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ABSTRACT

Arabidopsis thaliana chloroplasts contain at least
two 3'to 5’ exoribonucleases, polynucleotide phospho-
rylase (PNPase) and an RNase R homolog (RNR1).
PNPase has been implicated in both mRNA and 23S
rBRNA 3’ processing. However, the observed maturation
defects do not affect chloroplast translation, suggest-
ing that the overall role of PNPase in maturation of
chloroplast rRNA is not essential. Here, we show that
this role can be largely ascribed to RNR1, for which
homozygous mutants germinate only on sucrose-
containing media, and have white cotyledons and pale
green rosette leaves. Accumulation of chloroplast-
encoded mRNAs and tRNAs is unaffected in such
mutants, suggesting that RNR1 activity is either unne-
cessary or redundant for their processing and turnover.
However, accumulation of several chloroplast rRNA
species is severely affected. High-resolution RNA gel
blot analysis, and mapping of 5’ and 3’ ends, revealed
that RNR1 is involved in the maturation of 23S, 16S and
5S rBNAs. The 3’ extensions of the accumulating 5S
rBNA precursors can be efficiently removed in vitro
by purified RNR1, consistent with this view. Our data
suggest that decreased accumulation of mature chloro-
plast ribosomal RNAs leads to a reduction in the hum-
ber of translating ribosomes, ultimately compromising
chloroplast protein abundance and thus plant growth
and development.

INTRODUCTION

Development of chloroplasts from proplastids and expression
of the plastid genome are intimately linked processes, which

are ultimately coordinated by nucleus-encoded proteins and
enzymes. Chloroplast gene expression is regulated at several
steps, one of these being post-transcriptional RNA proces-
sing. This includes endonucleolytic cleavage of long polycis-
tronic transcripts, and 5’ and 3’ end processing of precursor
RNAs (1).

A heavily processed transcript in the plastids of flowering
plants is the polycistronic primary transcript emanating from
the ribosomal RNA (rrn) operon. This highly conserved gene
cluster encodes the 16S, 23S, 4.5S and 5S rRNAs and three
tRNAs. Maturation of the primary transcript occurs via a series
of endo- and exonucleolytic steps. The primary precursor is
initially processed by excision of the tRNAs and by additional
endonucleolytic cleavages to generate 16S and 5S rRNA pre-
cursors, and a dicistronic 23S—-4.5S processing intermediate.
Subsequent endonucleolytic processing of the 235—4.5S rRNA
to generate monocistronic 23S and 4.5S rRNAs appears to
occur on the ribosome [(2), reviewed in (3)] and is thought
to require prior 3’ end maturation of 4.5S rRNA (4). The 168,
23S and 5S rRNA precursors generated by endonucleolytic
cleavage require further processing to establish mature 5" and
3’ ends.

While the molecular nature of rRNA processing has been
gradually elucidated, the nature of the enzymatic machinery
has remained elusive, in part because certain rRNA defects can
represent pleiotropic effects where plastid biogenesis has been
otherwise impaired (5). Several higher plant mutations, how-
ever, appear to have a primary defect in the processing of
plastid rRNAs. For example, the maize mutant hcf7
is impaired in 16S rRNA 5" and 3’ end processing, and the
Arabidopsis mutant dall is impaired in the processing of 16S
rRNA 3’ ends and accumulates the 235—4.5S dicistronic pro-
cessing intermediate (5,6). The Arabidopsis mutant wco is also
affected at least in 16S rRNA processing, but this defect
is observed only in cotyledons (7). The DCL gene is essential
for the accumulation of mature chloroplast ribosomes in
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Arabidopsis and tomato (2,8); however, defects in ribosomal
proteins do not necessarily lead to aberrant rRNA processing
(9,10). None of the genes affected by the mutations discussed
above encodes proteins resembling known RNA processing
factors, although DCL does interact with known RNA pro-
cessing enzymes (8). An apparent exception to these findings
is the phosphorolytic 3 to 5 exoribonuclease, polynucleotide
phosphorylase  (PNPase), whose chloroplast isozyme
(At3g03710) has been implicated in 23S rRNA 3’ end pro-
cessing (11). This leaves open the question of how chloroplast
rRNA maturation is regulated, and whether this maturation is
linked to other processes.

The RNR superfamily of hydrolytic 3’ to 5’ exoribonuc-
leases, which includes the prokaryotic enzymes RNase II,
is, in prokaryotes, primarily involved in the turnover of
mRNA and of polyadenylated RNA degradation intermediates
(12). RNase R, together with PNPase, is involved in the turn-
over of 16S and 23S rRNA degradation intermediates (13), and
highly structured RNAs (12). The Arabidopsis nuclear genome
encodes three members of the RNR superfamily, which we
have named RNR1-3. Arabidopsis RNR1 (At5g02250), pre-
viously named AtmtRNasell, was first implicated in the final
step of mitochondrial azp9 mRNA 3’ end maturation (14). This
enzyme was subsequently shown to also be chloroplast-
targeted in Arabidopsis, and it was observed that a weak mut-
ant allele of RNR/ led to the accumulation of the 235-4.5S
processing intermediate (15). Here, we demonstrate, using null
mutants, that RNR1 plays a profound role in rRNA metabol-
ism, and thus in plant development.

MATERIALS AND METHODS
Plant material and growth conditions

The WT ecotype Columbia (Col-0) of Arabidopsis
thaliana was used in this study. Three rnr/ mutant
lines, SALK_138535 (rnrl-1), SALK_044726 (rnrl-2) and
SALK_090294 (rnri-3), containing T-DNA insertions in
the gene At5g02250, were obtained from the SIGnAL mutant
collection (16). Mutant plants and WT controls were ger-
minated and grown on MS agar (17) supplemented with 0.5%
(w/v) sucrose, under fluorescent lights (50 ],Lmome2 sfl) and
a 16 h-light/8 h-dark photoperiod. The precise locations of the
T-DNA left borders were determined by sequencing of DNA
amplified by PCR from plants carrying the mutant alleles.

