN + FN + FP
. TP
recision = ————,
P TP + FP
TP

itivity = l=———,
sensitivity = reca TP+ TN (2)

sensitivity * precision
F1 —score = 2 %

sensitivity + precision’

TN

specificity = TN+ FP'

3.3. Results and Discussion. This method trains and tests a
triclassifier based on VGG16 deep neural network only and
a triclassifier based on VGG16 deep neural network with
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Accuracy

Sensitivity

F1 -score

—— Single multiclassifier

Precision

—=— Ensemble multiclassifier

FIGURE 3: Results of COVID-19, CP, and normal evaluated under two methods. (a) Accuracy evaluation of a triclassifier model based on
VGG16. (b) Accuracy evaluation of a triclassifier model based on a combination of integrated learning and VGG16.

integrated learning under the same training set conditions,
respectively. The performance of each method is compared
by accuracy, specificity, and sensitivity on the test dataset.
According to Figure 2, it can be seen that even the tri-
classifier trained solely based on the VGG16 model showed
good results in identifying neocoronary pneumonia,
common pneumonia, and normal controls, while the
performance of the cascade model combining the deep
neural network and the integrated learning algorithm was
significantly improved.

The experimental results in this paper show that the
cascade classifier constructed by combining the deep
learning algorithm with the integrated learning algorithm
can significantly improve the multiclassification prediction
accuracy of the model. According to Figure 3, it can be seen
that among the prediction results using only the triclassifier
M31, the normal control group is predicted as common
pneumonia and new coronary pneumonia is predicted as
common pneumonia, and these two false predictions occur
more frequently, with the false prediction rates of 14.43%
and 12.47%, respectively. For these two classification cases
with high error rates, two classifiers M24 and M25 with
prediction performance over 95% were trained in this paper
by the subtraining sets U5 and U6 for improving the pre-
dictions with high error rates, and the number of these two
errors was significantly reduced to 1.99% and 7.20%, re-
spectively, thus greatly improving the prediction accuracy of
the normal control group and new coronary pneumonia,
especially new coronary pneumonia identified as normal
pneumonia was greatly reduced in the error rate. In the
cascade classifier, the number of discrimination errors in-
creases when the original discrimination errors are less, such
as judging normal control as new coronary pneumonia and
judging new coronary pneumonia as the normal control
group. As can be seen from Figure 2, the incorrect dis-
crimination error rate of judging normal pneumonia as
neocoronary pneumonia only increased from 0.27% to

0.78%, and there was no significant increase in the incorrect
discrimination rate.

According to Figure 3, the accuracy, specificity, sensitivity,
precision, and F1-score of the integrated model based on the
combination of VGG16 deep neural network and integrated
learning algorithm are 93.57%, 93.93%, 94.21%, 89.40%, and
91.74%, respectively, while the accuracy, specificity, sensi-
tivity, precision, and F1-score of the single triclassifier trained
based on VGGI16 algorithm are 88.12%, 88.38%, 89.19%,
84.04%, and 86.54%, respectively. Compared with the single
multiclassifier, the accuracy increased by 5.45%, the specificity
increased by 5.55%, the sensitivity increased by 5.02%, the
precision increased by 5.36%, and the F1-score increased by
5.2%; all the indicators were significantly improved.

4. Conclusions

In this paper, we propose an algorithm based on the
combination of VGG16 deep neural network and ensemble
learning with the aim of improving the performance of deep
neural networks for multiclassification prediction tasks. The
experimental results show that the VGG16 deep neural
network combined with the integrated learning approach
can significantly improve the classification performance
compared with the VGG16 deep neural network-based inte-
grated learning algorithm under the same conditions, which
plays an important role in the rapid identification of patients
with novel coronavirus pneumonia. The method proposed in
this paper has the following drawbacks: (1) the training and
testing of the classification model is only utilized on 2D images,
while the rich spatial information preserved in the 3D structure
is not utilized; (2) only the VGG model is used and some new
network techniques are not tried; and (3) the publicly available
dataset used in this method is not the original DICOM data
format, and the image is lost in the process of data format
conversion pixel information.
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