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Abstract

Recently, there has been significant interest in measuring time-varying functional connectivity 

(TVC) between different brain regions using resting-state functional magnetic resonance imaging 

(rs-fMRI) data. One way to assess the relationship between signals from different brain regions is 

to measure their phase synchronization (PS) across time. However, this requires the a priori choice 

of type and cut-off frequencies for the bandpass filter needed to perform the analysis. Here we 

explore alternative approaches based on the use of various mode decomposition (MD) techniques 

that provide a more data driven solution to this issue. These techniques allow for the data 

driven decomposition of signals jointly into narrow-band components at different frequencies, thus 

fulfilling the requirements needed to measure PS. We explore several variants of MD, including 

empirical mode decomposition (EMD), bivariate EMD (BEMD), noise-assisted multivariate EMD 

(na-MEMD), and introduce the use of multivariate variational mode decomposition (MVMD) 

in the context of estimating time-varying PS. We contrast the approaches using a series of 

simulations and application to rs-fMRI data. Our results show that MVMD outperforms other 

evaluated MD approaches, and further suggests that this approach can be used as a tool to reliably 

investigate time-varying PS in rs-fMRI data.
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1. Introduction

In recent years, there has been a great deal of interest in studying time-varying functional 

connectivity (TVC) in the brain during the course of a single resting-state functional 

magnetic resonance imaging (rs-fMRI) run; see, for example, Lurie et al. (2019) for an 
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overview. A number of different analytic approaches have been suggested for measuring 

TVC, including the correlation-based sliding window approach (Chang and Glover, 2010; 

Hutchison et al., 2013a; 2013b; Tagliazucchi et al., 2012), change point analysis (Cribben et 

al., 2012; 2013; Xu and Lindquist, 2015), point process analysis (Tagliazucchi et al., 2011), 

co-activation patterns (CAPs) (Karahanoğlu and Van De Ville, 2015; Liu and Duyn, 2013), 

time series models (Lindquist et al., 2014), time-frequency analysis (Chang and Glover, 

2010), and variants of hidden Markov models (HMMs) (Bolton et al., 2018; Eavani et al., 

2013; Shappell et al., 2019; Vidaurre et al., 2017).

Recently, phase synchronization (PS) methods have gained increased popularity in fMRI 

analysis as a means of measuring the level of synchrony between the phase of time series 

from different regions of interest (ROIs) (Choe et al., 2021a; 2021b; Glerean et al., 2012; 

Honari et al., 2021; Pedersen et al., 2017; 2018; Ponce-Alvarez et al., 2015; Rebollo et al., 

2018). The term synchrony refers to the coordination in the state of two or more systems that 

can be attributed to their interaction or coupling (Rosenblum et al., 1996). In these methods 

the phase of a set of time series from different ROIs are computed at each time point through 

the application of the Hilbert transform and used to evaluate the phase difference between 

the time series. Two time series in synchronization will maintain a constant phase difference, 

and time-varying PS methods seek to investigate how the phase difference between time 

series from different regions vary during the course of a rs-fMRI run. Throughout, we will 

differentiate between methods that combine a PS metric with a sliding window approach, 

referred to as windowed phase synchronization (WPS), with those that directly measure PS 

at each time point, referred to as instantaneous phase synchronization (IPS) (Honari et al., 

2021).

To date, a number of studies have applied PS methods to fMRI data. An early application 

was Laird et al. (2002), who used IPS to analyze task-activated fMRI data. Later Niazy et 

al. (2011) studied the spectral characteristics of resting state networks (RSNs), highlighting 

the importance of considering IPS between RSNs at different frequencies. Glerean et al. 

(2012) proposed the use of IPS as a measure of TVC, and Ponce-Alvarez et al. (2015) 

applied non-negative tensor factorization in combination with PS to compute TVC. Pedersen 

et al. (2018) examined the relationship between IPS and correlation-based sliding window 

(CSW) techniques and observed a strong association between the two methods when using 

absolute values of CSW. Finally, Honari et al. (2021) critically evaluated a number of 

different WPS and IPS methods for evaluating PS, introducing several new WPS methods 

and a new method within the IPS framework denoted the cosine of the relative phase (CRP). 

Their results indicated that using CRP within an IPS framework outperformed other tested 

methods.

A benefit of using the IPS approach is that it offers single time-point resolution of time-

resolved fMRI connectivity and does not require choosing a predefined window length as 

is the case when using, for example, CSW. However, a shortcoming involves the need to 

bandpass filter the data prior to analysis in order to accurately estimate the instantaneous 

phases. This requirement stems from the fact that in order for the instantaneous phases 

obtained using the Hilbert transform to be physically meaningful, the signal must be 

sufficiently narrow-bandpassed to approximate a monocomponent signal. To circumvent the 
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need to a priori choose the type and cut-off frequencies for the bandpass filter, researchers 

are increasingly exploring the use of various mode decomposition (MD) techniques that 

allow for the data-driven decomposition of signals into narrow-band components centered at 

different frequencies. It should be noted that while these approaches circumvent the need to 

prespecify the filter that provide a narrow-bandpass signal, they do require choosing certain 

parameters values in advance depending on the approach (e.g., stoppage criteria). However, 

in contrast to classic filtering they provide a collection of bandpass filters that allow one to 

conduct analysis at different frequencies.

As an example, the Hilbert-Huang Transform (HHT) (Huang et al., 1998) combines a MD 

technique, Empirical Mode Decomposition (EMD), with the Hilbert transform. The EMD 

step decomposes the signal into a finite set of time-varying oscillatory functions referred to 

as intrinsic mode functions (IMFs). The second step of the HHT involves the application 

of the Hilbert transform to each IMF generated using EMD to obtain their time-varying 

measures of instantaneous phase. The HHT provides a data-driven tool for time-frequency 

analysis, that is able to handle signals that are inherently non-linear and non-stationary. In 

this paper we similarly focus on using EMD and other related MD techniques as alternatives 

to bandpass filtering the data prior to applying the Hilbert transform and evaluating PS.

There exists multiple types of MD techniques that can be used to decompose the data into 

its IMFs. The simplest version is standard EMD which can be applied to a single univariate 

signal. This procedure is performed through a recursive algorithm that uses the local extrema 

in the signal to estimate its upper and lower envelopes. These envelops are then used to 

obtain IMFs using the so-called sifting process. This involves averaging the envelopes to 

compute the local mean, thus providing a low-frequency estimate of the signal. Removing 

the local mean from the signal allows one to recover a high-frequency oscillatory mode (i.e., 

an IMF). The process is repeated until all oscillatory modes in the signal have been obtained. 

It has been demonstrated (Flandrin et al., 2004; Rehman and Mandic, 2010; Wu and Huang, 

2004) that IMFs obtained using standard EMD provides frequency responses similar to those 

obtained using a dyadic filter bank (i.e., a filter bank dividing a signal into a collection 

of successively band-limited components in which while descending the frequency scale, 

successive frequency bands have half the width of their predecessors (Vouras and Tran, 

2005)). In other words, EMD behaves as a filter bank of overlapping bandpass filters and the 

frequency content of the IMFs obtained decreases from one IMF to the following one.

EMD is designed to be performed on univariate signals. In order to perform a bivariate or 

multivariate analysis, the decomposition needs to be performed simultaneously and jointly 

for several reasons. First, the computation of the local mean, which depends on finding 

local extrema for multivariate signals, is not straightforward. This is because the concept of 

local extrema is not well defined for multivariate signals and the notion of the oscillatory 

modes defining an IMF is convoluted (Mandic and Goh, 2009; Rehman and Mandic, 2010). 

Second, to allow for mode alignment across signals and alleviate frequency mismatch 

between the decomposed IMFs, they need to be matched both in number and frequency 

(Looney and Mandic, 2009).
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Bivariate EMD (BEMD) (Tanaka and Mandic, 2007) combines the two signals being 

analyzed into a single complex signal and thereafter computes its envelopes. If analyzing 

more than two signals, this approach can be applied in a pair-wise manner. However, in 

this setting the alignment of the bivariate IMFs among all pairs is not guaranteed globally. 

This necessitated the development of multivariate EMD (MEMD) which ensures global 

mode alignment across all IMFs (Rehman and Mandic, 2010). This is achieved by forming 

multiple real-valued projections of the signal, and using them to obtain multi-dimensional 

envelopes via interpolation.

While MEMD addresses mode alignment and guarantees that the same number of IMFs 

are extracted from each multivariate input signal, it is susceptible to mode mixing (i.e., 

the mixture of frequency content from one IMF to another). In addition, the manner in 

which IMFs are chosen can be driven by noise. This led to the introduction of noise-assisted 

multivariate EMD (na-MEMD) (Colominas et al., 2012; Yeh et al., 2010; Zhang et al., 2017) 

where additional input signals generated from Gaussian white noise (WN) are introduced. 

The structure of the frequency response that MEMD imposes on Gaussian WN is similar 

to that of a dyadic filter bank (Vouras and Tran, 2005). Hence, MEMD behaves as a bank 

of bandpass filters and the frequency content of the obtained IMFs decrease in subsequent 

IMFs. Thus, when Gaussian WN is added to the input signal this allows the intrinsic 

oscillations to be filtered adaptively to their appropriate scales.

Another noise assisted variant of MD includes ensemble EMD (EEMD) which leverages the 

dyadic filter bank property by adding Gaussian WN directly to the signal (Wu and Huang, 

2009). This procedure is repeatedly performed, and for each iteration a different realization 

of WN is used. The output IMFs are obtained by averaging the corresponding IMFs from 

the whole ensemble. However, determining optimal values for the noise level and number of 

ensembles is not trivial. Further, adding too much noise directly to the signal can degrade 

results. This approach is outside the scope of this paper as previous work has shown that 

na-MEMD outperforms EEMD (Zhang et al., 2017).