Electron transmission microscopy analysis

Cotyledon tissue samples were fixed overnight in 3% glu-
taraldehyde and then treated for 2 h with 10% (w/v) picric
acid, 2 h with 2% uranyl acetate and stained with 0.1% (v/v)
osmium tetroxide in 150 mM phosphate buffer, pH 7.2.
Samples were then dehydrated through an ethanol series
and infiltrated with EPON812 medium grade resin (Poly-
sciences, Germany). Polymerization was allowed to proceed
for 48 h at 60°C, after which ultrathin sections (90 pm)
were cut using an Ultracut E microtome (Reichert) and col-
lected on grids coated with formvar (EMS, WA). Samples
were visualized with a Hitachi H-600 electron microscope
operating at 75 kV.

RNA isolation and RT-PCR analysis of RNR1
expression in WT and rnrl plants

RNA was extracted with Trizol (Sigma, St Louis, MO) accord-
ing to the manufacturer’s instructions. For RT-PCR, RNR/
cDNA was generated from 1 pg total RNA from WT plants
using AMV RT and the primer RNR3' (Table 1) according to
the manufacturer’s instructions (Promega, Madison, WI). Ali-
quots were added to a PCR containing the primers RNR3’ and
RNRS5' and amplified with Takara ExTaq according to the
manufacturer’s instructions (Takara Shuzo, Kyoto, Japan).
PCR was performed for 28 cycles with the following program:
denaturation at 95°C for 30 s, annealing at 55°C for 30 s and
extension at 72°C for 1 min. The ubiquitin UBQI0 transcript
was amplified in the same reaction as an internal control, using
the primers UBQI and UBQ2.

RNA gel blot analysis

To measure chloroplast transcript accumulation, 1 pg of total
RNA from WT and rnrl plants was separated in 1.2%
agarose/3% formaldehyde gels and blotted onto HyBond N*
(Amersham Biosciences, Piscataway, NJ) by capillary transfer
in 25 mM phosphate buffer. Following UV-crosslinking in
a Stratalinker (Stratagene, La Jolla, CA), membranes were
prehybridized in Church and Gilbert buffer (18) for at
least 30 min before incubation overnight with radiolabeled
gene-specific probes. For high-resolution analysis, 1.5 pug
total RNA from WT and rnrl plants was analyzed using
12% (w/v) acrylamide-bisacrylamide (19:1)/7 M urea gels
as described previously (19). The probes are described in
the Figures 3, 4, 7, 8 and 11 and associated legends. For
polysome analysis, sedimentation of crude cell lysates through
15-55% sucrose gradients was performed as described previ-
ously (5,20). RNA gel blot analysis of gradient fractions was
performed as described above.

Table 1. Sequences of oligonucleotide primers used in this study®

Primer Sequence (5’ to 3')

16-R1 cDNA GTATTAGCAGCCGTTTCCAG

16-R2 PCR TCCCAAGGGCAGGTTCTTAC

16-F1 PCR TAATCGCCGGTCAGCCATAC

23-R1 cDNA GGATTCAGCAGCAGTTCAAAAG

23-R2 PCR GCATTTCGTCGCTTACTACG

4.5-F1 PCR AGCTGAGGCATCCTAACAGAC

5SR1 cDNA ACCGCAGTAGAGTTTAACCACC

5SR2 PCR CAAGTTCGGGATGGATTG

5SF1 PCR ACGATACTGTAGGGGAGGTC

T75S T7-TATTCTGGTGTCCTAGGCGTAG

5S Reverse ATCCTGGCGTCGAGCTATT

5S + 20 Reverse AGGTGTTAAGCTTTTCATC

RNR3 AAGAAGAGCTTCAGCAGCTTCAGTG

RNR5' TCGATCAATATATAGCCCTCGGCCT

UBQI1 GATCTTTGCCGGAAAACAATTGGAGGATGGT
UBQ2 CGACTTGTCATTAGAAAGAAAGAGATAACAGG
23S-5' CGGTAAACGCTGGGTAGCCAAGTGCGGAGCGG
23S-3 T3-CCTCTTGAATTCTCAAAACTTC

4.58-5 AAGGTCACGGCGAGACGAGCCGTT

4.58-3 T3-ATCGAACCATGAACGAAGAAAG

5S-5 ATTCTGGTGTCCTAGGCGTAGAGG

58-3' T3-CACCCCGTCTCCACTGGA

“Positions of T3 and T7 promoter sequences are indicated in bold.



RNase protection

Templates for the RNA probes used in this analysis were PCR-
amplified from Arabidopsis total DNA. A 207 nt 23S template
was amplified using the primers 23S-5" and 23S-3/, a 374 nt
4.5S template was amplified using the primers 4.5S-5" and
4.5S-3', and a 376 nt 5S template was amplified using the
primers 5S-5" and 5S-3’. The resulting PCR products, which
encode a T3 RNA polymerase promoter, were used to syn-
thesize probes in vitro as described previously (21). S1 hybrid-
ization buffer (40 mM PIPES, pH 6.4, | mM EDTA, 400 mM
NaCl and 85% formamide), total RNA from WT or rnr/
plants, or yeast tRNA and either 23S, 4.5S or 5S RNA probes
were mixed, and the assay was carried out as described by
Monde et al. (22) with the exception that overnight hybrid-
ization was carried out at 42°C, and digestion of single-
stranded RNA was carried out at 4°C for 30 min. Reaction
products were resolved in 6% denaturing polyacrylamide gels
and were visualized and quantified using a Storm scanner
(Molecular Dynamics, Sunnyvale, CA).

