
The dawn of spatial omics

Dario Bressan1, Giorgia Battistoni1, Gregory J. Hannon1,*

1CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, 
Cambridge, CB2 0RE, United Kingdom

Abstract

Spatial omics has been widely heralded as the new frontier in life sciences. This term encompasses 

a wide range of techniques that promise to transform many areas of biology and eventually 

revolutionize pathology by measuring physical tissue structure and molecular characteristics at the 

same time. Although the field came of age in the past 5 years, it still suffers from some growing 

pains: barriers to entry, robustness, unclear best practices for experimental design and analysis, 

and lack of standardization. In this Review, we present a systematic catalog of the different 

families of spatial omics technologies; highlight their principles, power, and limitations; and give 

some perspective and suggestions on the biggest challenges that lay ahead in this incredibly 

powerful — but still hard to navigate — landscape.

Nearly all of the seemingly infinite complexity of biology occurs in three dimensions. 

Although we are all familiar with studying the spatial architecture of proteins and 

macromolecular machines, studying the architecture of even simple organisms or single 

tissues requires not only deciphering the molecular profiles of thousands to millions of 

cells but also understanding how their spatial context influences their behavior. A recent 

burst of innovation in making multiplexed spatial molecular measurements is opening a 

new chapter in biological research and enabling a renewed embrace of the complexity 

of living systems. One of the first steps along this journey was the emergence of single-

cell “omics” technologies that operate on disaggregated tissues. These methods enabled 

the discovery of new cell types (1), cast new light on organismal development (2), and 

launched the process of creating comprehensive catalogs of human and mouse tissues (3). 

However, biological processes happen in a spatial context, and the three-dimensional (3D) 

arrangement of cells in a tissue has a profound effect on their functions. For example, 

location constrains cell-cell interaction by modulating contact or short-range paracrine 

signaling, which creates specialized niches such as those that support many types of tissue 

stem cells. Spatial gradients of both physical and chemical properties also contribute to 
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differential regulation of biological processes at every scale, but are particularly prominent 

during the development of multicellular organisms. Regardless of their undisputed power, 

measurements made on disaggregated cells or nuclei lack this layer of information. The 

need for such knowledge has driven the development of “spatial omics”: methods capable 

of measuring the molecular characteristics of cells in their native 3D context. Spatial omics 

technologies mainly measure either proteins and their modifications, or mRNAs, although 

spatial genomic and epigenomic profiling is now emerging. Compared with their nonspatial 

counterparts, these methods offer “shallower” profiling, often with an inverse relationship 

between the degree of spatial resolution (or profiling depth) and the experimental time 

investment. Despite these limitations, this nascent field has already provided substantial and 

varied insights into several fields, including animal development and brain structure (4–6) 

and features of the tumor microenvironment (TME) that correlate with patient outcome 

(7, 8). Although we are at the very beginning of the spatial omics revolution, progress is 

happening at breakneck speed, and it is clear that these approaches will drive us toward a 

much deeper understanding of biology in context.

The current generation of spatial molecular profiling tools

The idea of performing spatial molecular measurements on tissue sections is hardly new. 

Immunohistochemistry (IHC) and in situ hybridization (ISH) have been in use for more 

than 50 years (9–11). Both ISH and IHC can be multiplexed to a degree corresponding to 

the number of dyes that can be differentiated during observation. However, a move toward 

“omic” level measurements by simply increasing the number of dyes is not possible. Spatial 

omics technologies therefore rely on other approaches. They may use nonmicroscopic 

methods such as mass spectrometry (MS) to detect analytes, perform cycles of staining and 

dye removal to achieve the required complexity, or harness the power of high-throughput 

DNA sequencing and barcoding.

Multiplexed antibody profiling

Over the past 20 years, MS has already been successfully adapted to in situ measurements 

(12). A more recent generation of MS, usually referred to as “mass cytometry” (MC), is 

based on detection of antibodies conjugated to isotopically pure lanthanide metals (Fig. 1) 

(13). Each antibody is bound to a different metal by a chelating polymer. During imaging, 

a laser vaporizes the tissue pixel by pixel. Because lanthanides are essentially absent 

from biological materials and their masses can be discriminated with great precision, this 

method allows the routine quantification of more than 40 different species with a very high 

signal-to-noise ratio (SNR). This approach is the basis of two spatial imaging technologies 

known as imaging mass cytometry (IMC) (14) and multiplexed ion beam imaging (MIBI) 

(15). Although initially developed to detect proteins and protein modifications through 

antibody binding, these methods have been adapted for RNA imaging by producing metal-

conjugated hybridization probes (16). However, these approaches are limited by the number 

of discriminable masses and, more importantly, by the availability of sufficiently pure 

metals, a nontrivial issue considering the scarcity of some ores. Together, these factors 

constrain the achievable complexity to roughly 50 species.
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Proteomics methods can be broadly divided into two types of protocols. In one (left), 

antibodies are all bound together and detected either with MS imaging (IMC or MIBI) 

or cyclic fluorescence imaging (CODEX). In the other (right), primary antibodies are 

themselves bound and stripped in each cycle (4i, CyCIF, or Cell DIVE MACSima). In 

IMC and MIBI, each antibody is bound to a different metal by a chelating polymer. During 

imaging, a laser vaporizes the tissue pixel by pixel, and the metals released from each spot 

are quantified with a mass spectrometer. The distribution of metals can then be used to 

deduce the presence and spatial distribution of specific protein antigens in the tissue. The 

two methods differ in how mass measurements are performed and in their resolution: 1 µm 

for IMC and 300 nm for MIBI. In fluorescence-based methods, each cycle detects as many 

markers as there are florescence channels available, with complexity scaling linearly with 

the number of cycles. Binding all probes together (CODEX) results in faster imaging and 

shorter cycles but requires custom modification of each antibody and extensive optimization. 

On the other hand, binding antibodies in cycles (4i, CyCIF, MACSima, and Cell DIVE) 

enables the use of “native” antibodies that can be obtained commercially but results in 

slower cycles (up to 1 day per round). Owing to the repeated rounds of microscopy, 

all cyclic imaging methods are slower than IMC and MIBI on a per-sample basis and 

present more challenges for cycle-to-cycle alignment of images (registration). However, the 

data-generating capacity is actually higher because the slow element is the staining process, 

which can be performed in parallel on many samples, whereas the imaging itself is much 

faster than that with MS. Despite this limitation, spatial MC methods have been extremely 

successful, in part owing to the early commercial availability of instruments and reagents. 

Hundreds of studies that used the technology have been published on a wide variety of 

subjects (8, 17–22). Immunology and cancer biology, in particular, have benefitted hugely 

from the ability to perform a detailed characterization of the TME. An example is a recent 

survey of approximately 500 human breast cancer samples, which detected specific TME 

motifs and indicated that spatial features correlate strongly with patient outcome (8).

An alternative method for multiplexed antibody imaging is based on detection of 

conventionally labeled fluorescent antibodies over repeated imaging cycles (Fig. 1). In some 

of these methods, all antibodies are bound to the sample at once, and detection is performed 

in cycles by secondary probes, typically fluorescent oligonucleotides hybridized or ligated 

to a “root” attached to the antibody [codetection by indexing (CODEX) (23)]. In others, 

antibodies are themselves bound in cycles and either stripped after each round of detection 

(24, 25) or made undetectable by means of photobleaching or chemical cleavage [CyCIF 

(26, 27), Leica Cell DIVE (28), and Miltenyi MACSima (29)]. Each of these strategies have 

distinct advantages and disadvantages in terms of cycling speed and antibody optimization 

(Fig. 1), but overall, they have a greater data-generating capacity relative to that of MS. 

Indeed, cyclic imaging methods are likely the most viable alternative for projects that 

involve large sample collections (30, 31).

Spatial transcriptomics and genomics

The ultimate goal of a family of technologies known as “spatial transcriptomics” is to 

measure the abundance of every gene and gene isoform, at subcellular resolution, in a whole 

tissue sample in three dimensions. At present, no technology is able to reach this target. 
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Instead, each protocol makes trade-offs in terms of sensitivity, throughput, resolution, or 

ease of use. Currently, all technologies work on histological sections of various thickness 

and can be largely considered “2D” methods, with some exceptions. Spatial genomic 

profiling is based on four main strategies: (i) microdissection methods in which specific 

areas of a tissue are physically isolated or otherwise marked so that their DNA or RNA 

can be extracted and processed; (ii) combinatorial fluorescence in situ hybridization (FISH) 

followed by single-molecule imaging, which allows counting of mRNA molecules present 

in a given area of a tissue; (iii) in situ sequencing of mRNA molecules; or (iv) spatial 

barcoding methods in which the DNA and mRNAs in a given area are linked to a specific 

predetermined DNA “barcode,” which allows them to be computationally mapped back to a 

spatial location after bulk sequencing. These approaches are described in more detail below.