It should be noted that the EMD variants discussed earlier are only partially able to address 

the limitations on sensitivity to noise and mode mixing. This is true because EMD is based 

on the use of signal extrema, and in general the extrema of a sampled signal may differ 

from its continuous-time version. A consequence is the local mean may introduce artefacts 

associated with how sampling is performed (Rilling and Flandrin, 2009). In addition, EMD 

is a recursive process whose results depend on various algorithmic choices, including which 

interpolation scheme and stopping criteria is used (ur Rehman and Aftab, 2019). Given 

these concerns, Dragomiretskiy and Zosso (2013) introduced a non-recursive Variational 

Mode Decomposition (VMD) technique where the modes are extracted concurrently. Here 

an optimization problem is formulated where the cost function to be minimized is the sum of 

bandwidths of all signal modes subject to the constraint that the modes reconstruct the input 

signal. ur Rehman and Aftab (2019) introduced a generic extension of VMD for multivariate 

data, referred to as Multivariate Variational Mode Decomposition (MVMD), where the cost 

function is extended to minimize the sum of bandwidths of all signal modes across all 

multivariate input signals.
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EMD approaches have already been successfully applied to rs-fMRI data. For example, 

Honari et al. (2021) compared PS analysis on rs-fMRI data using data extracted via the 

Hilbert transform and BEMD. Further, Zhou et al. (2020) used MEMD to analyze TVC in 

rs-fMRI for use in prediction and classification of sleep quality. In this work, we therefore 

primarily focus on the use of na-MEMD and MVMD for evaluating TVC using rs-fMRI 

within the PS framework.

It is important to note that there exist several alternative approaches towards decomposing 

signal into frequency components. For example, the Fourier transform is well-suited when 

the data is linear and periodic or stationary. However, the Fourier basis functions are 

global, and thus cannot handle local non-linearity without significant spreading across 

frequencies. This is particularly true when the waveforms deviate significantly from a 

sinusoidal form. Another example, the wavelet transform, is basically an adjustable window 

Fourier transform, which can capture localised information in the time-frequency domain 

due to its multi-scale property. It therefore provides a better approach than the Fourier 

transform for non-stationary signals. However, this approach has a non-adaptive nature and 

once the mother wavelet is chosen, it cannot be changed during the analysis. Further, it is not 

suitable for the analysis of non-linear data. In contrast, MD techniques are data driven and 

adaptive in terms of decomposing the signal into modes. Finally, a method that is suitable 

for non-stationary signals, can be applied to stationary signals as well; however, the opposite 

is not possible. For example, the Fourier transform can handle stationary signals, but cannot 

be used for non-stationary signals. The ability of MD techniques to handle non-linear, 

non-stationary time series make them particularly suitable for the analysis of rs-fMRI time 

series data (Allen et al., 2014; Guan et al., 2020).

The paper is organized as follows. We begin by introducing standard univariate EMD 

and describing the algorithm used to decompose an input signal into IMFs. Next, we 

discuss variants of EMD that can be used for multivariate decomposition of multiple signals 

jointly into IMFs rather than decomposing each signal independently. These include BEMD, 

MEMD, and na-MEMD. Finally, MVMD is introduced as an alternative decomposition 

approach that mitigates issues related to mode mixing and sensitivity to noise often observed 

in EMD approaches. The paper concludes by comparing the methods using a series of 

simulations, and applying MVMD-based phase synchronization to rs-fMRI data.

2. Methods

2.1. Empirical mode decomposition techniques

To obtain the instantaneous phase (Boccaletti et al., 2018) of a real signal x(t) one must first 

construct an analytic signal:

z(t) = x(t) + jℋ x(t) (1)

where j = −1 and ℋ represents the Hilbert transform. This signal can be re-expressed as 

follows:

z(t) = A(t) exp jϕ(t) (2)
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where A(t) represents the envelope and ϕ(t) the instantaneous phase.

An important consideration when computing instantaneous phase is the need for x(t) to 

satisfy Bedrosian’s Product Theorem (Bedrosian, 1963), which states that a band-limited 

signal can be decomposed into the product of envelope and phase when their spectra are 

disjoint. A necessary condition for this to hold is that x(t) is first narrow-banded by applying 

a bandpass filter. Choosing the type and bandwidth for the bandpass filter required to 

perform the analysis is one of the greater challenges when using these types of approaches. 

In addition, ambiguities can persist whether the chosen bandpass filter actually ensures that 

the signal is sufficiently narrow-band for applying the Hilbert transform to construct the 

analytic signal. Therefore, we seek more data-driven alternatives for achieving the equivalent 

goals.

One such alternative is the Hilbert Huang transform, which is EMD followed by the Hilbert 

transform. Here EMD is used in place of bandpass filtering. EMD offers a data-driven 

way to decompose the signal of interest into a series of IMFs that correspond to different 

frequency bands. An IMF is a function where the number of extrema and zero-crossings 

differ at most by one, and the mean value of the upper (defined by the local maxima) and 

lower envelopes (defined by the local minima) is equal to zero. The IMFs are zero-mean 

amplitude-frequency modulated signals, designed to ensure that Bedrosian’s theorem is 

respected and that subsequent application of the Hilbert transform will result in physically 

meaningful instantaneous phases of the input signal (Huang, 2014; ur Rehman and Mandic, 

2011). Together, these IMFs form a set of approximately orthogonal basis that can be used 

to reconstruct the input signal. The first IMF consists of the largest frequency oscillation 

present in the signal, and each subsequent IMF consists of increasingly smaller frequency 

oscillations than those previously extracted.

The practical implementation of EMD is described in Algorithm 1 in the Supplementary 

Material, where Steps 2–6 are referred to as the sifting process (Huang et al., 1998). The first 

step is to identify all the local extrema present in the input signal x(t). All local maxima are 

connected using a cubic spline which create an upper envelope for the signal. Similarly, all 

local minima are used to create a lower envelope. The two envelopes create an upper and 

lower bound for the data. The mean m(t) is computed by taking their average. The difference 

between the data and mean, d(t) = x(t) − m(t), is considered a candidate IMF. This process 

is repeated until a stoppage criterion is fulfilled, and the current value of d(t) is designated 

as an IMF. Once, the IMF is set it is subtracted from the signal and the sifting process is 

performed on the new signal. This process is repeated, each time removing the previously 

defined set of IMFs from x(t), until the desired number of IMFs have been obtained. The 

stoppage criterion used in EMD determines the number of sifting steps that are performed 

when deriving IMFs.

There are a number of commonly used stoppage criterion, and in this paper we use the 

threshold method (Rilling et al., 2003). This criterion is based on imposing two thresholds 

θ1 and θ2 aimed at ensuring globally small fluctuations in the mean while taking locally 

large excursions into consideration (Rilling et al., 2003). Let us define the amplitude as 

a(t) ≔ (emax(t) − emin(t))/2, where emax(t) and emin(t) are the upper and lower envelope, 
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respectively, and the evaluation function as σ(t) ≔ |m(t)/a(t)|. The sifting process is repeated 

until σ(t) < θ1 for some fraction (1 − α) of the total number of iterations and σ(t) < θ2 for 

the remaining fraction. The recommended values for these thresholds proposed by Rilling et 

al. (2003), which we use in this paper, are α ≈ 0.05, θ1 ≈ 0.05, and θ2 ≈ 10θ1.

2.1.1. Bivariate empirical mode decomposition—Often it is of interest to extract 

IMFs from a collection of signals. A simple approach is to apply the standard EMD 

algorithm separately to each signal and extract a set of IMFs from each. However, this does 

not guarantee that the frequencies of the extracted IMFs match across signals, nor will the 

repeated application of the EMD algorithm necessarily produce the same number of IMFs 

for all signals. This is particularly problematic within the PS framework, where one seeks to 

compare signals within the same frequency band. To circumvent this issue and allow for the 

decomposition of a bivariate or multivariate signal, various extensions of EMD have been 

proposed that perform the decomposition jointly (ur Rehman and Mandic, 2011).

To decompose bivariate signals, EMD should be performed so that the decomposition and 

sifting process is applied on the envelope of the bivariate signal. This ensures that the 

number and frequency of the decomposed IMFs corresponding to each signal match. Rilling 

et al. (2007) proposed an extension of EMD, referred to as BEMD, for handling signal pairs. 

Here the bivariate signal is treated as a complex-valued signal x(t) to simplify representation. 

In general, given a set of directions in the complex plane, BEMD follows the same algorithm 

as EMD except that the sifting process is performed jointly on the signal pair. Thus, for 

bivariate signals the looping of the algorithm is performed in the directions π and 2π. In 

each direction all extrema are extracted and the set of points interpolated using cubic splines 

to obtain the envelopes. The envelopes corresponding to these directions are averaged to 

obtain the local mean. The practical implementation of BEMD is described in Algorithm 2 

(Rilling et al., 2007) in the Supplementary Material.

2.1.2 Multivariate empirical mode decomposition—While BEMD addresses the 

misalignment of IMFs for a given pair of signals, it does not guarantee that the IMFs will 

be aligned globally if applied in a pair-wise manner to the components of a multivariate 

signal consisting of more than two signals. To ensure that the same number of IMFs 

are produced and to avoid the misalignment of the IMFs when analyzing more than two 

signals, multivariate extensions of EMD have been proposed. For example, an extension 

to the trivariate case was proposed by ur Rehman and Mandic (2010) and a more general 

multivariate case by Rehman and Mandic (2010).