Circular RT-PCR

The precise 5 and 3’ ends of the 16S rRNA, 5S rRNA and
235-4.5S rRNA precursors were determined using circular
RT-PCR (cRT-PCR) as described previously (19). Briefly,
total RNA was circularized using T4 RNA ligase (New
England Biolabs), and cDNA spanning the junction of the
5" and 3’ ligated ends was synthesized using gene-specific
reverse primers (Table 1). This region was then amplified by
PCR using gene-specific primers, cloned into pCR2.1 TOPO
(Invitrogen) and sequenced.

In vitro assay of purified RNR1

The purification and assay of RNR1 were performed as
described previously (14). Templates for in vitro transcription
were generated by amplifying the 5S gene from Arabidopsis
DNA using the primers T7 5S and 5S Reverse, to generate
the mature 5S rRNA substrate, or T7 5S and 5S + 20 Reverse,
to generate the pre-5S rRNA substrate containing a 20 nt
extension.

Protein isolation and immunoblotting

Tissue from 40-day-old plants was ground to a fine powder
in liquid nitrogen and allowed to thaw in extraction buffer
(10 mM Tris—HCI, 18% sucrose, 10 mM MgCl,, 1%
2-mercaptoethanol and 1% SDS). Debris was pelleted by cent-
rifugation and an equal volume of 2x SDS-PAGE loading
buffer was added to the supernatant. Loading of proteins
was calibrated by measuring total absorption at 280 nm.

RESULTS
RNR1 T-DNA insertion mutant analysis

The Arabidopsis nuclear gene At5g02250 encodes a 782
amino acid protein possessing an RNB domain (Pfam domain
PF00773), which is found in at least 274 proteins related to
RNase I and RNase R (23). The exoribonucleolytic activity of
the At5g02250 gene product was confirmed following the
purification of a C-terminal tagged version from overexpress-
ing transgenic Arabidopsis plants (14,19). The At5g02250
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product was first named AtmtRNase II based on its
mitochondrial localization as determined by transient expres-
sion of a fusion of the N-terminal 192 amino acids to green
fluorescent protein (GFP), and the observation that an
increased number of incompletely processed mitochondrial
atp9 mRNA 3’ ends accumulated in mutant plant, based on
sequencing of cRT-PCR products (14).

However, a chloroplast localization was subsequently pro-
posed for this same protein, when a GFP fusion to 118 N-
terminal amino acids was expressed, also in Arabidopsis (15).
These workers further showed that a T-DNA insertion 36 bp
upstream of the At5g02250 translation initiation codon gene
decreased, but did not abolish expression, and resulted in
plants exhibiting impaired photosynthesis, retarded growth
and pale green leaves. Given that the GFP results and growth
phentoypes suggested a role for At5g02250 in chloroplast
biogenesis, the gene was re-named RNRI, a nomenclature
that we have adopted here. However, the participation of
RNRI in cpRNA metabolism was not thoroughly explored.

To pursue the analysis of RNR! in the context of chloroplast
biogenesis, we selected three T-DNA insertion alleles from
the Salk SIGnAL collection, naming them rnrl-J
(SALK_138535), rnrl-2 (SALK_044726) and rnrl-3
(SALK_090294) (Figure 1A). Homozygous mutants from

A

mr1-3

Figure 1. RNRI T-DNA insertion mutants. (A) Diagram of the RNR/ gene
showing the positions of three T-DNA insertion alleles used in this work. The
positions of T-DNA insertions were confirmed by PCR. (B) WT and homo-
zygous rnr/ mutants were germinated on sucrose-containing media for 15 days
(top panels), or grown on sucrose-containing media for 40 days and transferred
to soil for an additional 9 days (bottom panels). (C) RT-PCR showing expres-
sion of the RNR/ gene in different tissues of WT Arabidopsis. Primers used in
this analysis (RNR5’ and RNR3’) are indicated in (A).
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each line were isolated following three outcrosses of the ori-
ginal T3 plants. Homozygous plants from each of these lines
required germination and initial growth on sucrose-containing
medium, consistent with a defect in photosynthesis. Figure 1B
compares WT and rnr! homozygotes after 15 days of growth
on MS sucrose. The cotyledons of rnr/ plants emerged either
white or dark red, signifying a lack of chlorophyll and a sig-
nificant accumulation of anthocyanins, which dissipated after
several days as the cotyledons became white and then pale
green (Figure 1B, top panels). The rosette leaves of rnrl
mutants, which are already visible in rnrl-3 seedlings after
15 days, emerged and remained pale green compared with
those of WT plants.

Following 40 days of growth on MS sucrose, both WT and
rnrl-3 were transferred to soil and were grown for an addi-
tional 9 days (Figure 1B, bottom panels). Under these condi-
tions, growth of rnrl-3 was significantly slower than the WT,
and rosette leaves of the mutant remained pale green.
Fourteen-day-old etiolated WT and rnr/ plants were indistin-
guishable, which indicated that RNRI activity was not
required for skotomorphogenesis (data not shown), and the
roots of the rnrl plants resembled those of the WT at all stages
of growth.

Given the strong effect of the rnr/ mutations on green
tissues, it was of interest to determine whether RNR/ exhibited
tissue-specific expression. RT-PCR was used to determine the
mRNA abundance for RNR/ in WT seedlings, mature leaves,
roots and flower/flower buds (Figure 1C). The highest expres-
sion was found in 15-day-old seedlings, and roughly uniform
expression was found in the other tissues examined, as com-
pared with the control ubiquitin transcript. This result would
be consistent with the presence of RNR1 in mitochondria
(14,19), which are active in gene expression in non-green
tissues. The extent to which RNRI is required in plastid
types other than chloroplasts is unknown.

