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Observation of vortex-antivortex 
pairing in decaying 2D turbulence 
of a superfluid gas
Sang Won Seo1,2, Bumsuk Ko1,2, Joon Hyun Kim1,2 & Y. Shin1,2

In a two-dimensional (2D) classical fluid, a large-scale flow structure emerges out of turbulence, 
which is known as the inverse energy cascade where energy flows from small to large length scales. 
An interesting question is whether this phenomenon can occur in a superfluid, which is inviscid and 
irrotational by nature. Atomic Bose-Einstein condensates (BECs) of highly oblate geometry provide an 
experimental venue for studying 2D superfluid turbulence, but their full investigation has been hindered 
due to a lack of the circulation sign information of individual quantum vortices in a turbulent sample. 
Here, we demonstrate a vortex sign detection method by using Bragg scattering, and we investigate 
decaying turbulence in a highly oblate BEC at low temperatures, with our lowest being ~0.5Tc, where 
Tc is the superfluid critical temperature. We observe that weak spatial pairing between vortices 
and antivortices develops in the turbulent BEC, which corresponds to the vortex-dipole gas regime 
predicted for high dissipation. Our results provide a direct quantitative marker for the survey of various 
2D turbulence regimes in the BEC system.

Quantum turbulence (QT) is a state of chaotic flow in a superfluid. Because of its inviscidity and quantized cir-
culation, QT constitutes a unique realm in turbulence research. Decades of study involving superfluid helium 
have revealed many aspects of QT similar to and different from those of turbulence in classical fluids1, 2, and 
atomic Bose-Einstein condensates (BECs) were recently employed to extend the scope of QT studies3–6. One of 
the experimentally unanswered questions is related to the inverse energy cascade in two-dimensional (2D) QT. It 
is well known that regarding the 2D turbulence of a classical hydrodynamic fluid, the kinetic energy flows toward 
large length scales, generating a large-scale flow structure due to small-scale forcing7. This phenomenon is qual-
itatively different from three-dimensional turbulence, where energy is dissipated at small length scales. The key 
issue regarding 2D QT is whether the inverse energy cascade occurs and consequently leads to the formation of 
a large superflow structure; this issue has drawn a great deal of recent theoretical attention8–22. Two-dimensional 
QT is also relevant to the 2D superfluid phase transition which is associated with free vortex proliferation in the 
Berezinskii-Kosterlitz-Thouless description23.

The turbulent flow of an irrotational superfluid is characterized by the configuration of quantum vortices in 
the superfluid. In 2D, quantum vortices are topological point defects, and the turbulent superfluid can be depicted 
as a system of interacting ‘vortex’ particles. This point-vortex picture was introduced by Onsager in his model, 
which presented a statistical description of classical 2D turbulence24, 25. The turbulent state is parameterized with 
the mean vortex energy, εv = Ev/Nv, where Ev is the incompressible kinetic energy of the system and Nv is the total 
vortex number16, 26. Figure 1 illustrates two vortex configurations for low and high εv values. In Fig. 1(a), each vor-
tex is adjoined by an antivortex, i.e., a vortex with opposite circulation and their velocity fields cancel each other 
out in the far-field, thus lowering εv. A small dipole of the vortex and antivortex undergoes a linear motion, and 
the low-εv states are referred to as a vortex-dipole gas regime16, 17, 19. On the other hand, Fig. 1(b) shows a high-εv 
state, where vortices of same circulation signs are clustered, constructively enhancing the superflow velocity. 
Large vortex clusters are called Onsager vortices, which are anticipated to develop as a result of the inverse energy 
cascade14, 16–19.

How the mean vortex energy εv changes as the vortex system evolves underlies the inverse energy cas-
cade problem in 2D QT. The system eventually evolves toward a stationary ground state by decreasing both Ev 
and Nv via various dissipation mechanisms, such as sound radiation27, mutual friction by coexisting thermal 
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components28–30, and vortex-antivortex pair annihilation5, 29. It has been noted that the vortex-antivortex annihi-
lation would facilitate the increase of εv because the contribution of the annihilated vortex dipole to Ev is smaller 
than that of 2εv; thereby, it is called evaporative heating16. However, when the system is highly dissipative, Ev can 
decrease quickly, even without decreasing Nv, thus lowering εv. Some theoretical studies raised a question regard-
ing the fundamental possibility of εv increasing in decaying QT9, 15.