The latter extension involves processing the signals directly in multidimensional space. 

First, the signal is projected along different directions in n-dimensional space. Using the 

projections, multiple n-dimensional envelopes are computed, which are used to obtain 

the local mean. Calculation of the local mean can be thought of as an approximation of 

the integral of all envelopes in multiple directions in ℝn. The accuracy of this integral 

is bounded by how uniformly the direction vectors used to perform the projections are 

selected. The direction vectors in n-dimensional space can be represented by points on a 

multi-dimensional sphere of unit radius. Hence, the problem becomes finding a uniform 

sampling scheme on the sphere. This can be obtained either using uniform angular sampling 
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or sampling based on low-discrepancy point sets. While the first scheme provides a simple 

and easy way for sampling a unit sphere in ℝn, it does not provide a uniform sampling 

distribution as it gives rise to higher density closer to the poles. Thus, the second sampling 

scheme, which relies on the concept of discrepancy (a measure of the non-uniformity of a 

distribution) to create a uniform point set on spheres is leveraged. A standard approach for 

obtaining such a point set is based on the Hammersley sequence (Cui and Freeden, 1997).

Given the set of direction vectors obtained using the aforementioned sampling scheme, 

the projections pφk(t), for t = 1 … T, of the input signal x(t) along directions v(t)φk in 

multidimensional space are calculated as pφk(t) = x(t)v(t)φk. Thereafter, the time instants 

tj
φk  corresponding to the maxima of the projection pφk(t) are determined. These extrema 

are interpolated via cubic spline interpolation to get a series of multivariate signal envelopes 

eφk(t). The local mean is computed by averaging the envelopes. This is followed by the 

sifting process to extract the IMFs from the multivariate data until the stoppage criterion is 

met for all the projected signals. The implementation of MEMD is shown in Algorithm 3 

(Huang, 2014; Rehman and Mandic, 2010) in the Supplementary Material.

2.1.3. Noise-assisted multivariate empirical mode decomposition—While 

MEMD is a powerful tool, it can suffer from a mode-mixing phenomena when analyzing 

real signals. This refers to when an IMF has components from multiple frequencies (Xu et 

al., 2019), which occurs when oscillations with different time scales coexist in the same IMF 

or when the oscillations in the same time scale are assigned to different IMFs. Mode mixing 

can occur when the frequencies of the constituent signals are too close to one another or 

when the amplitude of the low frequency signal is too large (Xu et al., 2019). The issue of 

mode mixing hampers the application of EMD and MEMD (Gao et al., 2008; ur Rehman 

and Mandic, 2011; Rilling and Flandrin, 2007; Wu and Huang, 2009; Xu et al., 2019), and 

to mitigate this issue noise-assisted MEMD (na-MEMD) was introduced (Colominas et al., 

2012; Wu and Huang, 2009; Yeh et al., 2010; Zhang et al., 2017).

This approach uses the fact that when applied to Gaussian WN, both standard and 

multivariate EMD behave as a filter bank of overlapping bandpass filters where the 

frequency bands have half the width of their predecessors. In na-MEND, p uncorrelated 

Gaussian WN signals of the same length as the original n input signals are created. By 

processing the p + n multivariate signals using the MEMD algorithm, multivariate IMFs 

can be extracted. Because the added noise signals occupy a broad range in the frequency 

spectrum, MEMD aligns the IMFs based on the dyadic filter bank properties described 

above, which in turn mitigates mode-mixing (ur Rehman and Mandic, 2011; Yeh et al., 

2010). The p IMFs corresponding to the added noise signals are discarded, leaving the IMFs 

corresponding to the original input signal.

2.2. Multivariate variational mode decomposition

Variational Mode Decomposition (VMD) is another class of MD techniques. In contrast to 

EMD, where modes are extracted sequentially, these are non-recursive procedures where the 

modes are extracted concurrently. They are based on solving an optimization problem where 
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the cost function to be minimized is the sum of bandwidths of all signal modes subject to the 

constraint that the modes reconstruct the input signal.

We begin by formulating the univariate VMD problem before extending to the multivariate 

setting. VMD aims to decompose a real-valued input signal x(t) into K modes, u1, …, uK, 

each designed to be compact around a center frequency ω1, …, ωK determined during the 

course of the decomposition. For each mode, the Hilbert transform is used to create a signal 

with only positive frequency values, which can be used to form an analytic signal. The 

mode’s frequency band is shifted to baseband, by mixing it with an exponential tuned to 

the respective center frequency. The bandwidth is estimated via the squared L2-norm of the 

gradient. This constrained problem can thus be formulated as follows:

min
uk , ωk

∑
k

d
dt δ(t) + j

πt * uk(t) e−jωkt
2

2
s . t . ∑

k
uk = x(t) (3)

Here δ(t) + j
πt * uk(t)  is the analytic representation of the signal corresponding to uk(t), * is 

the convolution operator, and δ(t) the delta function.

To address the constraint that the modes reconstruct the input signal, Dragomiretskiy and 

Zosso (2013) proposed the use of a quadratic penalty to enforce reconstruction accuracy of 

the signal in the presence of noise, and Lagrange multipliers λ to enforce the constraint 

strictly. The augmented Lagrangian can be formulated as follows:

ℒ uk , ωk , λ ≔ α∑
k

d
dt δ(t) + j

πt * uk(t) e−jωkt
2

2
+ x(t) − ∑

k
uk

2

2

+ λ(t), x(t) − ∑
k

uk(t)
(4)

where α is a penalty term specifying the relative importance of the first term.

The saddle point of the augmented Lagrangian in (4) provides a solution to the original 

optimization problem expressed in (3). This can be found using a series of iterative sub-

optimizations denoted “Alternate Direction Method of Multipliers ” (ADMM) (Bertsekas, 

1976; Eckstein and Yao, 2015; Nocedal and Wright, 2006). The modes and the center 

frequencies are updated at each iteration accordingly. The Lagrangian multiplier is also 

updated using dual ascent for all ω ≥ 0; see ur Rehman and Aftab (2019) for more details.

Now that the core algorithm for VMD is described, the multivariate extension can be more 

easily understood. Let x(t) denote the multivariate input signal x(t) = [x1(t), x2(t), …, xn(t)]. 

The aim is to extract an ensemble of multivariate modes uk(t) k = 1
K  such that the sum of 

bandwidth of obtained modes is minimum and the sum of the extracted modes can exactly 

reconstruct the input signal. Now the corresponding augmented Lagrangian function (ur 

Rehman and Aftab, 2019) can be expressed as follows:
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ℒ uk, n , ωk , λn ≔ α∑
k

∑
n

d
dt δ(t) + j

πt * uk, n(t) e−jωkt
2

2

+ ∑
n

xn(t) − ∑
k

uk, n
2

2 + ∑
n

λn(t), xn(t) − ∑
k

uk, n(t)
(5)

The algorithm for the multivariate extension is shown in Algorithm 4 (ur Rehman and 

Aftab, 2019) in the Supplementary Material with steps similar to the univariate VMD 

described above. Both univariate and multivarite VMD are shown to be robust to noise 

and the influence of sampling, and able to effectively separate frequency components. 

MVMD also enjoys the mode alignment properties for multivariate signals, and additionally 

shows superior filter bank properties compared to MEMD and is able to effectively extract 

quasi-orthogonal modes (Dragomiretskiy and Zosso, 2013; ur Rehman and Aftab, 2019). 

Hence, the approach is ideal for our application due to the low signal-to-noise ratio (SNR) in 

rs-fMRI signal (Biswal et al., 1996; Drew et al., 2020; Garg et al., 2013; Tanabe et al., 2002; 

Teeuw et al., 2021).

2.3. Computing time-varying PS

In this section, we describe the general framework in which the various MD techniques 

are used in conjunction with the Hilbert transform to measure time-varying PS in fMRI 

data. The selected MD technique is used to decompose the signal into its IMFs. The IMFs 

of interest are then treated as the inputs to the Hilbert transform as they are band-limited 

signals in a manner that respects Bedrosians theorem. This allows the phase of the IMFs to 

be estimated and used in PS analysis.

When performing time-varying PS analysis, there exists two classes of techniques WPS and 

IPS. WPS methods use metrics that provide a single omnibus measure of the PS between 

two signals. A sliding window technique is used to compute the metric locally within a 

specific time window. As the window is shifted across time, one can obtain a time-varying 

value of the measure of interest (i.e., the synchronization between the two signals). The 

types of metrics that can be used to measure WPS are discussed in Honari et al. (2021). 

In this work, we use circular-circular correlation which is an extension of the standard 

correlation coefficient for angular values.

In the WPS framework, it is common to use a boxcar as a window (Honari et al., 2021; 

Rebollo et al., 2018). However, similar to its use in the CSW framework, it has been shown 

that tapering leads to smoother results (Shakil et al., 2017) and alleviates the effect of sudden 

changes related to the edges of rectangular windows. Further, when using a boxcar window 

all points in the window are given equal weight, which in turn leads to inflated sensitivity to 

outliers (Allen et al., 2014; Mokhtari et al., 2019). To alleviate these concerns, we propose 

the use of a tapered window based on the von-Mises probability density function (pdf) 
which we refer to as tapered-WPS (tWPS) (Honari and Lindquist, 2021).