To confirm the defect in chloroplast biogenesis suggested by
the pale leaves of rnrl plants, cotyledons of WT and rnrl
plants were observed by light and transmission electron micro-
scopy (TEM), as shown in Figure 2. Following toluidine blue
staining of transverse sections of cotyledons, chloroplasts
could be detected in WT but not in rnrl/ cotyledons
(Figure 2A). Furthermore, rnrl cotyledons exhibited a
severely disorganized structure with no recognizable lower
epithelium. Further analysis by TEM revealed that rnrl plast-
ids contained no stacked thylakoids, and that these leaves
contained plastoglobules (Figure 2B), the latter perhaps
reflecting a stress response. Taken together, these data suggest
that RNRI is essential for chloroplast development in cotyle-
dons, and that this requirement is less strict in rosette leaves.

mRNA and tRNA transcripts accumulate normally in
rnrl plants

Because RNase II and RNase R are important for regulating
RNA processing and turnover in bacteria, we compared the
accumulation of representative mRNAs and tRNAs in 40-day-
old WT and rnrl plants grown on sucrose-containing medium.
We observed no differences in the accumulation of mRNAs
encoding the o-subunit of the CF,CF; ATPase complex
(atpA), the Photosystem II D1 protein (psbA), the Rubisco
large subunit (rbcL), or of a tricistronic mRNA encoding

the PsaA/PsaB subunits of Photosystem I and the ribosomal
S14 subunit (psaA-psaB-rpsi4) (Figure 3A). We also
observed no difference in the accumulation of the mitochon-
drial mRNA cox3, which encodes cytochrome oxidase subunit
III. The rnrl mutation also had no obvious effect on 3’ end
processing of psbA or rbcL transcripts, a phenotype that has
been observed previously in chloroplast PNPase-deficient
Arabidopsis (11). RNA gel blots were also probed to detect
an intronless tRNA, tRNAPPe (trnF), and an intron-containing
tRNA, (RNAY (trnL). As shown in Figure 3A, we observed
no differences—neither in the accumulation of tRNA™™ nor in
the accumulation of the precursor or mature forms of tRNA™",
RNRI1 activity is, therefore, redundant or not required for
processing and turnover of chloroplast mRNA and tRNA.

rorl plants accumulate fewer photosynthetic proteins
than WT

The pale leaf phenotype of the rnr/ mutants (Figure 1B) and
microscopic evidence for a defect in chloroplast development
(Figure 2) suggested that although chloroplast mRNAs
were accumulating normally (Figure 3A), rnrl was not

A WT

Figure 2. Loss of RNRI expression affects chloroplast biogenesis. (A) Trans-
verse sections of cotyledons from 3-week-old WT and rnr/ plants stained with
toluidine blue. Chloroplasts (cp) are visible in WT cotyledons as globular
shapes. rnrl cotyledons exhibit a severely disorganized structure and contain
no visible chloroplasts. The magnification bar corresponds to 100 um. (B)
Transmission electron micrographs from cotyledons of 3-week-old WT and
rnrl plants. Mitochondria and plastids are indicated by m and cp, respectively.
The magnification bars correspond to 1 pm.
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Figure 3. mRNA and protein accumulation in rnr/ and WT plants. (A) One
microgram of total RNA from WT or from rnrl/-3 was separated in a 1.2%
agarose—formaldehyde gel and analyzed with the probes indicated to the right of
each blot. 28S rRNA accumulation is shown in the ethidium bromide-stained
membrane below each experiment to confirm equal loading. (B) Immunoblot
analysis compares accumulation of the proteins shown at right in rnrl as
compared with a dilution series of WT proteins. The stained filter is shown
at the bottom as an estimate of gel loading.

accumulating WT levels of photosynthetic protein complexes.
To test this hypothesis, total protein from WT or rnrl leaves
was analyzed by immunoblotting (Figure 3B). Because accu-
mulation of photosynthetic complex subunits is highly
coordinated, changes in the accumulation of individual core
subunits are indicative of the accumulation of the entire
complex. Results of this analysis revealed that abundance
of plastid-encoded subunits of the CF,CF; ATPase complex
(AtpA), the cytochrome bg/f complex (PetA) and Rubisco
(RbcL) decreased by at least 75% in the rnrl mutant, and
that the accumulation of photosystem I (PsaA/B) was nearly
undetectable. Since no defect in the accumulation of the cog-
nizant mRNAs had been observed (Figure 3A) (data not
shown), we tentatively concluded that rnr/ mutants were
defective in chloroplast translation.

RNR1 is important for rRNA accumulation

Because rnrl plants appeared to have a translation defect, the
accumulation and processing of chloroplast rRNAs was ana-
lyzed (Figure 4). These rRNAs are encoded in a single operon
that also encodes three tRNAs and is expressed as a 7.4 kb
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precursor RNA that is processed both endo- and exonucleolyt-
ically (Figure 4A) (11,24,25). Blots of total leaf RNA from
WT or rnrl were probed as indicated in Figure 4B to test
whether accumulation, processing or both were affected by
the rnrl mutation.

When blots were probed for 16S rRNA (probe A), we found
that WT leaves accumulated a mature 16S RNA transcript of
1.5 kb and low levels of a 1.7 kb precursor transcript that is
generated by endonucleolytic cleavage in the 16S-tRNA™
intergenic space in the primary transcript, ~180 nt down-
stream of the mature 16S 3’ end (6). In contrast, rnrl plants
accumulated 3-fold less mature 16S RNA than WT plants, and
3-fold more of the precursor. To positively identify the 1.7 kb
RNA as the pre-16S RNA, blots were reanalyzed with probes
derived from the intergenic spacer and flanking the endonuc-
leolytic cleavage site (probes B and C). Probe B identified the
1.7 kb RNA, while probe C did not give a signal on these blots
(data not shown), confirming that the longer transcript is the
pre-16S RNA.