Atomic BECs with highly oblate geometry provide a suitable system for 2D QT4, 5, as the vortex line excitations 
are strongly suppressed along the tightly confining direction31, 32. Many numerical studies have been performed 
using the Gross-Pitaevskii (GP) equation and have indicated that various turbulence regimes can exist in the sys-
tem parameter space spanned by compressibility8, 9, dissipation11–14, 16–20, and trapping geometry10, 33. In previous 
experiments, vortex clustering was examined in a forced annular BEC4, and the thermal relaxation of turbulent 
BECs was investigated5. However, full characterization of a turbulent BEC has never been achieved. Such a char-
acterization requires measurements of not only the vortex positions but also their circulation directions. Vortex 
circulation signs might be determined by tracking the motions of individual vortices34, 35 or by analyzing an inter-
ference fringe pattern with a stationary reference sample36, 37, although this is experimentally challenging using a 
BEC with a complex vortex configuration. A new imaging technique was proposed in which a BEC is tilted before 
imaging so that each vortex core shows vortex sign-dependent deformation38.

In this study, we conduct spatially resolved Bragg spectroscopy to measure the full 2D vortex configuration of 
a turbulent BEC. Using this method, we examine the evolution of decaying 2D QT in a BEC at low temperatures, 
with our lowest being ~0.5Tc, where Tc is the critical temperature of the trapped sample. We observe the develop-
ment of weak pair correlations between vortices and antivortices in the turbulent BEC, which corresponds to the 
vortex-dipole gas regime predicted for high dissipation. This work represents the first full experimental charac-
terization of 2D QT in a BEC system and the results reported herein can be a valuable quantitative reference for 
theories of atomic superfluid turbulence.

Results
Vortex sign detection via Bragg scattering.  Our vortex sign detection method is based on the velocity 
sensitivity of Bragg scattering39. Let us consider the situation where a BEC with a singly charged vortex is irradi-
ated by a pair of counterpropagating laser beams along the x′ direction [Fig. 2(a)]. A two-photon process, which 
imparts momentum →q  and energy ε to an atom, occurs resonantly when ε = q2/2m + → ⋅ →q v , where m and →v  are 
the atomic mass and velocity, respectively. Here, → = ′ˆq k x2 L  and ε = ħδ, where kL is the wavenumber of the two 
Bragg beams and δ is their frequency difference. For a positive vortex with counterclockwise circulation, the 
velocity field is given by → = × →ˆv mr z r/( )( )2  with →r  being the position from the vortex core, and the resonance 
condition is given by δd = δ − δ0 = −(2ħkL/m)y′/r2, where δ = k m2 /L0

2 . Because of the Doppler effect, the scatter-
ing response is antisymmetric with respect to the Bragg beam axis [Fig. 2(b)]; thus, the vortex sign can be deter-
mined from the position of the scattered atoms relative to the vortex core. The use of Bragg scattering to measure 
a superfluid velocity field was demonstrated with a rotating BEC40. In this work, we probe high-velocity regions 
near vortex cores to determine the circulation signs of individual vortices.

We conduct experiments using a BEC of 23Na atoms in the |F = 1, mF = −1〉 state in a pancake-shaped hybrid 
trap composed of optical and magnetic potentials. The trapping frequencies are (ωx, ωy, ωz) = 2π × (4.3, 3.5, 
350) Hz. For an atom number N = 4.0(3) × 106 and a condensate fraction of 80%, the Thomas-Fermi radii are (Rx, 
Ry, Rz) = (155, 190, 1.9) μm. The condensate chemical potential is μ ≈ h × 510 Hz and the healing length at peak 
density is ξ = ħ/ µm2  ≈ 0.6 μm. The vortex dynamics is effectively 2D for Rz/ξ ≈ 331, 32. Two pairs of Bragg beams 
are employed by retro-reflecting two laser beams with frequencies of ωL and ωL + δ, which are red-detuned by 
≈1.7 GHz from the F = 1 to F′ = 2 transition [Fig. 3(a)]. We apply a Bragg beam pulse for 600 μs after a short time 
of flight (TOF) of 300 μs which is initiated by releasing the trapping potential. During the short TOF, the conden-
sate rapidly expands along the tightly confined z direction to reduce the optical depth of the sample for the Bragg 
beams, but the modification of the transverse velocity field is negligible. After an additional TOF of τ = 9 ms, we 
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Figure 1.  Two vortex configurations of neutral 2D quantum turbulence. (a) Each vortex has an opposite-sign 
vortex as its nearest neighbor, and the mean kinetic energy per vortex, εv, of the system is low. (b) Vortices with 
the same circulation signs are clustered, and a large vortex dipole structure is formed in the system, having high 
εv. This is the Onsager vortex state expected from the inverse energy cascade in 2D.
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take an absorption image of the sample [Fig. 3(b)]. Two atom clouds are scattered out from the condensate in both 
the ±x′ directions. Since the displacement due to the initial atomic velocity is negligible, i.e., vx′τ = |δd|τ/2kL < 5 μm 
for |δd|/2π < 2 kHz, the spatial distributions of the two scattered atom clouds reliably reveal the velocity regions 
that satisfy the Bragg scattering condition in the condensate.