The pdf for a random circular variable in the range (−π, π] that follows the von-Mises 

distribution with circular mean Θ and variance 1/κ is given by:

Honari and Lindquist Page 10

Neuroimage. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f θ ∣ Θ, κ = 1
2πI0(κ)eκ cos θ − Θ

(6)

where κ ≥ 0 and I0 is the zero-order modified Bessel function of the first kind. Based on the 

chosen window size, the pdf is discretized into an equivalent number of equidistant samples 

to create the window. A schematic comparison of WPS and tWPS is shown in Fig. 1.

In contrast, IPS methods directly analyze the instantaneous phases extracted using the 

Hilbert transform. The benefit of using an IPS approach is that it offers single time-point 

resolution of time-resolved fMRI connectivity, and does not require choosing a predefined 

window length as is the case for WPS methods. Honari et al. (2021) proposed the cosine of 

the relative phase (CRP) as a measure of IPS. It is defined as follows:

ϑ(t) = cos ΔΦ(t) (7)

where ΔΦ(t)) represents the phase difference between the signals at time t. CRP was shown 

to outperform other IPS measures and overcome issues related to undetected temporal 

transitions from positive to negative associations common in IPS analysis. Further, CRP 

unfolds the distribution of PS measures as opposed to another popular approach Phase 

Coherence. This is beneficial when performing subsequent clustering of PS matrices in the 

analysis. In this paper, we use CRP to measure time-varying PS.

2.4. Simulations

To evaluate the performance of the different MD techniques in the context of PS analysis 

we perform a series of simulations. For each simulation we combined the different MD 

techniques with the Hilbert transform to compute the phase. The three MD techniques used 

throughout are BEMD, na-MEMD, and MVMD. Next, time-varying PS measures were 

computed using tWPS evaluated using circular-circular correlation and a von-Mises window, 

and IPS evaluated using CRP (Honari et al., 2021).

In the first three simulations, which use data generating procedures equivalent to those found 

in Honari et al. (2021), the simulated signal is bivariate. The first simulation investigates 

the performance of the three MD techniques in a null setting, while the second and third 

investigate their performance when two sinusoidal signals have the same frequency, but 

differing types of phase shifts. For all three simulations, data was generated with a sampling 

frequency of 1/TR, where TR corresponds to the repetition time of an fMRI experiment. 

Here we use TR = 2 seconds.

In the fourth simulation, a more complex situation is considered. Here a bivariate signal is 

generated where one of the signals is monocomponent with a central frequency of f and the 

other signal is multicomponent formed using two frequencies f and 1.1 f. The simulation 

allows for the evaluation of each MD techniques ability to isolate the frequency of interest 

for the use in PS analysis.

In the fifth simulation, the simulated signal is trivariate. This allows for comparison of 

applying BEMD in a pair-wise manner with the use of na-MEMD and MVMD which jointly 
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decompose the three signals. After applying the various MD techniques, and using the IMFs 

corresponding to the central frequency of the simulated signals, an array of time-varying PS 

measures between all pairs of signals measured at each time point is constructed. Following 

the approach of (Allen et al., 2014), k−means clustering is applied to these arrays to estimate 

the underlying ‘brain states’ used to generate the signal.

Finally, the sixth simulation aims to compare the performance of the various MD techniques 

at different noise levels. This simulation mimics the settings from Simulation 3, but alters 

the amount of noise to investigate its impact on the ability to recover IMFs and use them to 

evaluate time-varying PS.

All simulations were repeated 1000 times, and the mean and variance of the time-varying PS 

measured at each time point was used to construct a 95% confidence interval. Furthermore, 

the effect of different window lengths in the WPS analysis was evaluated using three 

different values (30, 60, and 120 time points). Below we describe in detail how data was 

generated for each simulation.

Simulation 1: To simulate signals with independent phase dynamics, we generated two 

independent random signals from a standard Gaussian distribution with mean 0 and standard 

deviation 1. Using the logic of surrogate data testing, we generated surrogate data under the 

assumption of no relationship between the phase from the two signals. To achieve this goal 

we used cyclic phase permutation (CPP) surrogates (Lancaster et al., 2018), constructed by 

reorganizing the cycles within the extracted phase of the signals. This destroys any phase 

dependence between the pair, while preserving the general form of the phase dynamics of 

each signal. For this simulation, the 1000 realizations of signal pairs were generated using 

CPP surrogates.

Simulation 2: Two sinusoidal signals were generated with the same frequency, but with 

a time-varying phase shift corresponding to a ramp function. To elaborate, let x(t) be the 

reference signal with an angular frequency of ω0 and phase φx(t). Further, let y(t) have the 

same angular frequency but phase φy(t). The signals can be expressed as follows:

x(t) = Ax cos ω0t + φx(t) + εx
y(t) = Ay cos ω0t + φy(t) + εy

(8)

Without loss of generality, let φx(t) = 0 and φy(t) be a ramp function,

r t − t0 =
0 t ⩽ t0
t − t0 t > t0

(9)

Throughout, we set ω0 = 2πf rad/s with f = 0.05 Hz, Ax = Ay = 1 and set the transition to 

occur at t0 = 170 [s]. The noise terms εx and εy are independent standard Gaussian white 

noise with mean 0 and standard deviation 1.
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Simulation 3: Two sinusoidal signals were generated with the same frequency, but with a 

time-varying phase shift corresponding to a sigmoid function. As in the previous simulation, 

data was generated according to (8). Here φx(t) = 0 and φy(t) is a sigmoid function, i.e.

s t − t0 = a
1 + exp b t − t0 (10)

Throughout, we set a = 2 π, b = −0.01, t0 = 170 [s], and ω0 = 2 πf rad/s with f = 0.05 Hz 
and Ax = Ay = 1. The noise terms εx and εy are independent standard Gaussian white noise 

with mean 0 and standard deviation 1.

Simulation 4: A bivariate signal was generated where the phase shift between the signals 

x(t) and y(t) vary as a sigmoid function as in Simulation 3. However, here the signal y(t) 
is multicomponent, consisting of two frequencies of f and 1.1 f. They are placed close to 

one another to assess the performance of the MD techniques in successfully untangling the 

frequency components from one another and avoid mode mixing.

Hence, the signals can be expressed as follows:

x(t) = Ax cos ω0t + εx

y(t) = Ay1 cos ω0t + a
1 + exp b t − t0

+ Ay2 cos 1.1ω0t + a
1 + exp b t − t0

+ εy

(11)

Throughout, we set a = 2π, b = −0.01, t0 = 170 [s], and ω0 = 2 πf rad/s with f = 0.05 Hz 
and Ax = Ay1 = Ay2 = 1. The noise terms εx and εy are independent standard Gaussian white 

noise with mean 0 and standard deviation 1.

Simulation 5: A trivariate signal was generated where the phase shift of each signal varied 

as follows:

φx1(t) = π Π50, 125(t) + Π150, 250(t) + Π300, 400(t) + Π500, 400(t)
φx2(t) = π Π50, 125(t) − Π300, 400(t)
φx3(t) = − π Π150, 250(t) + Π300, 400(t)

(12)

Here Πa,b(t) = H(t − a) − H(t − b) is a boxcar function and H(t) denotes the Heaviside step 

function (i.e., unit step function). Thus the signals can be expressed as follows:

x1(t) = Ax1 cos ω0t + φx1(t) + εx1
x2(t) = Ax2 cos ω0t + φx2(t) + εx2
x3(t) = Ax3 cos ω0t + φx3(t) + εx3

(13)

Throughout, we set ω0 = 2 πf rad/s with f = 0.05 Hz and Ax1 = Ax2 = Ax3 = 1. The noise 

terms εx1, εx2 and εx3 are independent standard Gaussian white noise with mean 0 and 

standard deviation 1.
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The relationship between signals is illustrated in Fig. 2. The three signals are initially in 

phase up to 50 [s], after which x1(t) and x2(t) transition to being in anti-phase with x3(t), 
while remaining in phase with one another. This relationship continues up to t = 125 [s], 

after which all three signals are again in phase. At t = 150 [s] the phase of x2 is in anti-phase 

with x1(t) and x3(t), while x1(t) and x3(t) are in phase (i.e., φx1 − φx3 = π − (pi) = 2π). From 

t = 250 [s] to t = 300 [s] all three signals are again in phase. From t = 300 [s] to t = 400 [s] 

φx1 = π and φx2 = φx3 = − π and thus all three signals are in phase. Finally, at t = 400 [s] the 

phase of all three signals is 0.

In total there are three states that the signals transition between. In the time period [150, 

250] the signals are in State 1. Here x1(t) and x3(t) are in anti-phase with x2, while in phase 

with one another. In the time periods [0, 50], [125, 150], and [250, 500] the signals are in 

State 2. Here all signals are in-phase. In the time period [50, 125] the signals are in State 

3. Here x1(t) and x2(t) are in anti-phase with x3(t), while in phase with one another. For 

each repetition of the simulation, we seek to determine whether we can recreate these states 

using a variant of the approach proposed by Allen et al. (2014). First, for each combination 

of MD technique and PS measure, an array of time-varying PS between all pairs of signals 

measured at each time point are constructed. Next, k−means clustering is applied to these 

arrays to estimate the underlying ‘brain states’ used to generate the signal.

Simulation 6: A bivariate signal was generated where the phase shift between the signals 

x(t) and y(t) vary as a sigmoid function as in Simulation 3. However, in this simulation the 

performance of each of the MD techniques are studied under various noise levels. Here we 

let Var (εx) = Var (εy) = 1, 4, 10, where the noise are independent Gaussian white noise with 

mean 0.

2.5. Analysis of HCP data

In this section, the methods described above are applied to rs-fMRI data from the Human 

Connectome Project. The data is briefly described below.