Microdissection and photo-isolation

Microdissection is perhaps the most obvious way to add spatial information to molecular 

profiling (Fig. 2), through purification of biomolecules from a specific area by means of 

physical separation. Laser-capture microdissection (LCM) (32) is routinely used to isolate 

small areas (tens to hundreds of cells) for RNA-sequencing (RNA-seq) and can reach 

single-cell resolution (33).

Several different methods can be used to restrict profiling to a specific section of a sample. 

Laser capture microdissection (LCM) relies on the physical isolation of a tissue fragment, 

from either flash-frozen or FFPE-treated material (24), followed by bulk measurements. 

By contrast, photo-sensitive groups can be used to tag an area of interest using light. TIVA-

tag and PIC use photo-sensitive groups to trigger RT either in vivo or in fixed samples. 

Nanostring GeoMx uses the same cleavable group as that of TIVA to release a fluorescent 

combinatorial tag bound to detection probes (antibodies or hybridization probes), which is 

then quantified by using Nanostring’s nCounter technology. Light-Seq and ZipSeq use light 

tagging to assign an area ID by means of crosslinking or hybridization, respectively. Recent 

studies have used light, rather than physical dissection, to spatially select a region to profile. 

Light can be used to trigger reverse transcription (RT) [transcriptome in vivo analysis 

(TIVA) tag or photo-isolation chemistry (PIC) (34, 35)], cleave a reporter [Nanostring 

GeoMx (36)], attach a purification label (Syncell MicroScoop), or remove a blocking group 

that prevents ligation of a sequencing adapter [photoselective sequencing (PSS)] (37). Light 

can also trigger attachment of a DNA barcode, or barcode combination, to specific areas 

either by driving their cross-linking or hybridization to the tissue (38,39). The barcode is 

then used to reassign reads to these areas. All microdissection technologies share some 

key advantages and drawbacks: They offer very deep profiling, almost to bulk-sequencing 

levels, and allow the area of interest to be customized from a single cell to a whole region. 

However, they have a comparatively low throughput (usually below hundreds of locations) 

because each selected area has to be collected and processed individually. Barcoding 

methods partially bypass this limitation but are still largely limited to hundreds of areas 

at most.
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Multiplexed ISH

Cyclic hybridization–based methods (Fig. 3) are the descendants of single-molecule FISH 

(smFISH), a set of technologies that resolve individual mRNA molecules in tissues as 

subdiffraction fluorescent spots. To enable detection, these protocols require multiple probes 

to bind to the same mRNA molecule, either because multiple fluorophores bound to a small 

area are needed in order to produce a signal (40, 41) or because the concurrent binding 

of two probes within a few nucleotides of distance triggers a signal amplification process 

(42–44). smFISH is often considered the “gold standard” in RNA quantification methods 

because it can detect very low-abundance transcripts down to a single copy per cell, and 

therefore the spatial profiling technologies derived from it tend to have excellent sensitivity.

Molecules are detected through hybridization and identified according to patterns of 

fluorescence signal, either driven by cooperative hybridization or incorporation of 

fluorescent nucleotides. In osmFISH, transcripts are individually detected in separate cycles 

of hybridization and signal release. MERFISH, seqFISH, and seqFISH+ use combinatorial 

labeling schemes to assign each transcript to a barcode, consisting of a subset of 

hybridization probes that are detected in cycles of imaging and release. Each digit is read in 

a separate cycle, with different colors (seqFISH+) or presence and absence of fluorescence 

(MERFISH) corresponding to different values. This allows the detection of up to Xn genes 

(where X is the potential values of each digit and n is the number of cycles). Whereas 

seqFISH probes are directly conjugated to fluorophores, MERFISH and seqFISH+ use 

“saddle probles” with a region complementary to a set of fluorescently labeled “readout” 

probes, then are hybridized and read cyclically. Each spot corresponds to a RNA molecule, 

and the sequence of fluorescence signals identifies it. In “targeted” ISS methods, multiple 

transcripts of interest are bound by a library of detection probes that circularize through 

split ligation. ISS, BaristaSeq, and ExSeq use padlock probes to either form an exact 

junction or leave a gap that is filled by polymerase before ligation. In STARmap, a pair 

of oligonucleotides [snail (specific amplification of nucleic acids via intramolecular ligation 

element) probes] need to bind in close proximity to enable circularization. In “untargeted” 

methods, RNA is retrotranscribed from a poly(T) oligonucleotide, and the cDNA is then 

circularized through intramolecular single-strand ligation. The circularized molecules are 

amplified by means of RCA, producing rolonies. In all cases, sequencing is performed on 

the rolonies by using either sequencing-by-ligation or sequencing-by-synthesis technologies. 

Targeted methods read a barcode within the probe itsef or in the gap-filled region (allowing 

detection of mutations). Untargeted methods sequence the cDNA itself, which can be 

purified and sequenced again in bulk (ExSeq)

All cyclic FISH methods share some common elements: (i) a way to associate combinatorial 

barcodes to transcripts through the hybridization of short DNA probes; (ii) a method to read 

the barcodes, element-by-element, with cycles of fluorescence imaging; (iii) a strategy to 

produce sufficient signal on each molecule to enable detection, either through sheer probe 

number or by signal amplification; and (iv) a way to reset the signal after each cycle. 

In sequential FISH (seqFISH), fluorophore-labeled FISH probes are directly hybridized 

to cellular mRNAs and removed after each cycle through deoxyribonuclease (DNase) 

digestion, leaving the mRNA in place (45). In multiplexed error robust FISH (MERFISH), 
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the probes include both a mRNA-binding region and a series of “reporter” regions that 

correspond to the barcode elements, which are detected with secondary hybridization 

rounds (46). This makes detection effectively independent of the original RNA molecule 

and makes the protocol more resistant to ribonuclease (RNase) contamination, while also 

decreasing imaging time and making imaging of hundreds to thousands of targets practical. 

An alternative version of seqFISH, seqFISH+, follows the same approach (47). Another 

element introduced by MERFISH and adopted in seqFISH+ is making the combinatorial 

barcode “error robust” by using encoding strategies taken from information theory, thus 

mitigating the impact of hybridization failures or nonspecific binding, which can be quite 

substantial owing to the cyclical nature of imaging.

In the past few years, both MERFISH and seqFISH+ have been extended to the whole-

transcriptome level (47, 48), adapted to simultaneous detection of mRNA and protein by 

oligo-conjugated antibodies, and enhanced by the addition of signal amplification strategies 

and tissue embedding and clearing (44, 49, 50). MERFISH has also been adapted to 

expansion microscopy, a technique for physically expanding samples to increase the size 

of biological structures. Combining MERFISH with expansion microscopy (51) permits the 

identification of transcripts that would otherwise be too close to each other to be recognized 

as individual molecules. MERFISH and seqFISH+ are effectively very similar in terms of 

sensitivity, throughput, and pros and cons, with a few technical differences in protocol and 

details of the barcoding scheme. Both have been used successfully to investigate spatial gene 

expression in different organs and tissues, although their technical complexity has laborious 

implementation that has limited their broad adoption, although recently MERFISH has been 

made commercially available and simpler to use.

Although MERFISH and seqFISH are the two main hybridization-based in situ 

transcriptomic methods currently available, a few other technologies share some of their 

key elements. Ouroboros smFISH (osmFISH) is a cyclical smFISH method that lacks 

a barcoding scheme, trading multiplexing capacity (only a few transcripts per cycle are 

detected) for a simpler protocol not affected by transcript abundance or density (52). 

Saber-FISH and Clamp-FISH are based on different signal amplification methods and 

offer substantially improved SNR compared with that of “first-generation” protocols, but 

they have not been shown to enable detections of more than 100 transcripts (53–55). 

SCRINSHOT (56), a similar method, is specifically designed to detect approximately 30 

transcripts on challenging formalin-fixed paraffin-embedded (FFPE) tissue. A more recent 

protocol called enhanced electric FISH (EEL-FISH) uses electrophoresis to drive cellular 

mRNAs to the surface of a conductive glass slide. The tissue is then removed, and the 

mRNAs are detected with multiplexed FISH (57). Removal of tissue results in a substantial 

increase in SNR and in much higher speed. Last, commercial options are becoming available 

for several of these technologies. Many of these solutions offer profiling of thousands of 

genes and, optionally, of tens of proteins simultaneously (58).