We first apply spatially resolved Bragg spectroscopy to a BEC containing a vortex dipole, i.e., one positive and 
one negative vortex. A vortex dipole is generated by linearly sweeping the center region of the condensate using 
a repulsive Gaussian laser beam34, 41, 42, and after a period of 2 s, when the two vortices are well separated in the 
trapped condensate, we probe the sample using the Bragg beams. Figure 3(d–o) display the density distributions 
of the condensate and the two scattered atom clouds for various values of δd. The vortex positions are identified 
based on the density-depleted cores that appear in the condensate image. Note that the signs of each vortex are 
unambiguously known based on the vortex trajectories34; the upper-right (lower-left) vortex has a positive (neg-
ative) circulation. The scattering region becomes localized near the vortices with increasing |δd|, indicating the 
existence of high-velocity regions in the proximity of the vortex cores. From the comparisons of the high-|δd| 
image data shown in Fig. 3(d,g,l and o), it is apparent that the position of the localized scattering region relative 
to the vortex core becomes inverted with respect to the Bragg beam axis when the vortex sign or the sign of δd is 
changed or when the scattering direction is reversed. This is consistent with the aforementioned antisymmetric 
response of the vortex state to the Bragg scattering. Furthermore, we find that the density profiles of the scattered 
atom clouds near the vortex cores are quantitatively accounted for by a theoretical estimation including the spec-
tral broadening of the Bragg scattering (see Supplementary Information).

Probing 2D quantum turbulence.  Next, we apply the Bragg scattering method to probe the vortex config-
uration of a turbulent BEC containing a large number of vortices. Turbulence is generated by stirring the conden-
sate using a repulsive laser beam (see the Methods section). The initial vortex number is Nv ≈ 26 and the mean 
intervortex distance is µ∼ ≈l R N/ 34 mv v , where =R R Rx y . We set δd/2π = −1.1 kHz, which was observed 
in the previous experiment to yield a localized scattering signal peaking at r ≈ 13 μm from a vortex core 
[Fig. 3(d)]. A higher |δd| generates a more localized signal but the signal-to-noise ratio is poor.

To facilitate the vortex sign determination, we construct a Bragg signal SB(x′, y′) ≡ n+ − n−, where n±(x′, y′) are 
the density distributions of the ±x′-scattered atom clouds, which are translated to the condensate reference frame 
[Fig. 4(d–f)]. Because n+ and n− are complementary to each other due to the local mirror symmetry along the Bragg 
beam line [Fig. 3(d and l)], SB contains vortex-sign information. In SB, the vortex sign is manifested as the sign of the 
signal derivative along the y′ direction at the vortex position ′ ′x y( , )i i  i.e., a positive (negative) vortex appears for a 
positive (negative) value of ∂SB/∂y′. We determine the sign of ∂SB/∂y′ by evaluating ∫ ′ ′ +

−
y S x y y dysgn( ) ( , )

a

a
B i i  

with a = 13 μm. When many vortices are located in close proximity to each other, the Bragg signal around some 
vortices might be weak, and it would be necessary to scrutinize the overall vortex configuration to assign the vortex 
signs (see Supplementary Information). In particular, in the case of a small vortex dipole for which the surrounding 
velocity field is almost canceled, the scattering signal is absent, and the vortex signs must then be determined based 
on the crescent shape of their merged density-depleted cores5. Thus, SB and the condensate density distribution 
provide sufficient information to determine the full vortex configuration of the turbulent BEC.

Vortex-antivortex pairing.  The complete determination of the vortex configuration enables us to charac-
terize the evolution of the turbulent state of the BEC (Fig. 5). The BEC relaxes as the vortex number Nv decreases, 
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Figure 2.  Bragg scattering of a Bose-Einstein condensate (BEC) with a quantum vortex (QV). (a) The BEC is 
irradiated by two counterpropagating laser beams along the x′ direction with different frequencies of ωL and 
ωL + δ. (b) Bragg resonance frequency distribution around a singly charged QV. δd = δ − δ0, where δ0 is the 
resonance frequency for atoms at rest. As a result of the circulating velocity field, the resonance frequency is 
antisymmetric with respect to the Bragg scattering x′ axis.
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and the vortex half-life time is ≈10 s [Fig. 5(a) inset]. As expected from the vortex sign symmetry, the vortex polar-
ization p = N + − N− maintains a zero-mean value, where N± are the numbers of positive and negative vortices, 
respectively. Interestingly, we observe that the polarization variance, δp2, decreases during the evolution [Fig. 5(a)]. 
If the vortex decay is a vortex-sign-independent process, δp2 would increase as δp2(t) = δp2(0) + [Nv(0) − Nv(t)],  
similar to diffusion by a random walk. The reduction of δp2 indicates that a polarized turbulent state is forced to 
decay into a balanced state and it also suggests that vortex-antivortex pair annihilation is the dominant vortex 
decay mechanism in a turbulent BEC.