2.5.1. Image acquisition—The 2014 Human Connectome Project 500 Parcellation + 

Timeseries + Netmats (HCP500-PTN) release (Van Essen et al., 2013) is a collection 

of neuroimaging data from 523 healthy adults acquired on a customized 3T Siemens 

connectome-Skyra 3T scanner. Participants completed two scanning sessions on separate 

days. A T1w MPRAGE structural scan was acquired during each session (acquisition time = 

7.6 min, TR/TE/TI = 2400/2.14/1000 ms, resolution = 0.7 × 0.7 × 0.7 mm3, SENSE factor 

= 2, flip angle = 8°). A simultaneous multi-slice pulse sequence with acceleration factor 

eight (Uğurbil et al., 2013) was used to acquire two rs-fMRI runs during each session, each 

consisting of 1200 volumes sampled with TR 0.72 s, at 2 mm isotropic spatial resolution 

(TE = 33.1 ms, flip angle = 52°, 72 axial slices). Participants were instructed to keep their 

eyes open and fixated on a cross hair, while remaining as still as possible. Within sessions, 

phase encoding directions for the two runs were alternated between right-to-left (RL) and 

left-to-right (LR) directions. In addition, respiratory signals associated with each scan where 

acquired using a respiratory belt placed on the participant’s abdomen.
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2.5.2. Preprocessing—We used the preprocessed and artifact-removed rs-fMRI data 

provided through the HCP500-PTN data release. The preprocessing and the artifact-removal 

procedures used are described elsewhere (Glasser et al., 2013; Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014; Smith et al., 2013). Briefly, each run was minimally preprocessed 

(Glasser et al., 2013; Smith et al., 2013), and artifacts removed using the ICA-based 

X-noiseifier (ICA + FIX) procedure (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). 

The rs-fMRI data from each run were represented as a time series of grayordinates, a 

combination of cortical surface vertices and subcortical standard-space voxels (Glasser et al., 

2013). Each run was temporally demeaned and variance normalized (Beckmann and Smith, 

2004). All four runs for 461 participants were fed into MELODIC’s Incremental Group-

Principal Component Analysis (MIGP) algorithm, which estimated the top 4500 weighted 

spatial eigenvectors. GICA was applied to the output of MIGP using FSL’s MELODIC tool 

(Beckmann and Smith, 2004) using five different dimensions (25, 50, 100, 200, 300). In this 

study, we used data with dimension d = 100 to perform further analysis. Dual-regression 

was used to map group-level spatial maps of the components onto each subject’s time series 

data (Filippini et al., 2009). The full set of group-level maps were used as spatial regressors 

against each subject’s full time series (4800 volumes) to obtain a single representative time 

series per independent component.

To determine which network they belong to we compared the spatial distribution of each 

of the group-level, aggregate independent components (ICs) to a publicly available set of 

100 unthresholded t-maps of ICs estimated using rs-fMRI data collected from 405 healthy 

participants Allen et al. (2012). These t-maps have already been classified as resting state 

networks (RSNs) or noise by a group of experts, and the 100 components classified as RSNs 

have been organized into several functional groups. These include visual, somatomotor, 

dorsal attention, ventral attention, frontoparietal, default mode network (DMN), basial 

ganglia, cerebellum, and brainstem.

The respiratory node was sampled at 400 Hz while the 100 brain nodes were sampled 

at 1/T R with T R = 0.72 s. The respiratory node was therefore resampled by applying 

an anti-aliasing low-pass filter to the signal and compensating for the delay introduced 

by the filter. This is done by zero padding the signal, applying a finite impulse response 

anti-aliasing filter to up-sample the input signal, and discarding samples to down-sample 

the filtered signal by (400/(1/0.72)) = 288. This was performed in MATLAB using the 

‘resample’ function, which uses a Kaiser window.

2.5.3. Analysis—Data from a single run of the HCP data, consisting of 100 ROIs 

and 1200 time points per subject, was used. The downsampled respiration signal was 

also included to investigate its relation with the rs-fMRI signal. Respiration is a known 

confounder in the analysis of rs-fMRI data. It is standard to analyze data in a frequency 

band (0.01 − 0.1 Hz) where the signal from the respiratory node is ideally removed. MD 

approaches allow one to investigate the synchrony between the input signals at a number of 

different frequencies. Therefore, we seek to investigate if within a wider range of potential 

frequencies, there exist phase synchronization between the respiratory signal and brain 

nodes. In total the analysis was performed on 101 nodes.
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We applied MVMD to data from 50 participants, decomposing the multivariate time series 

into 10 IMFs. We choose two IMFs for further analysis. The first corresponds to the highest 

power spectrum in the range 0.01 − 0.1 Hz, which is the standard frequency band used 

in rs-fMRI studies. The second corresponds to the highest power spectrum close to the 

respiration frequency. The latter will allow for the evaluation of PS between brain and 

respiration.

Applying the Hilbert transform to the modes allowed us to compute the instantaneous phase 

for the 101 nodes across time. For each mode and each pair of participant-specific signals, 

we computed time-varying PS using CRP. This gave rise to a 101 × 101 × 1200 array of IPS 

measures. Thus, at each time point a 101 × 101 matrix analogous to the correlation matrix 

used in the sliding window technique was constructed.

Brain states were estimated using the approach proposed by Allen et al. (2014). This was 

done by first reorganizing the lower triangular portion of each participant’s data into a 

matrix with dimensions 5050 × 1200; here the row dimension corresponds to the number of 

elements in the lower triangular portion of the matrix (i.e., 101(101 − 1)/2), and the column 

dimension to the number of time points. The data from all participants was concatenated into 

a matrix with row dimensions 5050 and column dimensions (1200 × 50 = 60000). Finally, 

k-means clustering was applied to the concatenated data set, where each of the resulting 

cluster centroids were assumed to represent a recurring brain state. In this study, we chose 

the number of centroids to equal two, representing two distinct brain states. This value was 

chosen based on the Davies-Bouldin Index (DBI) (Davies and Bouldin, 1979), which is a 

measure of clustering quality.

3. Results

3.1. Simulations

Figs. 3–8, show the results from the six simulation studies. For each we compare three 

variants of MD, namely BEMD, na-MEMD, and MVMD. Two measures of PS, tapered 

WPS using circular-circular correlation (CIRC) and IPS using cosine of relative phase 

(CRP)) were used to evaluate the time-varying PS for data obtained using each MD 

technique. Hence, there are six different combinations of MD techniques and PS measures 

evaluated in each simulation. Below follows discussion of the results of each simulation 

study in turn.

Simulation 1: Fig. 3 shows the results for Simulation 1. The mean and 95% confidence 

interval for each measure are shown at each time point for each combination of MD 

technique and PS measure. For the tWPS measures results are shown for window lengths of 

30 60, and 120 time points. The analysis was performed using the IMF centered at 0.05 Hz, 

as this corresponded to the central frequency of the simulated signal in Simulations 2 and 3. 

Supplementary Table 1 shows the mean square error (MSE) between the true and estimated 

values for each combination.

The results indicate in the null case, for each MD technique both CIRC and CRP yield 

a mean time-varying PS measure of about 0. CRP performs roughly equivalently across 
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the three MD approaches. For CIRC, BEMD and na-MEMD perform similarly, while 

MVMD provides a narrower confidence interval and lower MSE. In general, the confidence 

intervals obtained using CIRC are narrower than those obtained using CRP. In addition, the 

confidence intervals become increasingly narrow for CIRC as the window length increases. 

This is to be expected as the PS measure is constant across time and averaging over more 

time points should provide more stable estimates.

Simulation 2: Fig. 4 shows the results for Simulation 2. Each MD technique successfully 

decomposed the monocomponent signal pairs used in the simulation correctly, leading to 

one pair of IMFs for each approach with a central frequency of 0.05 Hz. Using these 

IMF pairs, the phase synchronization analysis was performed using both PS measures. The 

mean and 95% confidence interval for each measure are shown at each time point for each 

combination of MD technique and PS measure. Supplementary Table 2 shows the MSE 

between the true and estimated values for each combination.

Since the generated signal pairs in this simulation consisted of a monocomponent sinusoidal 

signal with a phase shift corresponding to a ramp function (see Panel (a)), the signal will be 

in phase up to t = 170 s and afterwards the phase shift linearly increases with time allowing 

the signal pair transition to being out of phase (at t = 210 [s] and 290 [s]) and back into 

phase.

Each combination of MD technique and PS measure was able to successfully capture the 

transition in and out of phase between the signal pairs. Consistent with the null setting 

in Simulation 1, the performance of BEMD and na-MEMD are roughly equivalent. In 

contrast, MVMD leads to narrower confidence intervals and lower MSE, thus achieving 

better performance. In addition, CRP generally outperforms CIRC particularly when used 

together with MVMD. This can be seen by the fact that CRP better captures when the 

signals are completely in or out of phase by taking values close to 1 and −1 in these 

situations. CIRC’s ability to capture transitions in phase worsens as the window length 

increases. This is not surprising as longer window lengths make it more difficult to capture 

more transient changes in PS.

Simulation 3: Fig. 5 shows the results for Simulation 3. Each MD technique successfully 

decomposed the monocomponent signal pairs used in the simulation correctly, leading to 

one pair of IMFs for each approach with a central frequency of 0.05 Hz. Using the IMF pair 

obtained using each approach, the phase synchronization analysis was performed using both 

PS measures. The mean and 95% confidence interval for each measure are shown at each 

time point for each combination of MD technique and PS measure. Supplementary Table 3 

shows the MSE between the true and estimated values for each combination.