In situ sequencing

Close relatives of cyclic-FISH protocols are in situ sequencing technologies (Fig. 3). The 

premise of this family of methods is to execute high-throughput sequencing chemistry on 
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clusters generated in situ within a histological section. The sequencing technology used 

most often is sequencing by ligation (rather than sequencing by synthesis, which dominates 

traditional next-generation sequencing). A common step to all of these protocols is the 

production of a DNA “nanoball” (rolony) through rolling circle amplification (RCA) of a 

circular template produced from the detected transcripts. A separate rolony is produced for 

each mRNA molecule, allowing transcript quantification. The maximum read length is 30 

nucleotides because long reads are much more difficult to perform in situ than on a flow cell 

owing to the many variables at play.

One of the first examples of these methods, ISS, is based on padlock DNA probes 

hybridized to mRNA (59–61). The padlock probe either produces an exact juxtaposition 

of the probe ends, which are joined by ligation, or leave a gap that is filled by a polymerase 

and then ligated. In the former variant, sequencing is performed on a reporter barcode 

sequence within the noncomplementary region of the probe, whereas in the latter, any 

sequence present in the gap is read. This allows both gene expression profiling (in which 

hybridization events to a preset list of genes are counted) or untargeted de novo sequencing 

of single-nucleotide polymorphisms or mutations (still limited to a specific gene list). The 

method evolved over time and was improved by replacing sequencing by ligation with a new 

form of sequencing by hybridization (in effect a form of specialized seqFISH-MERFISH 

performed on barcoded rolonies), with a resulting increase in SNR (62).

A contemporaneous technology called fluorescence in situ sequencing (FISSEQ) (63) 

generates the RCA amplicon through the circularization of a cDNA molecule, itself 

produced by means of RT of mRNAs by using an oligo(dT) primer. The technology allows 

true “untargeted” sequencing in space, although only for very short, 3’ terminal reads and at 

the expense of a very low sensitivity (well below 1% of total cellular transcripts) owing to 

the low efficiency of in situ RT and cDNA circularization.

ISS and FISSEQ rapidly gave rise to a variety of derivative methods with higher efficiency 

and improved features. In STARmap (spatially resolved transcript amplicon readout 

mapping) (64), two probes are used rather than a single padlock probe, one acting as a 

splint for the other upon binding in close proximity. This increases sensitivity, although 

still not in the range of the hybridization-based methods. The sequencing chemistry is also 

altered and improved compared with traditional sequencing by ligation. BaristaSeq (65) 

increases efficiency by optimizing the gap-filling padlock probe method and using Illumina 

sequencing by synthesis for detection [resolution is unclear because (65) generally applies 

the technique to the sequencing of a single barcode per cell]. More recently, both the 

targeted padlock-based ISS method and the untargeted FISSEQ method have been combined 

with expansion microscopy chemistry (66), with substantial improvements in both efficiency 

and SNR owing to the decrowding of rolony signals and sample clearing. One of the key 

innovations of ExSeq is the combination of untargeted, short-read ISS with regular “bulk” 

sequencing performed on the same sample after extraction of the cDNA contained in the 

tissue. The short sequences serve as distinct “tags” to match each “bulk” read to a specific 

location, effectively resulting in full-length, long-read ISS that is sufficient to map splice 

isoforms with subcellular resolution in complex tissues such as a mouse brain.
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FISH-based and in situ sequencing-based methods share one common element: detection 

is ultimately performed by means of microscopy imaging of the tissue at high resolution, 

and gene expression is measured by effectively counting individual molecules of mRNA. 

Although imaging is the most direct way to obtain spatial information, single-molecule 

microscopy is very challenging and requires extremely precise instruments and procedures. 

This technical barrier is compounded by the need for multiple imaging cycles, combined 

with extensive sample manipulation through fluid exchanges, enzymatic reactions, or other 

procedures. Not surprisingly, image co-registration and feature extraction are among the 

biggest challenges in the analysis of all imaging-based spatial omics datasets (also discussed 

in Big data to useful data—the challenge of analysis). Single-molecule microscopy can also 

be slow because the need for high magnification and resolution produces a very small field 

of view, requiring extensive tiling and image stitching (in itself not a trivial procedure) 

to acquire any useful sample size. Molecular crowding within the cell also imposes an 

upper boundary to the number of molecules that can be resolved given the diffraction 

limit. Detection sensitivity is therefore biased by cell size, with larger cells allowing deeper 

profiling.

Spatial barcoding of bulk sequencing reads

One might argue that the best available tool to produce high-quality transcriptome 

quantification data with very high speed and throughput is already available in the form 

of regular next-generation sequencing, if only spatial position could be encoded in sequence 

space. This is exactly the key insight behind ST (Fig. 4) (67). In ST, an ordered array of 

oligonucleotides is deposited on a glass slide by using microarray printing technologies. 

Each oligonucleotide includes a handle compatible with a downstream sequencing reaction, 

a barcode specific for each spatial position, a random UMI (unique molecule identifier) 

used to correct polymerase chain reaction (PCR) amplification bias, and a polythymidine 

[poly(T)] sequence used to capture polyadenylated [poly (A+)] messengers. Each array 

spot features a different spatial barcode. A thin histological section is then placed on the 

array, permeabilized to allow the cellular RNA to diffuse to the barcodeed oligos, and 

reverse-transcribed in situ to produce spatially indexed cDNAs. The latter are then amplified, 

adapter-ligated to produce a library, and sequenced by using standard next-generation 

sequencing. Some key advantages are the ability to produce long sequencing reads (although 

still biased for the 3’ end of transcripts), lack of reliance on complex imaging instruments, 

high speed (the time required for processing is effectively independent of sample size), and 

potential for parallelization. These features greatly facilitated commercial adoption of the 

technology. However, there are some notable drawbacks, including low resolution (currently 

50 to 100 µm), a high cost per sample, and low efficiency of RNA capture (Table 1).

All methods are based on the production of a solid surface with a regular array of 

capture probes (DNA oligonucleotides), terminating with a poly(T) sequence that matches 

cellular mRNAs. In ST and 10X Visium, the capture probes are built directly by means 

of microarray printing, resulting in a resolution of 50 to 100 µm. In Slide-seq and HDST, 

the probes are synthesized on gel beads, which are then randomly attached to a slide 

or deposited on a microwell chip. The position of each bead is then detected by short 

rounds of ISS. In Seq-Scope and PIXEL-seq, the capture probes are produced by modifying 
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sequencing clusters produced by bridge amplification on an Illumina flow cell or on a 

polyacrylamide-based hydrogel, whereas in Stereo-seq, they are produced by means of RCA 

on a silicon wafer. Spatial location is provided by ISS of the capture probes. In all cases, 

a tissue section is then placed on top of the arrayed capture probes and digested, letting 

the mRNAs in the tissue reach the poly(T) region, and cDNA is synthesized in situ. In 

DBiT-seq, barcodes are created directly on top of biomolecules (DNA fragments, cDNA, or 

oligo-conjugated antibodies) by placing a microfluidic chip with parallel thin channels on 

the section and performing ligation with a different oligonucleotide in each channel. The 

chip is then rotated by 90°, and ligation is repeated, producing an xy grid with resolution 

ranging from 10 to 50 µm. In all cases, the indexed biomolecules are then profiled in bulk by 

means of sequencing.

The resolution of ST was greatly improved a few years later by two methods, Slide-seq (68) 

and high-density ST (HDST) (69), which attach the barcoded poly(T) primers to nanobeads 

(which can have a much smaller diameter) rather than directly to the glass surface. The 

beads are then packed on an adhesive slide (Slide-seq) or on a microwell-patterned slide 

(HDST), reaching a much higher spatial density (10 µm for Slide-seq and 2 µm for HDST). 

Because the packing is random, the barcodes are first decoded spatially with a round of ISS, 

and the slides are subsequently used for a standard ST protocol. Compared with original 

ST, Slide-seq and HDST enable profiling at a resolution comparable with the size of single 

cells, but this comes at the cost of a more complicated protocol and reagent set up and a 

lower efficiency of RNA capture. A second version of Slide-seq pushed capture efficiency to 

the same neighborhood of disaggregated single-cell RNA-sequencing (scRNA-seq) (70). A 

more recent method from the same authors, Slide-tags, uses the same approach to add spatial 

addresses to single cells that are then processed by using regular disaggregated pipelines, 

enabling multi-omic spatial profiling with established techniques (71).