We measure the mean vortex dipole moment of the BEC, = | ∑ →|=d s r
N i

N
i i

1
1v

v , where si = ±1 is the sign of the ith 
vortex and →ri  is its position with respect to the condensate center [Fig. 5(b)]. In our experiment, ≈ .d R0 1  
throughout the decay evolution. The measured value of d is found to be slightly smaller than the mean value 
obtained for the random vortex distributions sampled for the same N±, thus excluding the formation of the 
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Figure 3.  Spatially resolved Bragg spectroscopy of a BEC. (a) Schematic of the experimental setup employing 
two pairs of counterpropagating Bragg beams. (b) Example of Bragg spectroscopy image for δd/2π = 0.4 kHz. 
Two atomic clouds are dispersed from the BEC in the ±x′ directions. (c) Scattered-out atom number fractions 
measured for a stationary BEC as a function of δd. The blue and red circles denote the atom number fractions of 
the +x′ -and −x′ -scattered atom clouds, respectively. The curved line is a Gaussian function of 

δ δ δ− −Aexp[ ( ) /(2 )]w0
2 2  fit to the data, where A = 0.25, δ0/2π = 99.2 kHz, and δw/2π = 615 Hz. δw is accounted 

for by the finite pulse broadening. Bragg responses of a BEC having a vortex dipole for various frequencies δd: 
(d–g) +x′-scattered atom clouds; (h–k) remaining condensates; and (l–o) −x′ -scattered atom clouds. The 
dashed lines denote the boundary of the initial BEC, and the dotted lines indicate the Bragg beam lines that pass 
the vortex cores. The circulation signs of the vortices are known based on their trajectories in the trapped BEC, 
and the upper-right (lower-left) vortex has a positive (negative) circulation.
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Onsager vortex state. We note that in the vortex-dipole gas regime, d can be smaller than the mean dipole moment 
of random distributions for finite Nv.

To examine the vortex pair correlations, we evaluate the second-order vortex sign correlation function 
= ∑ ∑= =C c

N i
N

j ij2
1

2 1 1
2

v
v , where cij = 1(0) if the i th vortex and its j th nearest neighbor have the same (different) 

sign10. A truly random configuration yields C2 = 0.5, and like-sign vortex clusters and vortex dipoles are reflected 
as increases and decreases of C2, respectively. Our experimental data show that C2 ≈ 0.4 [Fig. 5(d)], indicating that 
it is more probable to have neighboring vortices with opposite signs.

We perform a further analysis of the measured vortex configurations by applying the vortex classification algo-
rithm introduced by Billam et al.18, 19: two vortices are assigned as a dipole if they are the nearest neighbors to each 
other and have opposite signs; a group of same-sign vortices as a cluster if they are closer to each other than to any 
other opposite-sign vortex; and the remaining vortices as free vortices [Fig. 5(e–g)]. In recent numerical studies, 
it was shown that the fractional populations of dipole vortices, clustered vortices, and free vortices according to 
this classification scheme provide a unique representation of the 2D QT states, suggested as vortex thermome-
try43. We measure the vortex numbers, Nd, Nc, and Nf, of dipoles, clusters, and free vortices, respectively, where 
Nd + Nc + Nf = Nv. The initial turbulence state shows Nd ≈ Nc ≈ Nf, which is a characteristic of the random vor-
tex configuration43, and it is observed that as the decay evolution proceeds, the fractional population of dipole 
vortices increases to Nd/Nv ≈ 0.45, whereas that of clustered vortices decreases to Nc/Nv ≈ 0.2. This observation 
corroborates the vortex-antivortex pairing in the turbulent BEC.

Discussion
All the results of our vortex configuration analysis demonstrate that vortex-antivortex pair correlations develop 
in a turbulent BEC under our experimental conditions. It was anticipated that the characteristics of 2D QT in 
atomic BECs evolve into the vortex-dipole gas regime as the system’s dissipation becomes stronger16, 17, 19, but 
since the quantitative understanding of dissipation in finite-temperature vortex dynamics is still incomplete44, 
there is no theoretical prediction regarding the critical temperature at which the emergence of the Onsager vortex 
state can be observed45. Thermal damping is typically modeled using a few parameters46, but it might be question-
able whether the damping effects in various vortex dynamics can be fully captured by the parameters. Our exper-
imental results provide quantitative information regarding the dissipative vortex dynamics in 2D QT. For future 
reference, our main finding is summarized as follows: a highly oblate turbulent BEC with Nv ≈ 20 and ξ ≈R / 290 
evolves at T/Tc ≈ 0.5 to a state with C2 ≈ 0.4, Nd/Nv ≈ 0.45, and Nc/Nv ≈ 0.2.