Since the generated signal pairs in this simulation consisted of a monocomponent sinusoidal 

signal with a phase shift corresponding to a sigmoid function (see Panel (a)), the signals 

will initially be in phase, after which the amount of phase shift gradually increases. This 

continues until t = 170 [s] when the pairs are in anti-phase synchronization. Thereafter, the 

signals gradually return to being in phase. The transition between the phase of the signals 

from 0 to 2π occurs smoothly and monotonically increasing.
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Each combination of MD technique and PS measure was able to successfully capture the 

transition in and out of phase between the signal pairs. Consistent with the null setting in 

Simulation 1, the performance of the BEMD and na-MEMD perform roughly equivalently. 

In contrast, MVMD leads to a narrower confidence intervals and lower MSE, and achieves 

better performance. In addition, CRP generally outperforms CIRC particularly for MVMD. 

Finally, CIRC’s ability to capture transitions in phase improves as the window length 

increases. This is consistent with the slower transitions in and out of phase as compared with 

Simulation 2.

Simulation 4: Fig. 6 shows the results of Simulation 4. Each MD technique was used to 

obtain one pair of IMFs for each approach with a central frequency of 0.05 Hz. Using these 

IMF pairs, the phase synchronization analysis was performed using both PS measures. The 

mean and 95% confidence interval for each measure are shown at each time point for each 

combination of MD technique and PS measure. Supplementary Table 4 shows the mean 

square error (MSE) between the true and estimated values for each combination.

The results indicate that neither EMD approach (i.e., BEMD or na-MEMD) is able to 

successfully separate the frequency components from a multicomponent signal when the 

frequencies are close to each other. This can, for example, be seen in panels (b) and 

(c), which show that PS analysis based on the use of BEMD does not accurately reflect 

the ground truth phase relationship between signals. The issue is that BEMD does not 

adequately address mode mixing, which is a well known shortcoming of EMD-based 

approaches in this setting. Mode mixing leads to the appearance of both frequency 

components in the signal in the extracted mode obtained by BEMD. This manifests itself 

as an amplitude modulation in the extracted mode and consequently the phase estimates, 

leading to the additional humps seen in the estimated PS measures. Similar results are 

obtained when using na-MEMD. While the introduction of noise is meant to mitigate the 

mode mixing problem and untangle closely located spectra, it does not appear to have 

worked in this simulation. While panels (d) and (e) show tighter confidence intervals and 

smoother estimates of PS compared to BEMD (panels (b) and (c)), the effects of amplitude 

modulation is still present. In contrast, the results shown in panels (f) and (g) indicate that 

MVMD was able to successfully separate the frequencies. When performing PS analysis 

based on the use of MVMD, the extracted mode accurately retrieved the component of 

interest from the bivariate signal. The results show that the PS measures based on the 

extracted mode are able to accurately capture the extent of phase synchronization at each 

time point, also seen in the lower MSE values. Both estimated PS measures (CIRC and 

CRP) are able to capture the ground truth phase shifts. This can be seen as both measures 

are close to 1 at the beginning of the signal. As the signals transition to an anti-phase state at 

175 [s], the PS measures approach −1 and as the signals come back into phase, the measures 

approach 1. CRP generally outperforms CIRC as it is able to better capture when the signals 

are completely in or out of phase by taking values close to 1 and −1 in these situations.

Simulation 5: Fig. 7 shows the results of Simulation 5. For each MD technique panel (a) 

shows the ground truth time intervals when the signals are in each of the three states; panel 

(b) shows a heat map depicting when state transitions occur for both PS measures across the 
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1000 realizations of the simulation; and panel (c) shows the three estimated states averaged 

across the 1000 realizations. The results are shown both for CIRC with window length 30 

and CRP.

Studying the results for BEMD, the estimated states appear to capture the relationship 

between the signals within each epoch. For State 1, the ground truth states that x1(t) and 

x3(t) are in anti-phase with x2, while in phase with one another. The estimated State 1 shows 

that x1(t) and x2(t) are negatively phase synchronized (−0.4 for CIRC, and −0.6 for CRP), 

x1(t) and x3(t) are positively phase synchronized (0.45 for CIRC and 0.62 for CRP), and 

x2(t) and x3(t) are negatively phase synchronized (−0.4 for CIRC, and −0.6 for CRP). The 

estimated State 1 corresponds to ground truth State 1 shown in panel (a) in the time interval 

150 − 250 [s]. While the BEMD-based analysis captures the pairwise relationship between 

signals, the PS estimates are lower than expected, as according to the ground truth x1(t) and 

x3(t) should be completely in phase. Further the estimated values using CIRC are lower than 

those obtained using CRP, which is related to the additional smoothing associated with using 

a windowed approach. These results are consistent with the previous simulations. For State 

2, the ground truth states that all signals should be in phase. The estimated State 2 largely 

captures this behavior. However, the estimates are again lower than the ground truth values 

of 1 (0.45 for CIRC and 0.6 for CRP). For State 3, the ground truth states that x1(t) and 

x2(t) are in anti-phase with x3(t), while in phase with one another. The estimated State 3 

shows that x1(t) and x2(t) are positively synchronized, while x3(t) is negatively associated 

with x1(t) and x2(t). The estimated CRP value between x1(t) and x3(t) is −0.55 and between 

x2(t) and x3(t) is −0.35. Note the difference in the estimated values can be attributed to 

the fact that BEMD performs mode alignment in a pairwise manner, which can manifest 

itself in misalignment of the modes across pairs and discrepancies in the estimated PS 

measures. Finally, the heat map of state transitions shown in panel (b) demonstrates the state 

switching behavior for the 1000 realizations in the simulation. On average, the method is 

able to capture the transitions from one state to another. However, there remain significant 

missclassification of states and abrupt switching between states is observed.

The results for na-MEMD show that the differences between PS estimates due to mode 

misalignment that appeared in the BEMD-based analysis have been addressed by the 

multivariate nature of the mode extraction performed by na-MEMD. Further as seen in 

panel (c), the estimated values are closer to the ground truth values. For example, in State 1 

×1(t) and x3(t) are negatively associated with x2(t) (−0.4 for CIRC and −0.8 for CRP). This 

improved performance can be attributed to the properties of na-MEMD, including mitigation 

of mode-mixing and the joint extraction of the mode corresponding to central frequency 

of the generated trivariate signal. This improvement can be similarly seen in the other 

states; see panel (c). Further the transition between states shown in panel (b) demonstrates 

improved state classification. In addition, the transition times at t = 50, 125, 150, 250 [s] are 

better captured by CRP in combination with na-MEMD.

Finally, due to its multivariate nature and reduced sensitivity to noise, the MVMD-based 

analysis is able to address the mode mixing issues and obtain values close to the ground 

truth. For example, in State 2 the signals are almost all in complete positive phase 

synchrony with one another. The signals x1(t) and x2(t) are positively phase synchronized 
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(0.72 for CIRC and 0.85 for CRP), as are the signals x1(t) and x3(t) (0.75 for CIRC and 

0.91 for CRP). These results carry over to the other estimated states, resulting in closer 

estimates of the ground truth PS values using MVMD. In addition, as seen in panel (b), 

the misclassification of state transitions are less pronounced compared to the other MD 

approaches.

Simulation 6: Fig. 8 shows the results for Simulation 6. Each MD technique successfully 

decomposed the monocomponent signal pairs used in the simulation correctly, leading to 

one pair of IMFs for each approach with a central frequency of 0.05 Hz. Using the IMF pair 

obtained using each approach, the phase synchronization analysis was performed using both 

PS measures. The mean and 95% confidence interval for each measure are shown at each 

time point for each combination of MD technique and PS measure.

The simulations are equivalent to Simulation 3, with a phase shift corresponding to a 

sigmoid function. However, the results are evaluated at different noise levels. For a fixed 

level of noise, the estimates of the phase synchronization for MVMD are closer to the 

ground truth compared to the two other approaches. This is particularly pronounced looking 

at t = 170 [s] where the two signals created are in complete anti-phase. The average 

estimated CRP value is −0.78 using BEMD, −0.81 using na-MEMD, and −0.92 using 

MVMD. As expected, the performance worsens as the noise level increases. This can be 

seen by the widening of the confidence intervals and the reduced ability to detect when the 

signal is in complete phase or anti-phase. MVMD performs better for lower noise levels, but 

the MD approaches are roughly equivalent as the noise becomes larger.

3.2. Analysis of HCP data

Fig. 9 shows the power spectral density (PSD) summed over all subjects for the ten IMFs 

obtained by applying MVMD to the 101 signals. Mode u1 has its peak close to 0.001 Hz and 

corresponds to signal drift commonly seen in fMRI data. Mode u2 has the highest PSD in the 

range 0.01 − 0.1 Hz, which is the standard frequency band used in rs-fMRI studies. Mode u4 

has the highest PSD in the range close to the respiration frequency. We focus further analysis 

on modes u2 and u4 as the former corresponds to a more standard analysis of rs-fMRI data 

and the latter allows us to determine which brain regions are phase synchronized with the 

respiratory node. After applying CRP to the extracted multivariate signals from each mode, 

the time-varying connectivity measures were clustered into 2 reoccurring brain states.

Fig. 10 shows the two brain states corresponding to mode u2 which has its peak PSD 

at a central frequency of 0.045 Hz. The states are organized into nine networks (visual, 

somatomotor, dorsal attention, ventral attention, frontoparietal, default mode network 

(DMN), basial ganglia, cerebellum, and brainstem). State 1 shows moderate to high 

correlations among signal components representing somatomotor, default mode, and dorsal 

attention networks. In addition, a set of components in the cerebellum show negative 

correlations with visual, somatomotor, frontoparietal, default mode, and attention networks. 