Another method, “Seq-Scope,” provides a substantial advance in the field by “double-

dipping” into one of the most widely used next-generation sequencing platforms. In 

this approach, a modified sequencing flow cell is used to generate randomly distributed 

DNA barcodes by means of bridged PCR amplification. The clusters are then mapped 

with sequencing by synthesis, enzymatically processed, and extended to remove the distal 

sequencing handle and install a UMI and a poly(T) sequence (72). This effectively produces 

a very dense barcoded slide with a different spatial barcode every 500 nm, for which 

the spatial coordinates of each spot are already known. The slide is then used for a 

slightly modified ST protocol, and a second round of sequencing is used to determine 

RNA abundance. Two other approaches, Stereo-seq (spatial enhanced resolution omics 

sequencing) and PIXEL-seq (polony-indexed library-sequencing) use a carpet of DNA 

“nanoballs” growing on a slide to achieve similar submicrometer resolution. Both methods 

have a relatively high capture efficiency, on par or slightly above scRNA-seq (73, 74).

A coarser way to produce spatial barcodes, which is nevertheless very effective, uses a 

series of microfluidic channels pressed on top of a tissue sample to create a physical barrier. 

In DBIT-seq (deterministic barcoding in tissue for spatial omics sequencing), barcoded 

oligonucleotides flowing through each channel are ligated to target biological molecules, 

after which the microfluidic chip is rotated 90°, and the barcoding is performed a second 
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time. This procedure produces a grid, in which each intersection has a different index. 

This method has been used to profile RNA (75), proteins (76), and chromatin features 

(77, 78), either alone or in combination (75, 79). Resolution varies between 10 and 50 

µm depending on the chip size, with higher resolution being more technically challenging. 

Capture efficiency is quite high, likely because of the missing requirement of diffuse RNAs 

from the tissue onto a barcoded support (Table 1).

Spatial barcoding techniques combined with bulk sequencing have been very successful. 

The availability of commercial options, nonreliance of high-precision instruments, and 

compatibility with existent workflows has lowered the entry barrier for many groups. 

Data analysis is also comparably simple because all processing happens at the level of 

sequence data, an area of expertise more widespread in biological laboratories than image 

analysis. However, the low resolution and random positioning of the spatial barcodes, with 

respect to the sample, means that the information can sometimes average several cells of 

different types, confounding results. In spite of this, ST and its derived techniques have been 

successfully applied to many studies—in particular, in the fields of neuroscience and cancer 

biology (80–82)—and improved methods will presumably push adoption spatial profiling 

techniques even further.

The balancing act of spatial profiling

In an ideal world, a spatial profiling method—whether it targets RNA, proteins, or DNA—

would offer a near-complete and unbiased image of the entire molecular content of a cell, 

at subcellular resolution and in a short period of time, reliably and cheaply enough to be 

performed on many samples, including archival samples. All current technologies, however, 

entail certain compromises, and the choice of approach therefore depends on the specific 

needs of each particular study. Resolution, throughput, ease of implementation, robustness, 

and cost represent key variables in the spatial profiling balancing act (Table 1).

For protein profiling, the main decision is whether to invest in the IMC-MIBI ecosystem or 

opt for cyclic immunofluorescence protocols. IMC and MIBI are commercially available, 

robust, and (for IMC) widely used. Although antibody conjugation and validation can be 

time consuming, a growing catalog of preconjugated reagents is available, and there are 

many examples of successful studies that use this technology, including some large-scale 

ones (8,17–22). However, detection maxes out at fewer than 50 different markers, sensitivity 

is limited, and amplification methods are not yet available. Moreover, imaging time and 

cost are substantial, requiring a large investment in both instruments and reagents. Last, 

resolution is relatively coarse on IMC and generally insufficient to detect any subcellular 

structure beyond nuclei and membranes. MIBI offers a higher resolution, but at the cost of 

even slower processing.

Cyclic immunofluorescence has a much lower entry barrier because of its lower cost, 

and it offers higher throughput. It can detect more than 100 features given enough time 

and antibody availability. Moreover, some incarnations of the technology are compatible 

with native antibodies, reducing the need for optimization. Last, resolution is much higher, 

both in the xy and z dimensions (with confocal imaging options available). On the other 
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hand, compared with MS, fluorescence imaging has a lower SNR, which makes some 

markers difficult to detect. Cyclical imaging also requires nontrivial data processing because 

multiple images need to be aligned, and tissue damage can become substantial after multiple 

cycles. Considerations are much more complex in the spatial transcriptomics area. If 

very high resolution is needed—for example, to resolve transcripts in different subcellular 

compartments—imaging-based methods (whether hybridization or sequencing based) are 

the clear winners. High resolution, however, makes them slow; imaging time scales with 

both sample area and number of target features (because more cycles are necessary), 

and the very small field of view necessitates extensive tiling, image post-processing, and 

registration.

Of the two subcategories, hybridization methods have better sensitivity but tend to produce 

weaker fluorescence signals (although amplification strategies are available) and may 

require reoptimization for different tissues owing to different optical properties. They also 

perform best with relatively thin sections (10 to 20 µm). In situ sequencing protocols, on 

the other hand, unvariably use signal amplification and produce stronger signals, require 

less optimization for different tissue types, and can image thicker samples (up to 100 µm 

or so). However, in situ sequencing exhibits the lowest sensitivity of all methods considered 

here, and when signal amplification is used to improve the SNR of hybridization methods, 

sensitivity tends to also decrease. This might not be a deal breaker because a sparse 

sampling of the transcriptome can still be informative as long as relative differences in 

expression are maintained. However, some of the most useful genetic markers (such as 

transcription factors) are expressed at very low levels and may be hard to detect with 

methods having low sensitivity. Untargeted profiling without the need for a predesigned 

probe panel is another advantage of in situ sequencing methods (especially ExSeq, which 

offers full-length reads), allowing for accurate quantification of splicing isoforms and 

mutations. These methods also offer whole-transcriptome profiling. The sensitivity of 

untargeted methods, however, tends to be lower than that of targeted ones because of 

the low efficiency of in situ RT. Also, recent hybridization-based methods effectively 

profile thousands of genes, enough to identify cell types, states, and pathway activity and 

extrapolate the expression of most of the remaining transcriptome (83).

Resolution and throughput are also critical parameters to consider for some barcoding-based 

methods. For the most part, these methods cannot associate a spatial barcode with a specific 

cell (because barcodes are randomly distributed on the slide relative to cell positions, and 

often overlap cell-cell boundaries). The most widely used technology at the moment, ST, has 

a low resolution limited to 20 to 100 cells per barcode, which makes it substantially harder 

to profile spatial neighborhoods in detail. Other protocols reach resolutions ranging from 10 

µm per barcode (Slide-seq) to 500 nm per barcode (PIXEL-seq, Seq-Scope, and Stereo-seq), 

and microfluidics-based barcoding (DBIT-seq) also reach 10 µm. None of these solutions, 

however, is “cell aware”. Furthermore, sensitivity is relatively low (mainly because of the 

need for in situ RT), and cost per sample is generally higher than that of other methods. 

However, barcoding methods offer considerable advantages in terms of throughput because 

the acquisition time does not scale with either the sample size or the number of features 

detected, and multiple samples can be processed in parallel and sequenced together in bulk.
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Last, laser capture dissection or spatial tagging methods such as TIVA or PIC should be 

considered when deep profiling of just a few spatial locations is needed. These methods are 

often simpler to implement and allow direct purification of selected material for analysis 

through a variety of bulk profiling methods.

Big data to useful data—the challenge of analysis

Data acquisition is often assumed to be the most difficult step in spatial omics methods. 

However, data manipulation, analysis, and visualization are just as important if not more 

so. Spatial profiling methods generate such large datasets (often many terabytes), have 

influenced and biased by so many factors, that an experiment that costs thousands of dollars 

can be rendered completely useless without the appropriate analytical tools. The raw data are 

sometimes so large that they cannot be properly visualized without specialized hardware and 

software.

Some key steps of the analysis pipeline for each technology are illustrated in Fig. 5. 

Methods based on imaging face the immediate challenge of realigning images across the 

different image cycles and of stitching multiple fields of view into a coherent mosaic. Image 

registration is a nontrivial problem that has been extensively reviewed elsewhere (84, 85), 

made more complex in spatial profiling by the very large volume of data. Most methods 

resort to using easily identifiable “fiducial landmarks” (fluorescent beads) as features to 

calculate the registration matrix (Fig. 5), which make the registration much easier at the cost 

of additional experimental processing. In addition, most transcriptomic methods require a 

decoding step in which the sequence of fluorescent signals is matched to one of the genes in 

the panel, or resolved as a de novo sequence, and error correction and detection is applied. 