This work can be extended to investigate various 2D QT regimes by changing the system parameters. 
Although it is highly desirable to reach a low dissipation regime by lowering the sample temperature, this was 
difficult to achieve in our experiment because the sample was heated during the turbulence generation process. It 
has been noted that utilizing a steep-wall trap instead of a harmonic trap provides a beneficial condition for the 

Figure 4.  Determination of the vortex configuration of a turbulent BEC. (a–c) TOF images of BECs at 
various hold times t and (d–f) the corresponding Bragg signals SB(x′, y′) = n+ − n−, where n± are the density 
distributions of the ±x′ -scattered atom clouds. The vortex positions are identified based on the density-
depleted holes that appear in the BEC images, and their circulation signs are determined based on SB around the 
vortex cores (see the text). The circles and crosses denote positive and negative vortices, respectively.
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formation of Onsager vortex state33. Additionally, it might be conceivable to prepare an Onsager vortex state by 
merging two oppositely rotating BECs and to investigate its relaxation through the vortex-dipole gas regime at 
high temperatures.

In summary, we have demonstrated the Bragg scattering method for detecting the quantum vortex circulation 
sign and have successfully applied it to probe decaying 2D QT in a trapped BEC. Various properties of the turbu-
lent BEC were measured based on its vortex configuration and the development of vortex-antivortex pairing was 
observed in our experiment at finite temperatures. We expect that the Bragg scattering method presented here 
will enable a direct experimental study of various 2D QT regimes in the atomic BEC system.

Methods
Vortex state preparation.  We generated quantum vortices by stirring the center region of a BEC using a 
focused repulsive Gaussian laser beam as demonstrated in previous experiments5, 34, 41, 42. The 1/e2 beam width 
was σ ≈ 10 μm and the potential barrier height was V ≈ h × 8 kHz. When we stirred the condensate, the radial 
trapping frequencies were ωx,y/2π = 7.5 Hz. A tighter trap is helpful for minimizing the dipole motion of the con-
densate, which might be induced by the stirring. After the vortex generation, the radial trapping potential was 
adiabatically ramped down within 2 s to the condition of the main experiment. To generate a vortex dipole, we 
linearly swept the condensate by translating the laser beam in the −y direction over ≈100 μm with a velocity of 
v = 0.98 mm/s ≈ 0.25cs, where cs is the speed of sound. For generating turbulence, we stirred the condensate in a 
sinusoidal manner with an amplitude of 40 μm at 15 Hz for 200 ms.

Data availability.  The data that support the findings of this study are available from the corresponding 
author on reasonable request.

References
	 1.	 Skrbek, L. & Sreenivasan, K. R. Developed quantum turbulence and its decay. Phys. Fluids 24, 011301, doi:10.1063/1.3678335 (2012).
	 2.	 Tsubota, M., Kobayashi, M. & Takeuchi, H. Quantum hydrodynamics. Phys. Rep. 522, 191–238, doi:10.1016/j.physrep.2012.09.007 

(2013).
	 3.	 Henn, E. A. L., Seman, J. A., Roati, G., Magalhaes, K. M. F. & Bagnato, V. S. Emergence of Turbulence in an Oscillating Bose-Einstein 

Condensate. Phys. Rev. Lett. 103, 045301, doi:10.1103/PhysRevLett.103.045301 (2009).
	 4.	 Neely, T. W. et al. Characteristics of two-dimensional quantum turbulence in a compressible superfluid. Phys. Rev. Lett. 111, 235301, 

doi:10.1103/PhysRevLett.111.235301 (2013).
	 5.	 Kwon, W. J., Moon, G., Choi, J., Seo, S. W. & Shin, Y. Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. 

Phys. Rev. A 90, 063627, doi:10.1103/PhysRevA.90.063627 (2014).
	 6.	 Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75, 

doi:10.1038/nature20114 (2016).

Figure 5.  Characterization of decaying 2D quantum turbulence. Various properties of the turbulent BEC were 
measured based on its vortex configuration as a function of the hold time: (a) vortex polarization variance, δp2, 
where the inset shows Nv = N+ + N− and p = N+ − N−, and N± is the number of positive (negative) vortices; (b) 
mean vortex dipole moment d divided by the condensate radius =R R Rx y ; (c) second-order vortex sign 
correlation function C2

10; and (d) fractional populations of dipole vortices and clustered vortices18, 19. Examples 
of the vortex configuration data including the vortex classification results are displayed in (e) for various hold 
times t. Each data point in (a–d) was obtained from fifteen to twenty measurements of the same experiment, 
and each point’s error bar indicates the standard error of the mean of the measurements. The open circles in (b) 
and (d) show the simulation results calculated using twenty vortex configurations randomly sampled for the 
same N±. The gray region in (d) indicates the range of the simulation results.

http://dx.doi.org/10.1063/1.3678335
http://dx.doi.org/10.1016/j.physrep.2012.09.007
http://dx.doi.org/10.1103/PhysRevLett.103.045301
http://dx.doi.org/10.1103/PhysRevLett.111.235301
http://dx.doi.org/10.1103/PhysRevA.90.063627
http://dx.doi.org/10.1038/nature20114


www.nature.com/scientificreports/

7Scientific Reports | 7: 4587  | DOI:10.1038/s41598-017-04122-9

	 7.	 Kraichnan, R. H. & Montgomery, D. Two-dimensional turbulence. Rep. Prog. Phys. 43, 547–619, doi:10.1088/0034-4885/43/5/001 
(1980).