When RNA gel blots were analyzed with a 23S-specific
probe (probe D), a complex pattern was revealed. 23S
rRNA accumulates in chloroplasts as 7 major transcripts,
the most noteworthy of which are the 1.2, 1.0 and 0.5 kb
23S* bands, which represent the mature 23S transcript after
processing at ‘hidden breaks’ following incorporation into
ribosomes (24), and a 3.2 kb band, which represents the
235-4.5S dicistronic precursor RNA. There were no detect-
able differences in the sizes of these major 23S fragments,
indicating that there were no apparent defects in 23S rRNA 3’
processing, in contrast to what was observed in chloroplast
PNPase-deficient Arabidopsis (11). However, there were sig-
nificant differences in the accumulation of several 23S RNA-
containing transcripts. The 7.4 kb precursor RNA was visible
in the rnrl plant, accumulation of the 3.2 kb 23S—4.5S dicis-
tronic RNA increased 10-fold in rnr/, and accumulation of the
23S* fragments decreased 10-fold. A similar result was
observed when blots were analyzed with a 4.5S probe
(probe E): the dicistronic 23S-4.5S RNA over-accumulated
in the mutant, and accumulation of the mature 0.1 kb 4.5S
RNA decreased 10-fold.

When RNA gel blots were analyzed for the accumulation of
5S rRNA (probe F), we found that the accumulation of mature
5S rRNA (120 nt) was at least 10-fold lower in rnrl as com-
pared with WT plants. Furthermore, mutant plants often accu-
mulated low levels of an ~350 nt precursor 5S rRNA (pre-5S).
The fact that RNR1 activity was previously implicated in 3’
exonucleolytic trimming of the mitochondrial azp9 mRNA
prompted a high-resolution analysis of chloroplast rRNA 3’
end processing.

RNRI activity is essential for final rRNA 3’ end
maturation

Because the size of 16S rRNA prevents the detection of small
extensions by agarose gel blot analysis, its 5" and 3’ ends were
mapped by cRT-PCR (Figure 5). As expected, all 16S rRNA
analyzed had mature 5’ and 3’ ends in WT plants (filled arrow-
heads). 16S rRNA 5’ ends were also processed correctly in
rarl plants, whereas no mature 16S 3’ ends were detected in
the mutant plants (open arrowheads). Ten of eleven clones
analyzed contained a 5 nt 3’ extension, and the remaining
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Figure 5. Mapping of 16S rRNA 5" and 3’ ends by cRT-PCR. The 5’ and 3’ ends
are shown by solid arrowheads for WT and by open arrowheads for rnrl, with
numbers of corresponding clones obtained shown at each position. The 5’ and
3" ends of the mature 16S rRNA sequence are underlined.

clone contained a 12 nt extension. Thus, while the lack of
RNRI causes only a modest increase in the accumulation
of the 1.7 kb pre-16S RNA, the mutation prevents the final
3’ processing of the mature transcript.

The processing of 23S RNA at the hidden breaks complic-
ates its analysis by cRT-PCR. Maturation of 23S 3’ ends was,
therefore, analyzed by RNase protection, as shown in Figure 6.
RNA from WT or from rnrl (or yeast tRNA as a negative
control) was hybridized to a 190 nt antisense RNA probe
(Figure 6A), digested with RNase T1 and RNase A, and ana-
lyzed in a 6% denaturing polyacrylamide gel (Figure 6B). In
RNA samples from WT plants, the probe protected an 86 nt
fragment that represents the mature 23S RNA and, to a lesser

extent, an ~184 nt band that represents the dicistronic 23S—
4.5S species, as shown below. No mature 23S 3’ ends were
observed in the rnrl mutant, but these plants did accumulate
incompletely processed 23S 3’ ends with 10-15 nt extensions.
Thus, 3’ end maturation of both 16S and 23S rRNAs is affected
in rarl.

The small sizes of 4.5S and 5S rRNAs allow their analysis
by high-resolution RNA gel blots in addition to RNase pro-
tection. As shown in Figure 7A, although monocistronic 4.5S
rRNA accumulates to a much lower level in rnr/ plants than
in WT, no defect in its 3’ processing was observed, which
would have been apparent as a slightly longer species. The
3’ end processing of 4.5S rRNA was also analyzed by RNase
protection (Figure 7B and C). In WT plants, 4.5S rRNA
accumulates both as a mature species of ~97-99 nt, and as
a weaker band of ~270 nt, which represents an ~170 nt
3’ extension. In the mutant, a significantly higher proportion
of 4.5S rRNA accumulated as the precursor species, but a low
level of mature 4.5S rRNA also accumulated, as was observed
by RNA gel blot.

While RNase protection clearly showed the accumulation of
precursor 4.5S transcripts in the mutant (Figure 7C), RNA gel
blot analysis suggested that these did not represent monocis-
tronic pre-4.5S rRNAs, as such a species of ~270 nt would
have easily been observed (Figure 4B, probe E; Figure 7A). It
was likely, therefore, that the 4.5S precursors were derived
entirely from dicistronic 235—4.5S species rather than from
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moncistronic pre-4.5S transcripts. Significant accumulation of
both the 4.5S rRNA precursor and the 23S-4.5S transcripts
is consistent with the view that processing of the 4.5S rRNA
3" end is a prerequisite to its cleavage from 23S rRNA, as has
been previously suggested (4). This was tested by probing an
RNA gel blot either with a 4.5S-specific oligonucleotide as a
control (Figure 8A, left panel) or with a 4.5S rRNA precursor-
specific oligonucleotide (Figure 8A, right panel). While the
4.5S-specific probe detected both dicistronic and mature 4.5S
transcripts as expected, the precursor-specific probe detected
only the dicistronic RNA, and not an ~270 nt species.