State 2 shows moderate to high correlations within the cerebellum and within the visual, 

somatomotor, frontoparietal, default mode, and attention networks.
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Fig. 11 shows the two brain states corresponding to mode u4 which has its peak PSD at 

a central frequency of 0.27 Hz. The states are organized into the same nine networks as 

above plus the respiration node. The top portion of panel (a) show the two reoccurring 

brain states, while the bottom portion shows the PS between the respiratory node and 

the 100 rs-fMRI brain nodes for each of States 1 and 2. State 1 shows moderate to 

high correlations among signal components representing somatomotor, default mode, and 

attention networks. In State 2 a set of components in the cerebellum show negative 

correlations with visual, somatomotor, frontoparietal, default mode, and attention networks. 

These negative correlations were not observed in State 1. In State 1 the respiratory node 

does not appear to play a significant role in PS with the brain, except at a single node in 

the cerebellum which is negatively associated with the respiratory signal. However, in State 

2, there are several nodes that are significantly phase synchronized with respiration. For 

example, several nodes from the visual, somatomotor, ventral attention, frontoparietal, and 

DMN are positively associated with respiration, while nodes in the cerebellum are negatively 

associated with respiration. Interestingly, the nodes that are highly phase synchronized 

with the respiratory signal occur within regions that are themselves hyperconnected in 

this state. To illustrate, in panel (b) we highlight networks that show a positive phase 

synchronization with the respiratory signal. Clearly, these networks also show strong within-

network synchronization.

4. Discussion

There is growing interest in measuring time-varying functional connectivity between time 

courses from different brain regions using resting-state fMRI (rs-fMRI) data. One approach 

towards achieving this goal is to measure the phase synchronization (PS) between regions 

across time. However, this type of analysis requires that the data be bandpass filtered prior 

to computing PS measures. This, in turn, requires the a priori choice of both the type and 

cut-off frequencies for the filter.

The need to bandpass filter the data stems from the fact that for the instantaneous 

phases obtained using the Hilbert transform to be physically meaningful, the signal 

must be sufficiently narrow-bandpassed to approximate a monocomponent signal. As an 

alternative, researchers are increasingly exploring the use of various mode decomposition 

(MD) techniques that allow for the data driven decomposition of signals into narrow-

band components (referred to as intrinsic mode functions (IMFs)) centered at different 

frequencies, thereby providing a substitute for bandpass filtering. While these approaches 

require choosing certain parameters values in advance, they allow the frequency bands to be 

determined directly from the data. In addition, they provide a collection of bandpass filters 

that allow one to conduct phase synchronization analysis at different frequencies. In this 

paper we have explored several variants of MD, including empirical mode decomposition 

(EMD), bivariate EMD (BEMD), noise-assisted multivariate EMD (na-MEMD), and 

multivariate variational mode decomposition (MVMD) in the context of estimating time-

varying PS.

When working with rs-fMRI data, it is generally of interest to extract IMFs from a collection 

of signals from multiple regions of interest (ROIs). One approach is to apply the standard 
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EMD algorithm separately to each signal separately and extract a set of IMFs from each. 

However, this will not guarantee that the frequencies of the extracted IMFs match across 

signals, nor will the repeated application of the EMD algorithm necessarily produce the 

same number of IMFs for all signals. These issues complicate subsequent analysis of 

PS across regions. To circumvent them and allow for the decomposition of a bivariate 

or multivariate signal, various extensions of EMD have been proposed that perform the 

decomposition jointly (ur Rehman and Mandic, 2011). For example, BEMD performs the 

decomposition on each pair of signals separately. However, if analyzing more than two 

signals this leads to similar problems described above. In this setting it is instead beneficial 

to use multivariate approaches such as na-MEMD and MVMD that perform decomposition 

jointly on all signals.

While EMD-type decomposition’s provide a powerful tool, they can suffer from a mode-

mixing phenomena when analyzing real signals. This refers to a situation where an IMF 

consists of contributions from multiple frequencies (Xu et al., 2019), and occurs when 

oscillations with different time scales coexist in the same IMF or when oscillations in the 

same time scale are assigned to different IMFs. To circumvent this problem, noise-assisted 

techniques such as na-MEMD introduce noise signals that alleviate the mode-mixing 

problem. Thus, in settings where there is the potential for any mode-mixing of the input 

signals, which is often a case in the analysis of rs-fMRI data, the use of na-MEMD can help 

mitigate this problem to some extent.

In addition to issues such as mode-alignment and mode mixing (which na-MEMD addresses 

to some extent), the class of EMD techniques are influenced by a sampling induced 

deviation. This is because they require the computation of signal extrema, whose value 

can be easily influenced by how finely a signal is sampled. A consequence is that the 

local mean may introduce artefacts related to the manner in which sampling is performed 

(Rilling and Flandrin, 2009). Furthermore, EMD-type approaches tend to be susceptible to 

noise. Variational mode decomposition (VMD), and its multivariate version MVMD, have 

shown a robustness to noise in the input signal due to the inclusion of parameters that 

allow one to control and regulate Lagrangian multipliers. When the input signal is noisy, 

decomposing signal that fully reconstructs the input signal might not be desirable. By setting 

the aforementioned parameter to zero, the robustness can be controlled within VMD and 

MVMD. In contrast, in EMD approaches there is no way of hindering noise from entering 

into the decomposition process (Dragomiretskiy and Zosso, 2013; ur Rehman and Aftab, 

2019).

In addition to comparing MD techniques, in this work we also investigate how they combine 

with various approaches towards measuring PS. This includes methods that combine a PS 

metric with a sliding window approach, referred to as windowed phase synchronization 

(WPS), with those that directly measure PS at each time point, referred to as instantaneous 

phase synchronization (IPS) (Honari et al., 2021). Within the WPS framework we use 

circular-circular correlation (CIRC) to assess PS, while within the IPS framework we use 

cosine of relative phase (CRP). In addition, in this work we used a tapered sliding window 

approach in contrast to earlier work where we used a rectangular window (Honari et al., 

2021). In general, we find that WPS estimates are more accurate when using a tapered 
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window (Honari and Lindquist, 2021), as the use of a tapered window allows for smoother 

results and avoids artifacts that arise due to the sudden changes related to the edges of a 

boxcar window (Lindquist et al., 2014; Shakil et al., 2017).

The six simulations illustrate several important points regarding the performance of these 

methods. For each simulation we combined three different MD techniques (BEMD, na-

MEMD, and MVMD) with the Hilbert transform to compute the phase. Next, time-varying 

PS measures were computed using tapered WPS in combination with CIRC and IPS 

evaluated using CRP (Honari et al., 2021). Thus, in total six different combinations of MD 

techniques and PS measures were assessed.

In Simulations 1–3, the performance of BEMD and na-MEMD are roughly equivalent. In 

contrast, MVMD led to a narrower confidence interval and achieved better performance. 

The similarity in performance between BEMD and na-MEMD is not surprising as the signal 

being analyzed is bivariate and the benefits of using a general multivariate approach are not 

yet apparent. When analyzing the null data (Simulation 1) the confidence interval obtained 

using CIRC were consistently narrower than those obtained using CRP. However, when true 

time-varying PS exists (Simulations 2–3), CRP generally outperformed CIRC, particularly 

when used together with MVMD. This can be seen by the fact that CRP was better able 

to capture when the signals are completely in or out of phase by taking values close to 1 

(in-phase) and −1 (out of phase) in these situations.

In Simulations 1–3, the amplitude was assumed to be constant throughout the time course. 

However, Bedrosian’s theorem comes into play when the goal is to separate two different 

time varying signals that are multiplied with one another. To investigate the performance of 

each combination of MD technique and PS measure in this setting we performed a follow-up 

simulation (see Supplementary Material) where both the amplitude and phase were allowed 

to be time varying. The results were largely consistent with the constant amplitude case 

with regards to recovering the phase relationship between the two signals. However, both 

BEMD and na-MEMD suffer from issues related to mode-mixing, which manifests itself 

in fluctuations throughout the time course. The performance of MVMD appears to be 

negligibly affected and outperforms the other MD approaches.

In Simulation 4, the ability of the MD techniques to handle mode mixing were assessed. 

Here mode mixing led to the appearance of two frequency components in the extracted 

mode obtained using BEMD. This, in turn, led to an amplitude modulation in the extracted 

mode causing the additional humps seen in the estimated PS measures; see Fig. 6. Similar 

results were obtained using na-MEMD. While the introduction of noise is meant to mitigate 

the mode mixing problem and to some degree untangle closely located spectra, it does 

not appear to have worked in this simulation. In contrast, MVMD was able to separate 

the frequency components and avoid amplitude modulation and mode mixing, providing 

superior capability to assess PS compared to both BEMD and na-MEMD.

In Simulation 5, the MD techniques were compared when working with a multivariate 

signal. In this setting multivariate MD approaches (e.g., na-MEMD and MVMD) 

outperformed BEMD. This is expected due to the fact that the multivariate approaches are 
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able to address the issue of mode misalignment during the decomposition of multivariate 

signals. The simulation also assessed the performance of the combined MD techniques 

and PS measures when estimating PS states and transitions between states. Here MVMD 

outperformed the other MD techniques in terms of accurately estimating the pairwise PS 

values that make up each state and capturing the timing of transitions between states.