	 8.	 Horng, T.-L., Hsueh, C.-H., Su, S.-W., Kao, Y.-M. & Gou, S.-C. Two-dimensional quantum turbulence in a nonuniform bose-einstein 
condensate. Phys. Rev. A 80, 023618, doi:10.1103/PhysRevA.80.023618 (2009).

	 9.	 Numasato, R., Tsubota, M. & L’vov, V. S. Direct energy cascade in two-dimensional compressible quantum turbulence. Phys. Rev. A 
81, 063630, doi:10.1103/PhysRevA.81.063630 (2010).

	10.	 White, A. C., Barenghi, C. F. & Proukakis, N. P. Creation and characterization of vortex clusters in atomic Bose-Einstein condensates. 
Phys. Rev. A 86, 013635, doi:10.1103/PhysRevLett.104.075301 (2012).

	11.	 Bradley, A. S. & Anderson, B. P. Energy spectra of vortex distributions in two-dimensional quantum turbulence. Phys. Rev. X 2, 
041001, doi:10.1103/PhysRevX.2.041001 (2012).

	12.	 Nowak, B., Schole, J., Sexty, D. & Gasenzer, T. Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold 
bose gas. Phys. Rev. A 85, 043627, doi:10.1103/PhysRevA.85.043627 (2012).

	13.	 Kusumura, T., Takeuchi, H. & Tsubota, M. Energy spectrum of the superfluid velocity made by quantized vortices in two-
dimensional quantum turbulence. J. Low Temp. Phys. 171, 563–570, doi:10.1007/s10909-012-0827-9 (2013).

	14.	 Reeves, M. T., Billam, T. P., Anderson, B. P. & Bradley, A. S. Inverse energy cascade in forced two-dimensional quantum turbulence. 
Phys. Rev. Lett. 110, 104501, doi:10.1103/PhysRevLett.110.104501 (2013).

	15.	 Chesler, P. M., Liu, H. & Adams, A. Holographic vortex liquids and superfluid turbulence. Science 341, 368–372, doi:10.1126/
science.1233529 (2013).

	16.	 Simula, T., Davis, M. J. & Helmerson, K. Emergence of order from turbulence in an isolated planar superfluid. Phys. Rev. Lett. 113, 
165302, doi:10.1103/PhysRevLett.113.165302 (2014).

	17.	 Reeves, M. T., Billam, T. P., Anderson, B. P. & Bradley, A. S. Signatures of coherent vortex structures in a disordered two-dimensional 
quantum fluid. Phys. Rev. A 89, 053631, doi:10.1103/PhysRevA.89.053631 (2014).

	18.	 Billam, T. P., Reeves, M. T., Anderson, B. P. & Bradley, A. S. Onsager-Kraichnan condensation in decaying two-dimensional quantum 
turbulence. Phys. Rev. Lett. 112, 145301, doi:10.1103/PhysRevLett.112.145301 (2014).

	19.	 Billam, T. P., Reeves, M. T. & Bradley, A. S. Spectral energy transport in two-dimensional quantum vortex dynamics. Phys. Rev. A 91, 
023615, doi:10.1103/PhysRevA.91.023615 (2015).

	20.	 Stagg, G. W., Allen, A. J., Parker, N. G. & Barenghi, C. F. Generation and decay of two-dimensional quantum turbulence in a trapped 
Bose-Einstein condensate. Phys. Rev. A 91, 013612, doi:10.1103/PhysRevA.91.013612 (2015).

	21.	 Du, Y., Niu, C., Tian, Y. & Zhang, H. Holographic thermal relaxation in superfluid turbulence. J. High Energ. Phys. 12, 018 (2015).
	22.	 Sakugen, A. & Angheluta, L. Vortex clustering and universal scaling laws in two-dimensional quantum turbulence. Phys. Rev. E 93, 

032106, doi:10.1103/PhysRevE.93.032106 (2016).
	23.	 Nazarenko, S., Onorato, M. & Proment, D. Bose-Einstein condensation and Berezinskii-Kosterlitz-Thouless transition in the two-

dimensional nonlinear schrödinger model. Phys. Rev. A 90, 013624, doi:10.1103/PhysRevA.90.013624 (2014).
	24.	 Onsager, L. Statistical hydrodynamics. Il Nuovo Cimento Ser. 9 6, 279–287, doi:10.1007/BF02780991 (1949).
	25.	 Eyink, G. L. & Sreenivasan, K. R. Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87–135, doi:10.1103/