To better characterize the 23S-4.5S species, both 5’ and
3" ends of this precursor were mapped by ¢cRT-PCR. Two
types of 5" ends were detected, both in WT and in rnrl plants,
and coincided either with the annotated mature 23S 5’ end or to
a position 72-73 nt upstream (Figure 8B). As expected, more
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clones corresponding to the mature 5’ ends were detected in
WT than in rnrl, but the lack of RNR1 did not seem to
influence the location of these maturation sites. Interestingly,
the 8 and 3 clones in WT and rnrl, respectively, which had
mature 23S RNA 5’ ends, also had mature 4.5S rRNA 3’ ends
(Figure 8C). This would represent the mature dicistronic inter-
mediate prior to endonucleolytic cleavage between 23S and
4.5S rRNAs. However, due to the use of T4 RNA ligase during
cRT-PCR it is not possible to exclude the ligation of mature
23S and mature 4.5S prior to cDNA synthesis. Nevertheless,
all clones with unprocessed 23S rRNA 5’ ends also had unpro-
cessed 4.5S TRNA 3’ ends, both in WT and in rnrl (Figure 8C).
Although the 3’ ends of two clones from the mutant mapped
downstream of the 5S rRNA, representing the 235-4.55-5S
processing intermediate, most 3’ ends of 23S-4.5S precursors
mapped to a cluster of 4 nt situated 170 nt downstream of the
4.5S rRNA, as predicted by RNase protection (Figure 7C).
This region likely represents an endonucleolytic cleavage site
between the 4.5S and 5S rRNAs.

Both RNA gel blot and cRT-PCR data suggested that
3’ maturation of 4.5S rRNA precedes or occurs concomitantly
with endonucleolytic cleavage of the dicistronic 23S-4.5S
rRNA and, furthermore, that the impaired endonucleolytic
processing of the 23S—4.5S dicistronic species in rnrl plants
is a pleiotropic effect of the lack of RNRI1. Although it is
tempting to suggest that incomplete 4.5S rRNA 3’ processing
is a primary defect of RNR1 deficiency, there is no direct
evidence that this is the case, and accumulation of the 23S—
4.5S species has been observed in unrelated chloroplast bio-
genesis mutants (2,6,8).

To study the involvement of RNR1 in 5S rRNA 3’ end
processing more closely, both RNase protection and cRT-
PCR experiments were performed. Figure 9B shows that a
5S antisense probe (Figure 9A) protected mature 5S rRNA
from both WT and rnrl plants, whereas rnr/ mutants alone
accumulated a population of 5S precursor RNAs with short,
heterogeneous 3’ extensions averaging 10 nt in length, as well
as a full-length precursor of 351 nt, which is most likely
generated by RNase P cleavage at the 5 end of tRNA™E,
and which was previously observed by agarose RNA gel
blot analysis (Figure 4B, probe F). cRT-PCR was used to
reveal the precise 3’ ends of the pre-5S rRNAs. As shown
in Figure 9C, all the clones obtained from WT RNA contained
mature 5" and 3’ ends, and although a few such clones were
also obtained from rnrl plants, most clones from the mutant
contained small 3’ extensions ranging from 1 to 11 nt.
Together, these data indicate that RNR1 is involved in trim-
ming these extensions, although since a small proportion of 5S
rRNA mature 3’ ends was observed, they can also be appar-
ently generated by an RNR1-independent route.

Purified RNR1 accurately processes pre-5S rRNA
in vitro

C-terminal-tagged RNRI1 (RNRI1-tag) was purified from
a transgenic overexpressing line to check whether RNR1
was able to perform in vitro the 3’ processing of 5S rRNA
(Figure 10). A mock purification was also performed from
plants that did not overexpress tagged RNR1. Both fractions
were incubated with RNA substrates corresponding to mature
5S rRNA, or to a precursor 5S rRNA containing a 20 nt
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Figure 7. Analysis of 4.5S and 3’ end processing. (A) An aliquot of 1.5 ug of total RNA from WT, rnrl-1, rnrl-2 and rarl-3 was separated on a 12% acrylamide gel
and stained with ethidium bromide (left panel) or analyzed with a 4.5S rRNA-specific probe (right panel). Migration and size (nt) of molecular weight markers are
indicated. (B) The probe used in this analysis is indicated by the heavy arrow below the schematic of the 4.55-5S—tRNA”"8 region of the 171 operon. Sizes of protected
RNAs seen in (C) are indicated above the schematic. (C) Protected RNA from WT or from rnr/-3, as indicated above each lane, was separated in a 6% denaturing
polyacrylamide gel. The positions of protected bands corresponding to mature and pre-4.5S rRNAs are indicated at right, and size standards are at left.

3’ extension (5S and 5S + 20, respectively, Figure 10). No
RNase activity was observed with the mock fraction or in
buffer alone, but tagged RNR1 efficiently digested the 20 nt
extension to generate a mature 5S rRNA 3’ end. These data
confirm the results obtained in rnr/ plants, i.e. RNRI can trim
the 3’ ends of 5S rRNA precursors.

Polysome association of mRNAs decreases in rnrl
chloroplasts

Because rnrl plants contained significantly fewer mature
ribosomal RNAs than WT plants, and because the mutants
accumulated lower levels of chloroplast-encoded proteins,
the association of chloroplast mRNAs with ribosomes was
examined, as shown in Figure 11. Extracts from WT or
rnrl leaves were sedimented through 15-55% sucrose density
gradients and following centrifugation, fractions were collec-
ted and analyzed by RNA gel blot with the probes indicated
in the right margin. As judged by the levels of 23S* and
mature 16S transcripts in polysomal fractions (~8-12), rnrl
chloroplasts contain significantly fewer polysomes than WT
chloroplasts.