In Simulation 6, we evaluated the ability of the different combinations of MD techniques 

and PS measures to overcome increasing noise levels. This is particularly important in 

settings where the SNR is low, as is the case in the analysis of fMRI signals. The 

performance of the MD techniques were evaluated at three different noise levels, and 

it was shown that MVMD outperformed the other approaches by obtaining estimates 

closer to the ground truth. Additionally, it provided narrower confidence interval for the 

estimates. However, as the noise level increased, the performance of the different MD 

techniques become roughly equivalent, indicating that in very low SNR settings none of the 

methods may work very well. In a follow-up simulation (see Supplementary Material) we 

investigated the case where the noise added to the two signals have different variances. We 

found that the width of the confidence interval was roughly equivalent to that obtained when 

both signals were generated using the value of the larger variance.

In the simulations, the effect of the window length for the tWPS measures were also 

investigated. The results indicated that longer window lengths tend to provide more accurate 

estimates of PS as they led to a decrease in the variation of the estimates. However, using 

longer windows made it harder to detect subtle changes. Thus, longer window lengths are 

better for detecting slower phase shifts (see Simulations 1 and 3), while shorter window 

lengths are better at capturing more rapid changes (see Simulation 2).

The results indicate that MVMD together with CRP provided superior performance 

compared to the other combinations of MD techniques and PS methods in simulations. 

Therefore, the proposed MVMD-based IPS framework was applied to real rs-fMRI data 

on 50 subjects from the Human Connectome Project (HCP). Here, a physiological node 

corresponding to a respiration time series, was also included. The multivariate signal, 

corresponding to 100 brain nodes and the respiration node, were decomposed using MVMD. 

The results were used to investigate not only the relationship between functional brain 

networks, but also assess the PS of functional networks and the respiratory node. After 

studying the power spectrum of the modes extracted by MVMD, two of them were chosen 

for PS analysis. The first mode, which peaks at a central frequency of 0.045 Hz, was chosen 

because it is located in the frequency band 0.01 − 0.1 Hz commonly analyzed in rs-fMRI 

studies. The second mode is chosen based on the fact that its central frequency is close to 

the respiration frequency. Performing PS analysis on this mode shows that several rs-fMRI 

networks are highly phase synchronized with the respiratory node in one of the estimated 

brain states. The nodes that are highly synchronized with respiration also showed a higher 

degree of within-network PS. Interestingly, the PS relationship within these networks closely 

resemble the strength of PS between the respiratory node and the networks.

We include the respiratory signal in our analysis as it is a known confounder in the analysis 

of rs-fMRI data. It is well-known from the neuroimaging literature that the respiratory cycle 
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leads to signal change in regions near major vessels, the ventricles, and at the edges of the 

brain (Bhattacharyya and Lowe, 2004; Dagli et al., 1999; Glover et al., 2000; Hu et al., 

1995). Also, fluctuations in respiration volume have been shown to be related to BOLD 

signal changes in several regions not located near large vessels (Birn et al., 2006; Critchley 

et al., 2003; Shmueli et al., 2007; Wise et al., 2004).

An interesting finding is that nodes in the default mode network (DMN) were significantly 

phase synchronized with respiration. Several studies have previously explored links between 

respiration and signal in the DMN. For example, Birn et al. (2008) investigated whether 

ICA was able to separate signal in the DMN from respiration induced fluctuations, by 

correlating measured respiration signal with the DMN components. They showed that 

the DMN-component often correlated with changes in respiration volume, indicating an 

inability to completely separate the DMN from respiration induced fluctuations. Further, 

Yoshikawa et al. (2020) studied the effect of respiration on functional connectivity in the 

DMN in the range of 0.01 − 0.1 Hz. They were not able to conclude any influences of 

physiological noise on the BOLD signal in this particular range, though they noted that 

respiration should play an important role in future research on brain-body interaction. Here 

we study the effect of respiration in a broader range of frequencies.

In our previous work (Choe et al., 2017; Honari et al., 2021), we have primarily used the 

ICA output consisting of 50 dimensions. Here we were interested in determining whether 

moving to higher dimensions could provide more information. However, our findings (not 

presented here) point to a limited increase in information in this application.

In summary, in this work we have compared a number of MD techniques using both 

simulations and rs-fMRI data in the context of assessing time-varying PS. Our results 

show that MVMD outperforms other evaluated MD approaches in simulations, and further 

suggests that this approach in combination with CRP can be used to reliably investigate 

time-varying PS in rs-fMRI data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

TVC time-varying functional connectivity

rs-fMRI functional magnetic resonance imaging

MD mode decomposition

PS phase synchronization

EMD empirical mode decomposition

BEMD bivariate empirical mode decomposition

na-MEMD noise-assisted multivariate empirical mode decomposition

MVMD multivariate variational mode decomposition
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Fig. 1. 
A comparison of WPS and tWPS for the analysis of time-varying PS. (Left) WPS using a 

rectangular boxcar window and (right) tWPS using a von-Mises window.
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Fig. 2. 
The ground truth phase used to generate the trivariate signals (x1, x2, x3) in Simulation 5. 

The phase of each signal are also shown in a phase diagram for each epoch on the unit 

circle. Note the green and purple intervals both illustrate a situation where all signals are 

inphase (State 2).
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Fig. 3. 
Results of Simulation 1. A comparison of BEMD, na-MEMD, and MVMD-based PS under 

the null setting. Results are based on an IMF extracted with a central frequency of 0.05 Hz. 

Results are shown for tapered WPS using circular-circular correlation (CIRC; panels (a), 

(c), (e)) and IPS using cosine of relative phase (CRP; panels (b), (d), (f)). In each panel, 

the mean and 95% interval for each measure are shown at each time point. For the tWPS 

measures results are shown for three different window lengths (30, 60, and 120).
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Fig. 4. 
Results of Simulation 2. A comparison of BEMD, na-MEMD, and MVMD-based PS when 

the phase shift corresponds to a ramp function (panel (a)). Results are based on an IMF 

extracted with a central frequency of 0.05 Hz. Results are shown for tWPS using circular-

circular correlation (CIRC; panels (b), (d), (f)) and IPS using cosine of relative phase (CRP; 

panels (c), (e), (g)). In each panel, the mean and 95% interval for each measure are shown at 

each time point. For the tWPS measures results are shown for three different window lengths 

(30, 60, and 120).
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Fig. 5. 
Results of Simulation 3. A comparison of BEMD, na-MEMD, and MVMD-based PS when 

the phase shift corresponds to a sigmoid function (panel (a)). Results are based on an 

IMF extracted with a central frequency of 0.05 Hz. Results are shown for tWPS using 

circular-circular correlation (CIRC; panels (b), (d), (f)) and IPS using cosine of relative 

phase (CRP; panels (c), (e), (g)). In each panel, the mean and 95% interval for each measure 

are shown at each time point. For the tWPS measures results are shown for three different 

window lengths (30, 60, and 120).
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Fig. 6. 
Results of Simulation 4. A comparison of BEMD, na-MEMD, and MVMD-based PS when 

one of the signals is multicomponent. The simulation compares the performance of MD 

approaches to handle mode mixing. The true phase shift corresponds to a sigmoid function 

(panel (a)). Results are based on an IMF extracted with a central frequency of 0.05 Hz. 

Results are shown for tWPS using circular-circular correlation (CIRC; panels (b), (d), (f)) 

and IPS using cosine of relative phase (CRP; panels (c), (e), (g)). In each panel, the mean 

and 95% interval for each measure are shown at each time point. For the tWPS measures 

results are shown for three different window lengths (30, 60, and 120).
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Fig. 7. 
Results of Simulation 5. Comparison of BEMD, na-MEMD, and MVMD-based PS applied 

to a multivariate signal. For each of the three MD approaches, panel (a) shows the ground 

truth state transition along the estimated state overlaid on each state; panel (b) displays a 

heat map of the estimated state transitions across time for the 1000 realization for each PS 

measure; and panel (c) shows the average estimated states across the 1000 realizations for 

each PS measure.
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Fig. 8. 
Results of Simulation 6. A comparison of BEMD, na-MEMD, and MVMD-based PS under 

three different noise levels (1, 4, and 10). The ground true phase shift is a sigmoid function 

as described in Simulation 3. Results are based on an IMF extracted with a central frequency 

of 0.05 Hz. Results are shown for tWPS using circular-circular correlation (CIRC) and IPS 

using cosine of relative phase (CRP). In each panel, the mean and 95% interval for each 

measure are shown at each time point.
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Fig. 9. 
Analysis of the HCP Data. The power spectral density summed over all subjects for the first 

ten IMFs obtained by applying MVMD to the 101 signals (100 brain nodes + one respiration 

node).
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Fig. 10. 
Analysis of the HCP Data. In panel (a), (i) & (ii) show the two reoccurring brain states of PS 

corresponding to mode u2 (0.045 Hz) obtained using MVMD-based PS using CRP on 101 

nodes where node 101 corresponds to the respiratory node. Panel (b) provides labels for the 

various regions.
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Fig. 11. 
Analysis of the HCP Data. In panel (a), (i) & (ii) show the two reoccurring brain states of 

PS corresponding to mode u4 (0.27 Hz) obtained using MVMD-based PS using CRP. The 

bottom portion (a.iii) shows PS between the respiratory node and the other 100 rs-fMRI 

brain nodes for States 1 and 2. Here node 101 corresponds to the respiratory node. Panel 

(b.i) shows State 2, with the nodes hyperconnected with respiratory signal marked with a 

dashed red line. Panel (b.ii) shows a close-up look at regions with high degree of PS with the 

respiratory node. These include regions in the visual, somatomotor, dorsal attention, ventral 

attention, frontoparietal, and default mode networks. Panel (b.iii) provides a closer look at 
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the PS values between respiratory node and various regions. Panel (c) provides labels for the 

various regions.
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