These processing pipelines need to be tailored to account for twists and aberrations specific 

to each technique or microscope and thus are difficult to standardize and optimize. Recently, 

the SpaceTx consortium made a substantial effort by releasing Starfish, a set of python 

modules successfully appliable to most methods (86), although generally underperforming 

each method’s dedicated pipelines.

Analysis workflows vary depending on the core acquisition modality (imaging or next-

generation sequencing). Imaging methods require preprocessing of the images taken at 

different cycles and across multiple fields of view through stitching, background correction, 

and realignment with high accuracy (image registration). Image registration relies on easily 

identifiable “fiducial marks” that can be either point signals produced by the protocol itself 

(ExSeq and STARmap), embedded fluorescent microbeads (MERFISH and seqFISH), or 

the pattern of cell nuclei after intercalator staining (multiplexed IHC). For single-molecule 

imaging methods, the signal spots need to be identified and their patterns decoded to 

assign them to a biomolecule identification (ID) (usually a transcript). Images are then 

segmented to define areas corresponding to each cell (masks) by either identifying the 

cell membranes or performing a geometric expansion around the nucleus as a proxy 

for the cytoplasm. The number of spots or signal intensity are then integrated over the 

cell masks, generating an area-by-features matrix. By contrast, spatial barcoding methods 

produce datasets in the form of sequencing output, which are preprocessed and parsed to 

assign each read to (i) a coordinate in space, through the location barcodes, and (ii) a 
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biomolecule’s ID by mapping to a reference (such as a transcriptome). This is comparable 

with the preprocessing pipelines for disaggregated single-cell sequencing, with the space 

barcodes effectively replacing the cell barcodes, and representing areas that range from 

tissue regions to subcellular compartments, depending on the profiling method. Thereafter, 

common analysis steps include filtering, normalization, identification of highly variable 

features, dimensional reduction, clustering, and identification of differentially expressed 

markers. The results can be visualized either directly or in a dimensionality-reduced space 

on the basis of the omics profile and are finally integrated with the spatial information to 

reveal spatial features.

Although most image-based protocols have subcellular resolution, almost all downstream 

analysis operates at the single-cell level. Once a molecule is detected in space, it needs to 

be assigned to a cell, and all the measurements taken over a cell area need to be integrated 

into a single abundance score for each gene or protein, ultimately creating a cell-by-feature 

matrix. To do this, raw images are segmented to identify areas that belong to individual cells.

Image segmentation is a central problem in both bioimaging and computer vision and has 

benefitted in the past few years from rapid advances in artificial intelligence (AI) and deep 

learning (87–89). Although nuclei segmentation benefits from the regular nuclear shape and 

the availability of a universal stain (DNA intercalators), to define cytoplasmic membrane 

boundaries is a more complex task. Membrane markers often generate low signal, have poor 

specificity for the cytoplasmic membrane, or are not generic for all cell types and thus 

cannot produce effective segmentation even when AI models are used. Although combining 

multiple labels has shown some good results (4), the development of a true universal 

membrane marker for segmentation would be transformative for the spatial omics field.

Spatial barcoding methods bypass most image analysis requirements because the data are in 

the same form as traditional sequencing methods, and it is already naturally matched to a 

specific location. Processing closely resembles genomics pipelines and is more standardized 

and portable, which represents a major advantage for this type of methodology. However, 

the “locations” to which barcoded reads are mapped do not necessarily correspond to 

specific single cells, and therefore the results are not a cell-by-feature matrix but correspond 

to “bins” of various size. In high-resolution methods such as Seq-Scope or PIXEL-seq, 

multiple bins can be summed to produce a cell-level database upon segmentation, which of 

course brings back the requirement for image analysis.

Once the initial processing is completed, the dataset is in a form comparable with that of 

disaggregated single-cell profiling methods, with the addition of spatial coordinates for each 

cell, and often with substantially higher cell counts. Tools designed for disaggregated data 

[such as the Seurat, ScateR, Scanpy, and Monocle packages (90–94)] can provide good 

results but need to be used cautiously because the nuances of data generation can cause 

biases. Some tools have been upgraded to handle spatial data, introducing data structures 

capable of holding coordinates and the ability to produce spatial plots and graphs. Dedicated 

packages have also begun to emerge, often integrating direct visualization of the raw data 

(for imaging-based methods) with analysis of the cell-by-feature matrix [for example, Giotto 
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VitesSce, Histocat, Cytomapper, SquidPy, and others (95–99)]. Commercial options are also 

available.

Although standard dimensional reduction, clustering, and differential expression tools can 

operate effectively on spatial data, they fail to effectively leverage the most important feature 

of spatial profiling methods: space. The rapid development of spatial omics methods with 

ever-increasing resolution, throughput, and power has run ahead of the development of 

statistical frameworks and analysis tools capable of harnessing the data to generate new 

insights. This void is now starting to fill, with new algorithms being made available almost 

weekly. Although a review of this area would exceed the space available, and has been done 

in more detail elsewhere (100), there are three main areas of advancement: (i) identification 

of spatially variable markers and of specific expression patterns, through methods such as 

Gaussian process regression, spatial autocorrelation, and adversarial neural networks (101, 

102); (ii) identification of spatial niches characterized by a set of coexpressed markers, at the 

level of multicellular areas or as a replacement or refinement for cell segmentation, under 

the assumption that cells could be defined as areas with a relatively uniform gene expression 

compared with other cells (103, 104); and (iii) identification of spatial interactions between 

different cell types (tissue neighborhoods), detecting whether two cell types are likely to 

colocalize in certain areas or conditions, and whether this correlates with tissue function 

or disease (105). This can be complemented by ligand-receptor analysis, a measurement of 

cell-cell functional interactions already introduced in disaggregated scRNA-seq (106–108), 

which really shines when combined with cell-cell proximity information.

The challenge of experimental design

As the saying goes, “when you have a hammer, everything looks like a nail.” Spatial 

profiling technologies are wonderful new instruments, and it is tempting to apply them 

to every problem just because one can. To move forward, however, users will need to 

carefully formulate questions that can truly benefit from spatial omics and address them with 

experimental plans with a solid statistical foundation.

One application is the identification of new cell types and states within tissues, under both 

physiological and pathological conditions. This is the professed objective of the Human Cell 

Atlas project, which was initially focused on disaggregated methods but now is shifting to 

spatial omics technologies (3). These methods can reveal residual heterogeneity in gene or 

protein expression not accounted for by traditional cell-type definitions and correlate it with 

spatial location. Another appropriate question for these methods is whether colocalization 

of different cell types influences their expression profile or correlates with tissue function 

or disease outcome. This is the focus of several recent large-scale projects, investigating, 

for example, how tumors evolve and respond to treatment (17, 21, 22). The ability to 

simultaneously profile many genes and proteins also facilitates discovery of new markers for 

specific spatial niches. Because these technologies can produce detailed molecular profiling 

of tissues in their native state—without artefacts from dissociation, lysis, and averaging 

of different cells—they enable mechanistic investigation in situ of phenomena that could 

previously be approached only in simplified models or in a purely descriptive way.
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Cell types, or states, characterized by a consistent marker profile can often be identified in 

spatial data by using the same tools used for disaggregated methods. These tools may be 

sufficient to define previously unknown populations even before location is considered. If 

the sample shows spatial consistency, cells of the same type can be manually pooled on 

the basis of prior knowledge of tissue anatomy—for example, comparing the abundance 

and expression profile of particular neurons in different cortical areas (5). If the spatial 

organization of the tissue is not consistent, a potential solution is to use spatial information 

to extract neighborhood scores or define “neighborhood clusters.” Scores reflect the 

frequency of contacts between different cell types, whereas clusters are assigned cells on 

the basis of the type of other cells they contact or their presence within a given range. These 

parameters are often directly comparable across samples even if the spatial structure itself 

is different. This approach has shown, for example, that colocalization of cells of different 

types in breast cancer has prognostic value (8).