Polysome loading of mRNAs was differentially affected
in rarl plants. The transcript encoding the psaA-psaB-rpsi4
transcript was shifted toward the top of the gradient, indicating
that it was associated with fewer ribosomes in rnr/ than in

WT plants. These results would presumably correlate with
lower protein synthesis rates, although we did not measure
protein synthesis directly. The rbcL, psbA and atpB/E tran-
scripts, however, showed a similar pattern in WT and in rnrl,
suggesting that these transcripts were being loaded under
conditions where ribosomes might be limiting for translation.

DISCUSSION

RNRI is a ubiquitous, dual-targeted exoribonuclease that is
important for chloroplast rRNA processing. Here, we have
presented a detailed analysis of rnr/ null mutants, which
has illuminated several facets of chloroplast rRNA maturation.
The RNA phenotypes presented here are much more striking
than those observed in mitochondria of one of the same null
mutant lines, rnrl-2 (14), raising the question of whether
RNRI is a minor player in mitochondria. Just as perplexing
are the contradictory GFP targeting results which, rather than
showing dual targeting in any of three laboratories which
tested similar fusions [(14,15) and Supplementary Figure 1],
generated either uniquely chloroplast or uniquely mitochon-
drial targeting. While the fusions made in each case were
slightly different and GFP is well-known to produce artifacts,
such results are unusual but not unprecedented (26). Further-
more, short nucleotide extensions were found in both
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organelles in rnrl plants, suggesting that indeed RNR1 is
present both in mitochondria and in chloroplasts. In the longer
term, careful immunoblot analysis should resolve these
remaining ambiguities.

Chloroplast 23S rRNA maturation requires several
processing steps

Chloroplast rrn operon processing differs somewhat from that
of Escherichia coli. In E.coli, 16S and 23S precursor RNAs are
excised from a 30S precursor by RNase III, which cleaves
the double-stranded stem formed by base pairing of their 5’
and 3’ ends. This is followed by endonucleolytic 5’ end
maturation by RNase E, which for 23S RNA generates a 3’
overhang that is subsequently processed exonucleolytically to
the mature 3’ end by RNase T, and to some extent by RNase
PH (27). The 3’ end processing of 23S RNA occurs on the
ribosome, as RNase T-deficient cells accumulate ribosomes
with immature 23S RNA (27).

Based on its homologous position in the rrn operon, chloro-
plast 4.5S rRNA is derived from the fragmentation of the 23S
rRNA (28,29), which is accompanied by a 99 nt insertion in
Arabidopsis. Endonucleolytic processing within this sequence
results in the formation of a mature 4.5S rRNA and a slightly
shorter 23S RNA, in comparison with those of most bacteria
(29). Therefore, E.coli 23S RNA 3’ processing can be com-
pared with chloroplast 23S-4.5S rRNA 3’ processing.

In chloroplasts, there is no sequence complementarity
between the 23S 5’ end and the 4.5S rRNA 3’ end that
would suggest base pairing and endonucleolytic excision
from the 7.4 kb precursor by an endonuclease like RNase
III. In contrast, the 23S-4.5S intermediate is generated by
endonucleolytic cleavage ~78 nt upstream of the mature
23S 5’ end, and ~170 nt downstream of the 4.5S rRNA 3’
end. This is followed by 3’ maturation of the 4.5S sequence in a
single step, which either precedes or occurs concomitantly
with 23S 5’ processing, since cRT-PCR has shown that
dicistronic intermediates with mature 4.5S rRNA 3’ ends also
have mature 23S 5" ends. Our data are also consistent with the
hypothesis that 4.5S rRNA 3’ maturation must precede
excision of the 4.5S rRNA from the dicistronic intermediate
(3,4). This is reminiscent of the ordered mitochondrial
tRNA processing, although in those cases 3’ end maturation
is dependent on 5" maturation (30,31).

The 5’ end maturation of 23S rRNA is probably endonuc-
leolytic, as there is no evidence for a 5'-3’ exoribonuclease in
plant chloroplasts (32), although ample evidence for this activ-
ity exists for Chlamydomonas chloroplasts (33,34). Based on
sedimentation of the dicistronic intermediate with polysomes
in sucrose density gradients, this processing occurs on
ribosomes, as has been proposed previously for the Brassica
napus 23S5-4.5S intermediate and for E.coli 23S rRNA
(4,35,36).

Maturation of the 4.5S rRNA 3’ end

Processing of the 4.5S rRNA 3’ end occurs in a single step,
and based on polysome analysis, both this and final matura-
tion of 23S rRNA also occur on ribosomes. In rnr/ mutants,
accumulation of translation-competent ribosomes is limited,
presumably due to limiting levels of mature 16S or 5S rRNA
or both. This is also thought to be true of maize hcf7 and
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Figure 10. RNR1 accurately processes 5S rRNA 3’ ends in vitro. Affinity-
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substrates corresponding to the mature 5S rRNA (5S) or to the same RNA with
a 20 nt 3’ extension (5S + 20). Incubation times are indicated in minutes above
each lane and the positions and putative secondary structures of substrate and
product are indicated at the right and left, respectively.

Arabidopsis dall-2 (5,6), which are impaired in pre-16S 3’ end
maturation. Both dall-2 and the tomato dcl-s mutant, which
is defective in an unidentified step of ribosome assembly,
accumulate abnormal levels of the 235—4.5S processing inter-
mediate (2,6). Therefore, in rnr/ mutants, the 23S-4.5S inter-
mediate may accumulate simply because ribosome assembly

is slowed and its accumulation may, therefore, be a pleiotropic
effect of the mutation. Because some mature 4.5S and 23S
rRNAs accumulate and because rnrl chloroplasts are clearly
not entirely bereft of translation, an RNR1-independent path-
way for ribosome maturation, perhaps relying on PNPase,
must operate in the mutant.