RevModPhys.78.87 (2006).
	26.	 Yatsuyanagi, Y. et al. Dynamics of two-sign point vortices in positive and negative temperature states. Phys. Rev. Lett. 94, 054502, 

doi:10.1103/PhysRevLett.94.054502 (2005).
	27.	 Demircan, E., Ao, P. & Niu, Q. Vortex dynamics in superfluids: Cyclotron-type motion. Phys. Rev. B 54, 10027–10034, doi:10.1103/

PhysRevB.54.10027 (1996).
	28.	 Kobayashi, M. & Tsubota, M. Thermal dissipation in quantum turbulence. Phys. Rev. Lett. 97, 145301, doi:10.1103/

PhysRevLett.97.145301 (2006).
	29.	 Berloff, N. G. & Youd, A. J. Dissipative dynamics of superfluid vortices at nonzero temperatures. Phys. Rev. Lett. 99, 145301, 

doi:10.1103/PhysRevLett.99.145301 (2007).
	30.	 Moon, G., Kwon, W. J., Lee, H. & Shin, Y. Thermal friction on quantum vortices in a Bose-Einstein condensate. Phys. Rev. A 92, 

051601, doi:10.1103/PhysRevA.92.051601 (2015).
	31.	 Jackson, B., Proukakis, N. P., Barenghi, C. F. & Zaremba, E. Finite-temperature vortex dynamics in Bose-Einstein condensates. Phys. 

Rev. A 79, 053615, doi:10.1103/PhysRevA.79.053615 (2009).
	32.	 Rooney, S. J., Blakie, P. B., Anderson, B. P. & Bradley, A. S. Suppression of kelvon-induced decay of quantized vortices in oblate Bose-

Einstein condensates. Phys. Rev. A 84, 023637, doi:10.1103/PhysRevA.84.023637 (2011).
	33.	 Groszek, A. J., Simula, T. P., Paganin, D. M. & Helmerson, K. Onsager vortex formation in Bose-Einstein condensates in two-

dimensional power-law traps. Phys. Rev. A 93, 043614, doi:10.1103/PhysRevA.93.043614 (2016).
	34.	 Neely, T. W., Samson, E. C., Bradley, A. S., Davis, M. J. & Anderson, B. P. Observation of vortex dipoles in an oblate Bose-Einstein 

condensate. Phys. Rev. Lett. 104, 160401, doi:10.1103/PhysRevLett.104.160401 (2010).
	35.	 Freilich, D. V., Bianchi, D. M., Kaufman, A. M., Langin, T. K. & Hall, D. S. Real-time dynamics of single vortex lines and vortex 

dipoles in a Bose-Einstein condensate. Science 329, 1182–1185, doi:10.1126/science.1191224 (2010).
	36.	 Chevy, F., Madison, K. W., Bretin, V. & Dalibard, J. Interferometric detection of a single vortex in a dilute Bose-Einstein condensate. 

Phys. Rev. A 64, 031601, doi:10.1103/PhysRevA.64.031601 (2001).
	37.	 Inouye, S. et al. Observation of vortex phase singularities in Bose-Einstein condensates. Phys. Rev. Lett. 87, 080402, doi:10.1103/

PhysRevLett.87.080402 (2001).
	38.	 Powis, A. T., Sammut, S. J. & Simula, T. P. Vortex gyroscope imaging of planar superfluids. Phys. Rev. Lett. 113, 165303, doi:10.1103/

PhysRevLett.113.165303 (2014).
	39.	 Blakie, P. B. & Ballagh, R. J. Spatially selective bragg scattering: A signature for vortices in Bose-Einstein condensates. Phys. Rev. Lett. 

86, 3930–3933, doi:10.1103/PhysRevLett.86.3930 (2001).
	40.	 Muniz, S. R., Naik, D. S. & Raman, C. Bragg spectroscopy of vortex lattices in Bose-Einstein condensates. Phys. Rev. A 73, 041605–57, 

doi:10.1103/PhysRevA.73.041605 (2006).
	41.	 Kwon, W. J., Seo, S. W. & Shin, Y. Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein 

condensate. Phys. Rev. A 92, 033613, doi:10.1103/PhysRevA.92.033613 (2015).
	42.	 Kwon, W. J., Kim, J. H., Seo, S. W. & Shin, Y. Observation of von Kármán vortex street in an atomic superfluid gas. Phys. Rev. Lett. 