One challenge in using spatial omics methods to characterize cell types is the limited 

number of features measured at each location. One strategy to overcome this limit is to 

combine spatial measurements with disaggregated single-cell methods, which often offer 

deeper profiling. The assumption behind such “data integration” is that a limited number 

of markers is sufficient to map each cell or location detected in the spatial method onto 

a cell class or state in the disaggregated data, and the additional measurements taken in 

the latter can then be reprojected in space. This approach has been used for both protein 

measurements, matching IMC and CyTOF (cytometry by time of flight) data (109), and 

RNA measurements (4). The latter case is particularly interesting because the authors were 

able to impute the values missing in the spatial data (in this case, a developing mouse 

embryo), producing a dataset that included more than 10,000 gene measurements per 

cell. Key to this integration is a well-chosen set of overlapping markers to join the two 

technologies. Currently, these are often chosen through manual curation or by identifying 

the most relevant cluster-specific features from disaggregated data. However, cluster-free a 

priori methods to identify optimal markers have recently been proposed (110). Notably, data 

integration is only possible for samples for which identical (or very similar) samples can be 

used for both disaggregated and spatial methods and in which both methods are likely to 

capture the whole heterogeneity of cell types and states present in the sample.

Replication is a central issue for much of the field, yet only possible if there is some degree 

of consistency in the spatial structure of samples. When studying tissues with a stereotypical 

organization, such as a developing embryo or the brain cortex, it is relatively simple to 

acquire multiple replicates and average the results. This is a challenge for pathological 

tissues (such as tumors) that have a highly heterogeneous, and not consistent, spatial 

structure. To further complicate things, as data resolution increases, sample-to-sample 

heterogeneity is revealed even in tissues with a seemingly repeatable structure, up to the 

extreme level of every sample being different, making replication impossible. This issue is 

already known to the field of disaggregated single-cell sequencing, which struggles with 

where to draw the line between one cell type or state and another.

In most cases, there is not yet a strong recommendation on the ideal number of replicates. 

Although published studies often use the “golden rule” of three or more replicates, a 
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better option for large studies would be to first define the experimental parameters being 

compared, then begin with a small set of pilot experiments to estimate their variance across 

samples, and last, enroll the help of a trained statistician to calculate a sample size sufficient 

to produce a sound result. One must also consider the economic feasibility of big sample 

sizes. Application of spatial omics to large-scale projects is still hindered by the cost and 

time investment required by many technologies. This will undoubtedly be mitigated by 

further development and broader commercial diffusion of the technologies.

Studying rare or poorly characterized phenomena (such as micrometastases in distal organs, 

or rare or transient cell types in development) presents a different challenge: acquiring a 

sufficient number of samples. Because replication is a necessity, it is necessary in these 

cases to prescreen tissues with a limited number of relevant markers, ideally by using a 

fast, low-plex technology such as whole-slide scanning or 3D whole-organ microscopy. 

Areas of interest can thus be identified and prioritized for subsequent detailed molecular 

analysis. This has been done, for example, by using serial two-photon tomography (111, 

112). The best experimental designs for spatial omics studies thus often include different but 

complementary technologies.

Future directions

We are still at the dawn of the spatial omics era, and the future undoubtedly holds just as 

many revolutions and advancements as the past few years have seen.

Spatial profiling methods are going to become faster, more reliable, and more powerful 

with time. This will likely go hand in hand with a more extensive offer of commercial 

instruments and reagents. A handful of companies already offer “turnkey” solutions, with 

more set to launch. Commercial adoption in turn will facilitate wider access to these 

technologies and contribute to the democratization of spatial omics. Profiling depth is likely 

to continue increasing. Imaging-based RNA measurement methods have already reached 

whole-transcriptome levels, at least in cell culture, and this trend will likely extend to 

tissues. For proteins, whole-proteome measurements are presently unattainable, but the 

number of measurable markers will likely expand from less than 50 to hundreds, although 

this might require a move beyond MS-based methods and production of a large number 

of highly specific antibodies. Although ultradeep measurements will be possible, they 

will likely remain confined to special-use cases because garnering additional data must 

be balanced against increased experimental complexity. Untargeted in situ sequencing and 

spatial barcoding methods, which will no doubt improve in both specificity and resolution, 

will continue to represent a very valuable alternative, and the latter might well become the 

leading solution for large-scale studies.

We also anticipate a further extension of existing technologies to a wider range 

of measurements. Most existing methods profile either mRNA abundance or protein 

expression. More recently, RNA quantification has been achieved with multiplexed 

immunostaining methods that use fluorescent or metal conjugated probes (16), 

and conversely, oligonucleotide-conjugated antibodies have been used in both cyclic 

hybridization (48) and spatial barcoding methods (76).
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Genomic and epigenomic measurements are also increasingly performed spatially. 3D 

chromatin organization has been profiled genome-wide, alongside gene expression, by using 

both seqFISH+ and MERFISH (113, 114), and the latter has also been combined with the 

Cut&Tag protocol (115) for spatial profiling of epigenetic marks (116). Spatial barcoding 

methods such as microfluidic barcoding and Slide-seq have been combined with both 

Cut&Tag and ATAC-seq (assay for transposase-accessible chromatin with high-throughput 

sequencing) (117) for spatial profiling of open chromatin and histone modifications (77, 78, 

118). Last, detection of point mutations is possible by using ISS of DNA (119).

Although these different profiling modalities are still mostly performed one or two at a 

time (proteins + transcriptome, or transcriptome + genome organization), the future will 

unquestionably see a rise in spatial multi-omic technologies, mimicking the evolution of 

disaggregated single-cell technologies. Ultimately, a technology that incorporates genomic, 

transcriptomic, and proteomics–small-molecule measurements is desirable.

Last, the field will move closer to true 3D profiling. Currently, most spatial omics operate 

on thin tissue slices, which are essentially 2D. In the case of imaging-based profiling, the 

challenge is diffusing probes and antibodies through thick samples and obtaining sufficient 

SNR during fluorescence imaging. With barcoding methods, the oligonucleotides are placed 

in a 2D layer, and thick samples would result in multiple cells being captured for each 

position. Although 2D profiling is incredibly useful, it is blind to what lays outside of the 

sectioning plane and cannot produce an accurate image of some tissue niches. Only some 

multiplexed IHC and ISS techniques come close to 3D profiling (albeit only for samples 

a few hundreds of micrometers thick) because of the presence of strong amplification 

producing sufficient signal for confocal microscopy.

To enable 3D profiling more generally, one solution is to produce serial thin sections from 

a 3D sample, process each one through one of the 2D technologies, and use computational 

methods to realign the data and produce a 3D cube. This approach is very expensive 

in terms of processing time, but it is achievable with current technologies and has been 

demonstrated for both IMC alone, IMC combined with serial two-photon tomography, and 

spatial transcriptomics (111, 120, 121). Other approaches to 3D profiling will no doubt be 

developed in the coming years.

Just a few years ago, the ability to map the molecular make-up of every cell in a tissue, 

and interrogate hundreds of markers and millions of cells in the same experiment, would 

have been considered more science fiction than science. Now, single-cell and spatial omics 

technologies are advancing at breakneck speed and are granting scientists new powers 

to investigate complex biological processes. With this power comes the responsibility of 

assessing the limitations of this new breed of methods, their ideal application niches, and 

the best way to apply good experimental practices and rigorous analysis to the data that is 

produced. As more and more laboratories get access to these new-generation techniques, 

there is no doubt that incredible biological insights are just around the corner.
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Structured Abstract

Background

Just as single-cell sequencing has revolutionized many fields of biology, spatial “omics,” 

in which molecular parameters are measured in situ on intact tissue samples, is set to 

empower a new generation of scientific discoveries. A plethora of new technologies now 

enable spatial profiling of gene and protein expression, genetic mutations, epigenetic 

marks, chromatin structure, and genome organization. Most of these methods trace back 

to traditional techniques such as immunohistochemistry and in situ hybridization, or 

leverage the throughput of next-generation sequencing by converting spatial coordinates 

to sequence barcodes. Spatial omics technologies operate at vastly different levels of 

resolution, sensitivity, and throughput. There are also considerable differences in ease 

of adoption, compatibility with different sample types, commercial availability, upfront 

investment, and cost per sample. In such a rich and constantly evolving field, choosing 

the best technology to address a specific biological challenge—carefully weighting the 

strengths and weaknesses of each—is critical.

Advances

The field of spatial molecular profiling has come of age over the past few years. 