23S 3’ end maturation is catalyzed by PNPase and
by RNR1

Similar to plant chloroplasts, many eubacterial species
encode a fragmented 23S rRNA, whose intervening sequences
(IVSs) are removed by looping out and RNase III-directed
cleavage of the intergenic spacer (37). In contrast, once
incorporated into ribosomes, chloroplast 23S—4.5S rRNA pro-
cessing includes an endonucleolytic cleavage to produce the
monocistronic 4.5S rRNA and a 23S precursor rRNA, and
two subsequent exonucleolytic events, PNPase-catalyzed
generation of a precursor with 10-15 nt extensions (11),
followed by RNRI trimming. Removal of the pre-23S
3’ extension is not required for ribosome assembly and trans-
lation (11), which is also true of Salmonella typhimurium
23S TVS processing (38—40). Because defects in 23S RNA
IVS processing are phenotypically silent, their physiological
significance is unknown.
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Chloroplast 5S rRNA maturation requires two
exonucleolytic processing steps

5S rRNA maturation pathways vary widely, even among
bacteria. In E.coli, the 9S precursor is cleaved 3 nt upstream
of the 5S rRNA 5’ end and 3 nt downstream of its 3’ end by
RNase E (41), incorporated into ribosomes, and its 3’ end is
trimmed primarily by RNase T (42). However, not all organ-
isms require RNase E for rRNA processing. Bacillus subtilis
and many other gram-positive bacteria generate mature
5S rRNA directly by double-stranded cleavage of the 5S
‘molecular stalk’ by RNase M5 (43,44). The Arabidopsis
nuclear genome encodes an RNase E-like protein that is
predicted to be chloroplast targeted (At2g04270), but
whether this enzyme is important in rRNA processing is
unknown.

As in E.coli, chloroplast 5S rRNA appears to be generated
by single-stranded endonucleolytic cleavages upstream and
downstream of the mature 5S sequence, although the precursor
is much longer. Based on our results, the chloroplast pre-5S
rRNA 3’ end is generated by endonucleolytic cleavage near the
5" end of tRNAAT2, possibly by RNase P, to generate the 350 nt
precursor sometimes observed in 7nr/ plants. This precursor is
trimmed through sequential exonucleolytic steps, the first gen-
erating transcripts with 10—15 nt 3’ extensions, and the second
generating the mature 3’ end. One or both of these steps appear
to be catalyzed by RNRI1, but because some mature 5S rRNA
accumulates in rnr/ mutants, another less active exonuclease,
perhaps PNPase, can act in its place.

An interesting observation is that while 16S, 23S and
235-4.5S precursors accumulated significantly in rarl, the
350 nt 5S rRNA precursor did not, and was often difficult
to observe. We hypothesize, therefore, that it is actively
degraded, possibly through the polyadenylation-dependent
RNA turnover pathway. Polyadenylation of pre-5S rRNA
in an E.coli RNase T"PH D BN~ mutant strain has been
observed previously (45).

RNR1 may require accessory proteins for processivity
in vivo
Similar to purified E.coli RNase II and RNase R, recombinant
RNRI1 is a non-specific exoribonuclease. The question, then, is
what drives RNRs1 substrate specificity in vivo. One probab-
ility is that RNR1 activity, similar to that of E.coli RNase 11
(46), is modulated by RNA secondary structure in vivo, much
as it is in vitro (14,19). Secondary structure increases the
stability of mRNAs, such as the #7pT terminator, and in general
those containing repetitive extragenic palindrome sequences
in bacteria (47-49), or 3’ stem—loop structures in chloroplasts
(1). In this view, RNR1 would digest the unstructured exten-
sions downstream of the mature rRNA 3’ ends, but stall when it
reached their structured regions. The specificity of RNRI in
rRNA processing is also emphasized by the fact that the mat-
uration of #rnR appeared to be RNR1-independent, or the role
of RNRI is fully redundant in its processing.

However, rnrl mutants were less efficient at processing
long, highly structured pre-16S, pre-235—4.5S and to a lesser
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extent, pre-5S transcripts. Therefore, we cannot exclude that
RNRI1 could be partially responsible for processing these tails.
This facet of RNRI1 activity might require accessory pro-
tein(s). By analogy to the E.coli degradosome, where the asso-
ciation of PNPase with the RNA helicase RhIB allows it to turn
over highly structured substrates (50,51), it is possible that
RNRI1 processivity is enhanced by its association with an
RNA helicase. One candidate is the chloroplast RNA helicase
encoded by VDL (52), which is essential for the function of all
plastid types, as would be expected of an rRNA maturation
factor. Whether the vd/ mutant accumulates aberrant plastid
transcripts remains to be reported.

Arabidopsis contains three RNR genes

Residual rRNA processing in rnr/ prompted us to search for
additional members of the RNR superfamily encoded in the
Arabidopsis nuclear genome, and two such genes were found.
We have tentatively designated these RNR2 (Atlg77680) and
RNR3 (At2g17510). While experiments with the RNR N-
terminal 100 amino acids fused to GFP confirmed chloroplast
targeting for RNR1, the putative RNR2 transit peptide (N-
terminal 231 amino acid) targeted GFP to the nucleus and
RNR3 targeting, using the N-terminal 194 amino acid of
RNR3, resembled that of the untagged GFP control, suggest-
ing that RNR2 and RNR3 might be components of the exo-
some (Supplementary Figure 1) (23). Therefore, chloroplasts
appear to contain only a single RNR family enzyme, as well as
PNPase. Whether these enzymes catalyze redundant activities
remains to be seen, but a pnpl/rnrl double mutant is embryo
lethal (S. Yehudai-Resheff, T. Bollenbach, R. Gutierrez and
D. Stern, manuscript in preparation).

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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