117, 245301, doi:10.1103/PhysRevLett.117.245301 (2016).
	43.	 Groszek, A. J., Davis, M. J., Paganin, D. M., Helmerson, K. & Simula, T. P. Vortex thermometry for turbulent two-dimensional fluids. 

arXiv:1702.05229.
	44.	 Rooney, S. J., Bradley, A. S. & Blakie, P. B. Decay of a quantum vortex: Test of nonequilibrium theories for warm Bose-Einstein 

condensates. Phys. Rev. A 81, 023630, doi:10.1103/PhysRevA.81.023630 (2010).
	45.	 Kim, J. H., Kwon, W. J. & Shin, Y. Role of thermal friction in relaxation of turbulent Bose-Einstein condensates. Phys. Rev. A 94, 

033612, doi:10.1103/PhysRevA.94.033612 (2016).
	46.	 Berloff, N. G., Brachet, M. & Proukakis, N. P. Modeling quantum fluid dynamics at nonzero temperatures. Proc. Natl. Acad. Sci. 111, 

4675–4682, doi:10.1073/pnas.1312549111 (2014).

http://dx.doi.org/10.1088/0034-4885/43/5/001
http://dx.doi.org/10.1103/PhysRevA.80.023618
http://dx.doi.org/10.1103/PhysRevA.81.063630
http://dx.doi.org/10.1103/PhysRevLett.104.075301
http://dx.doi.org/10.1103/PhysRevX.2.041001
http://dx.doi.org/10.1103/PhysRevA.85.043627
http://dx.doi.org/10.1007/s10909-012-0827-9
http://dx.doi.org/10.1103/PhysRevLett.110.104501
http://dx.doi.org/10.1126/science.1233529
http://dx.doi.org/10.1126/science.1233529
http://dx.doi.org/10.1103/PhysRevLett.113.165302
http://dx.doi.org/10.1103/PhysRevA.89.053631
http://dx.doi.org/10.1103/PhysRevLett.112.145301
http://dx.doi.org/10.1103/PhysRevA.91.023615
http://dx.doi.org/10.1103/PhysRevA.91.013612
http://dx.doi.org/10.1103/PhysRevE.93.032106
http://dx.doi.org/10.1103/PhysRevA.90.013624
http://dx.doi.org/10.1007/BF02780991
http://dx.doi.org/10.1103/RevModPhys.78.87
http://dx.doi.org/10.1103/RevModPhys.78.87
http://dx.doi.org/10.1103/PhysRevLett.94.054502
http://dx.doi.org/10.1103/PhysRevB.54.10027
http://dx.doi.org/10.1103/PhysRevB.54.10027
http://dx.doi.org/10.1103/PhysRevLett.97.145301
http://dx.doi.org/10.1103/PhysRevLett.97.145301
http://dx.doi.org/10.1103/PhysRevLett.99.145301
http://dx.doi.org/10.1103/PhysRevA.92.051601
http://dx.doi.org/10.1103/PhysRevA.79.053615
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1103/PhysRevA.93.043614
http://dx.doi.org/10.1103/PhysRevLett.104.160401
http://dx.doi.org/10.1126/science.1191224
http://dx.doi.org/10.1103/PhysRevA.64.031601
http://dx.doi.org/10.1103/PhysRevLett.87.080402
http://dx.doi.org/10.1103/PhysRevLett.87.080402
http://dx.doi.org/10.1103/PhysRevLett.113.165303
http://dx.doi.org/10.1103/PhysRevLett.113.165303
http://dx.doi.org/10.1103/PhysRevLett.86.3930
http://dx.doi.org/10.1103/PhysRevA.73.041605
http://dx.doi.org/10.1103/PhysRevA.92.033613
http://dx.doi.org/10.1103/PhysRevLett.117.245301
http://dx.doi.org/10.1103/PhysRevA.81.023630
http://dx.doi.org/10.1103/PhysRevA.94.033612
http://dx.doi.org/10.1073/pnas.1312549111


www.nature.com/scientificreports/

8Scientific Reports | 7: 4587  | DOI:10.1038/s41598-017-04122-9

Acknowledgements
This work was supported by the Institute for Basic Science in Korea (Grant No. IBS-R009-D1) and the National 
Research Foundation of Korea (Grant No. 2013-H1A8A1003984).

Author Contributions
S.W.S. and Y.S. conceived the experiments. S.W.S., B.K., and J.H.K. conducted the experiments. S.W.S. and Y.S. 
analysed the results. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-04122-9
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-04122-9
http://creativecommons.org/licenses/by/4.0/

	Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas

	Results

	Vortex sign detection via Bragg scattering. 
	Probing 2D quantum turbulence. 
	Vortex-antivortex pairing. 

	Discussion

	Methods

	Vortex state preparation. 
	Data availability. 

	Acknowledgements

	Figure 1 Two vortex configurations of neutral 2D quantum turbulence.
	Figure 2 Bragg scattering of a Bose-Einstein condensate (BEC) with a quantum vortex (QV).
	Figure 3 Spatially resolved Bragg spectroscopy of a BEC.
	Figure 4 Determination of the vortex configuration of a turbulent BEC.
	Figure 5 Characterization of decaying 2D quantum turbulence.