Current RNA profiling technologies allow the spatial measurement of gene expression 

for centimeter-scale samples—in many cases, at single-cell resolution. Targeted 

methods can quantify thousands of transcripts, including those of very low abundance, 

whereas untargeted protocols offer transcriptome-wide profiling and can even detect 

gene isoforms and mutations, with coverage approaching that of disaggregated single-

cell methods. Multiplexed immunohistochemistry protocols, either based on mass 

spectrometry or fluorescence imaging, can similarly be used to profile tens to hundreds of 

protein markers on a wide range of samples. Recent studies have reported additional 

approaches that recover other types of molecular information, including the spatial 

profiling of genomic organization for thousands of loci, open chromatin and epigenetic 

marks, and untargeted in situ DNA sequencing. Multi-omic technologies capturing 

multiple sources of information at once are also becoming available. As these methods 

become more reliable and widely adopted, it is becoming increasingly clear that spatial 

omics will contribute substantially to the elucidation of many biological questions, 

with prominent examples in fields ranging from oncology (such as the study of tumor 

heterogeneity and microenvironment) to neuroscience and organismal development.

Outlook

Future development trends in the spatial omic area are needed in three main areas: (i) 

multi-omics, which is defined as the simultaneous measurement of different parameters 

(for example, DNA, RNA, and protein); (ii) increased access and democratization, with 

technologies becoming more readily available, more reliable, and more robust; and 

(iii) improved analysis frameworks. As technologies continue to evolve, it will become 

necessary to dedicate more attention to data analysis and experimental design. Spatial 

omics technologies can already generate many terabytes of data in a single experiment, 

creating substantial challenges in data processing, analysis, and visualization. Statistical 
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methods and guidelines for sample replication, study design, and batch correction 

are also lagging behind, although they’re evolving rapidly. Last, as the future keeps 

getting closer, we foresee that spatial omics will likely evolve toward three-dimensional 

spatial omics (operating on whole organs or even organisms) and spatial-temporal omics 

(performing measurements multiple times in vivo), adding further powerful and exciting 

tools to biology’s toolbox.

Summary figure
Spatial omics methods profile the molecular make-up of tissues, preserving their spatial 

organization through four main steps. (A) Detection. Oligonucleotide probes or modified 

antibodies bind to specific nucleic acids, proteins, or small molecules. Alternatively, 

enzymatic processes can detect RNA (reverse transcription) or DNA (tagmentation) 

in an untargeted fashion. Single or multiple types of biomolecules can be profiled 

simultaneously. (B) Identification. Biomolecules can be identified directly with next-

generation sequencing or mass spectrometry, or indirectly by means of an individual tag 

on the detection probe that is either read at once or sequentially (combinatorial barcode). 

(C) Measurement. Imaging-based methods measure the signal intensity of fluorescent 

probes or count the number of spots per area (single-molecule localization methods). 

Sequencing-based methods quantify the abundance of biomolecules through normalized 

read count or using unique molecular identifiers (UMIs). (D) Localization. Biomolecules 

are assigned to their spatial locations either directly in imaging-based methods, or by 

means of a DNA barcode decoded through sequencing. Technologies differ widely in 

terms of spatial resolution, sensitivity, and number and size of areas that can be profiled.
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Figure 1. Spatial proteomics methods based on multiplexed antibody detection
Proteomics methods can be broadly divided into two types of protocols. In one (left), 

antibodies are all bound together and detected either with MS imaging (IMC or MIBI) 

or cyclic fluorescence imaging (CODEX). In the other (right), primary antibodies are 

themselves bound and stripped in each cycle (4i, CyCIF, or Cell DIVE MACSima). In 

IMC and MIBI, each antibody is bound to a different metal by a chelating polymer. During 

imaging, a laser vaporizes the tissue pixel by pixel, and the metals released from each spot 

are quantified with a mass spectrometer. The distribution of metals can then be used to 

deduce the presence and spatial distribution of specific protein antigens in the tissue. The 

two methods differ in how mass measurements are performed and in their resolution: 1 µm 

for IMC and 300 nm for MIBI. In fluorescence-based methods, each cycle detects as many 

markers as there are florescence channels available, with complexity scaling linearly with 

the number of cycles. Binding all probes together (CODEX) results in faster imaging and 

shorter cycles but requires custom modification of each antibody and extensive optimization. 

On the other hand, binding antibodies in cycles (4i, CyCIF, MACSima, and Cell DIVE) 

enables the use of “native” antibodies that can be obtained commercially but results in 

slower cycles (up to 1 day per round). Owing to the repeated rounds of microscopy, 

all cyclic imaging methods are slower than IMC and MIBI on a per-sample basis and 
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present more challenges for cycle-to-cycle alignment of images (registration). However, the 

data-generating capacity is actually higher because the slow element is the staining process, 

which can be performed in parallel on many samples, whereas the imaging itself is much 

faster than that with MS.
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Figure 2. Spatial dissection and selective illumination methods.
Several different methods can be used to restrict profiling to a specific section of a sample. 

Laser capture microdissection (LCM) relies on the physical isolation of a tissue fragment, 

from either flash-frozen or FFPE-treated material (24), followed by bulk measurements. 

By contrast, photo-sensitive groups can be used to tag an area of interest using light. TIVA-

tag and PIC use photo-sensitive groups to trigger RT either in vivo or in fixed samples. 

Nanostring GeoMx uses the same cleavable group as that of TIVA to release a fluorescent 

combinatorial tag bound to detection probes (antibodies or hybridization probes), which is 

then quantified by using Nanostring’s nCounter technology. Light-Seq and ZipSeq use light 

tagging to assign an area ID by means of crosslinking or hybridization, respectively.
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Figure 3. Imaging-based methods
Molecules are detected through hybridization and identified according to patterns of 

fluorescence signal, either driven by cooperative hybridization or incorporation of 

fluorescent nucleotides. In osmFISH, transcripts are individually detected in separate cycles 

of hybridization and signal release. MERFISH, seqFISH, and seqFISH+ use combinatorial 

labeling schemes to assign each transcript to a barcode, consisting of a subset of 

hybridization probes that are detected in cycles of imaging and release. Each digit is read in 

a separate cycle, with different colors (seqFISH+) or presence and absence of fluorescence 

(MERFISH) corresponding to different values. This allows the detection of up to Xn genes 

(where X is the potential values of each digit and n is the number of cycles). Whereas 

seqFISH probes are directly conjugated to fluorophores, MERFISH and seqFISH+ use 

“saddle probles” with a region complementary to a set of fluorescently labeled “readout” 

probes, then are hybridized and read cyclically. Each spot corresponds to a RNA molecule, 

and the sequence of fluorescence signals identifies it. In “targeted” ISS methods, multiple 

transcripts of interest are bound by a library of detection probes that circularize through 

split ligation. ISS, BaristaSeq, and ExSeq use padlock probes to either form an exact 

junction or leave a gap that is filled by polymerase before ligation. In STARmap, a pair 

of oligonucleotides [snail (specific amplification of nucleic acids via intramolecular ligation 

element) probes] need to bind in close proximity to enable circularization. In “untargeted” 
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methods, RNA is retrotranscribed from a poly(T) oligonucleotide, and the cDNA is then 

circularized through intramolecular single-strand ligation. The circularized molecules are 

amplified by means of RCA, producing rolonies. In all cases, sequencing is performed on 

the rolonies by using either sequencing-by-ligation or sequencing-by-synthesis technologies. 

Targeted methods read a barcode within the probe itsef or in the gap-filled region (allowing 

detection of mutations). Untargeted methods sequence the cDNA itself, which can be 

purified and sequenced again in bulk (ExSeq)
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Figure 4. Spatial barcoding methods
All methods are based on the production of a solid surface with a regular array of 

capture probes (DNA oligonucleotides), terminating with a poly(T) sequence that matches 

cellular mRNAs. In ST and 10X Visium, the capture probes are built directly by means 

of microarray printing, resulting in a resolution of 50 to 100 µm. In Slide-seq and HDST, 

the probes are synthesized on gel beads, which are then randomly attached to a slide 

or deposited on a microwell chip. The position of each bead is then detected by short 

rounds of ISS. In Seq-Scope and PIXEL-seq, the capture probes are produced by modifying 

sequencing clusters produced by bridge amplification on an Illumina flow cell or on a 

polyacrylamide-based hydrogel, whereas in Stereo-seq, they are produced by means of RCA 

on a silicon wafer. Spatial location is provided by ISS of the capture probes. In all cases, 

a tissue section is then placed on top of the arrayed capture probes and digested, letting 

the mRNAs in the tissue reach the poly(T) region, and cDNA is synthesized in situ. In 

DBiT-seq, barcodes are created directly on top of biomolecules (DNA fragments, cDNA, or 

oligo-conjugated antibodies) by placing a microfluidic chip with parallel thin channels on 

the section and performing ligation with a different oligonucleotide in each channel. The 

chip is then rotated by 90°, and ligation is repeated, producing an xy grid with resolution 

ranging from 10 to 50 µm. In all cases, the indexed biomolecules are then profiled in bulk by 

means of sequencing.
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Figure 5. Analysis workflows for spatial profiling datasets
Analysis workflows vary depending on the core acquisition modality (imaging or next-

generation sequencing). Imaging methods require preprocessing of the images taken at 

different cycles and across multiple fields of view through stitching, background correction, 

and realignment with high accuracy (image registration). Image registration relies on easily 

identifiable “fiducial marks” that can be either point signals produced by the protocol itself 

(ExSeq and STARmap), embedded fluorescent microbeads (MERFISH and seqFISH), or 

the pattern of cell nuclei after intercalator staining (multiplexed IHC). For single-molecule 
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imaging methods, the signal spots need to be identified and their patterns decoded to 

assign them to a biomolecule identification (ID) (usually a transcript). Images are then 

segmented to define areas corresponding to each cell (masks) by either identifying the 

cell membranes or performing a geometric expansion around the nucleus as a proxy 

for the cytoplasm. The number of spots or signal intensity are then integrated over the 

cellmasks, generating an area-by-features matrix. By contrast, spatial barcoding methods 

produce datasets in the form of sequencing output, which are preprocessed and parsed to 

assign each read to (i) a coordinate in space, through the location barcodes, and (ii) a 

biomolecule’s ID by mapping to a reference (such as a transcriptome). This is comparable 

with the preprocessing pipelines for disaggregated single-cell sequencing, with the space 

barcodes effectively replacing the cell barcodes, and representing areas that range from 

tissue regions to subcellular compartments, depending on the profiling method. Thereafter, 

common analysis steps include filtering, normalization, identification of highly variable 

features, dimensional reduction, clustering, and identification of differentially expressed 

markers. The results can be visualized either directly or in a dimensionality-reduced space 

on the basis of the omics profile and are finally integrated with the spatial information to 

reveal spatial features.
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Table 1
Summary of spatial omics technologies.

IHC, immunohistochemistry; SNR, signal-to-noise ratio; IF, immunofluorescence; UMI, unique molecule 

identifier; FFPE, formalin-fixed paraffin-embedded; LCM, laser-capture microdissection; bin, 100 μm2 Rough 

cost ranges for instruments are defined as follows: high, > $500,000, medium: $100,000 to $500,000; low, 

<$100,000. Rough cost ranges per sample are defined as follows: high, >$1000; medium,: $100 to $1000; low: 

<$100. Numbers in parentheses refer to superscript numbers above them in their column, denoting the 

applicable methods.

Multiplexed 
IHC/MS

Cyclic 
immunofluorescence Microdissection Light-based 

dissection
Multiplexed 

ISH ISS
Spatial 

barcoding 
(patterned)

Spatial 
barcoding 
(patterned 
ligation)

Methods IMC1, 
MIBI2

CyCIF1,4i2, 
CODEX3, 

MACSima4, Cell 
DIVE5, COMET6

Physical 
microdissection

PIC1, TIVA-
tag2, PSS3, 
ZIPSeq4, 

Light-Seq5, 
GeoMx6, 

microSCOOP7

MERFISH1, 
seqFISH2, 

seqFISH+3, 
osmFISH4, 

SCRINSHOT6, 
EEL-FISH6

ISS1, 
FISSEQ2, 

ExSeq 
untargeted3 

ExSeq 
targeted4 

STARmap5, 
hybISS6

Visium1, 
SlideSeqV22, 
Stereo-seq3, 
HDST4, Seq-

Scope5, 
PIXEL-seq6

DBiT-seq

Modalities

Antibodies 
(1 and 2) and 
mRNAs (1)

Antibodies Any 
downstream 
bulk method

RNA (1, 2, 4, 
and 5), DNA 

(3)

RNA (all), 
DNA (1 and 3)

RNA RNA (all), 
DNA (2), 
antibodies 

(1)

RNA, DNA, 
Antibodies

Resolution

1 pm (1), 
100s of 

nanometers 
(2)

Diffraction limited Down to single-
cell

Single-cell Diffraction 
limited

Diffraction 
limited

<1 to 100 jim Down to 
lOum

N. features

<50 (limited 
by 

availability 
of metal 
isotopes)

Up to 100s Whole 
transcriptome or 

genome

Whole 
transcriptome 

or genome

Tens to ten 
thousands (cell 

culture)

100s to 
1000s

Whole 
transcriptome 

or genome

Whole 
transcriptome 

or genome

N. areas

Scales with 
acquisition 
time, up to 

millions

Scales with 
acquisition time, up 

to millions

In practice, 
limited to tens to 

hundreds

Up to few 
hundreds

Scales with 
acquisition 
time, up to 

millions

Scales with 
acquisition 
time, up to 

millions

5000 to 
millions

2500

Sample area

Scales with 
acquisition 
time, up to 
centimeters

Scales with 
acquisition time, up 

to centimeters

Scales with 
acquisition time, 

up to 
centimeters

Scales with 
acquisition 
time, up to 
centimeters

Scales with 
acquisition 
time, up to 
centimeters

Scales with 
acquisition 
time, up to 
centimeters

4 mm to 2 
centimeters

1 to 4 mm2

Sensitivity 
and capture 
efficiency

Up to 
standard 

IHC, 
excellent 
SNR and 

quantitation

As per standard IF, 
SNR affected by 
autofluorescence

As good as 
traditional 

RNA-seq or 
DNA-seq

Traditional 
RNA-seq, 

DNA-seq, or 
MS

Very high 
(single 

molecule per 
cell)

Varies: low, 
comparable, 

or better 
than that of 
scRNA-seq

−550 to 2000 
UMI per bin

−2500 UMI 
per bin

Tissue

Frozen, 
FFPE

Frozen, FFPE Frozen, FFPE 
(challenging)

Live (2 and 4), 
Frozen (all), 
FFPE (5, 6, 

and 7)

Frozen (all) 
FFPE (1 and 5)

Frozen (all), 
PFA-fixed 

(4)

Frozen (all), 
FFPE (1)

Frozen, 
FFPE

Commercial 
availability

SBT 
Hyperion 

(1), lonPath, 
MIBISCOPE 

(2)

Leica Cell DIVE (5), 
Akoya Phenocycler 

(3), Miltenyi 
MACSima (4), 

Lunaphore COMET 
(6)

Several 
suppliers

Nanostring 
GeoMX, 
Syncell 

MicroSCOOP

Vizgen 
MERSCOPE, 
10X Xenium, 
Nanostring 

CosMX, 
Resolve 

biosciences, 
Rebus Esper

10X Visium, 
Curio Seeker

AtlasXomics
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Multiplexed 
IHC/MS

Cyclic 
immunofluorescence Microdissection Light-based 

dissection
Multiplexed 

ISH ISS
Spatial 

barcoding 
(patterned)

Spatial 
barcoding 
(patterned 
ligation)

Methods IMC1, 
MIBI2

CyCIF1,4i2, 
CODEX3, 

MACSima4, Cell 
DIVE5, COMET6

Physical 
microdissection

PIC1, TIVA-
tag2, PSS3, 
ZIPSeq4, 

Light-Seq5, 
GeoMx6, 

microSCOOP7

MERFISH1, 
seqFISH2, 

seqFISH+3, 
osmFISH4, 

SCRINSHOT6, 
EEL-FISH6

ISS1, 
FISSEQ2, 

ExSeq 
untargeted3 

ExSeq 
targeted4 

STARmap5, 
hybISS6

Visium1, 
SlideSeqV22, 
Stereo-seq3, 
HDST4, Seq-

Scope5, 
PIXEL-seq6

DBiT-seq

Cost 
(instrument/ 
per sample)

High/
medium 

(antibody 
cost)

Medium/medium 
(antibody cost)

Medium/low 
(sample prep)

Medium/low 
(bulk sample 

prep)

Medium/
medium

Medium to 
high/

medium

Very low/
medium to 

high 
(barcoded 
supports)

Low/medium

Required 
instruments

Dedicated 
MS

Standard 
fluorescence 

microscope or 
dedicated imager

Standard LCM 
instruments

Standard 
confocal 

microscope or 
other 

microscope 
with patterned 
illumination 

module

Dedicated 
epifluorescence 

or confocal 
microscope 
with fludiics

Dedicated 
confocal 

microscope 
with fluidics

No 
instrument 

(beyond 
NGS 

sequencer)

Facilities for 
microfluidic 

chip 
preparation 

(until 
commercially 

available)
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