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The immune contexture of pancreatic ductal adenocarcinoma (PDAC) is generally
immunosuppressive. A role for immune checkpoint inhibitors (ICIs) in PDAC has only
been demonstrated for the rare and hypermutated mismatch repair (MMR) deficient
(MMR-d) subtype. Homologous recombination repair (HR) deficient (HR-d) PDAC is more
prevalent and may encompass up to 20% of PDAC. Its genomic instability may promote a
T-cell mediated anti-tumor response with therapeutic sensitivity to ICIs. To investigate the
immunogenicity of HR-d PDAC, we used multiplex immunohistochemistry (IHC) to
compare the density and spatial distribution of CD8+ cytotoxic T-cells, FOXP3+
regulatory T-cells (Tregs), and CD68+ tumor-associated macrophages (TAMs) in HR-d
versus HR/MMR-intact PDAC. We also evaluated the IHC positivity of programmed
death-ligand 1 (PD-L1) across the subgroups. 192 tumors were evaluated and classified
as HR/MMR-intact (n=166), HR-d (n=25) or MMR-d (n=1) based on germline testing and
tumor molecular hallmarks. Intra-tumoral CD8+ T-cell infiltration was higher in HR-d
versus HR/MMR-intact PDAC (p<0.0001), while CD8+ T-cell densities in the peri-tumoral
and stromal regions were similar in both groups. HR-d PDAC also displayed increased
intra-tumoral FOXP3+ Tregs (p=0.049) and had a higher CD8+:FOXP3+ ratio (p=0.023).
CD68+ TAM expression was similar in HR-d and HR/MMR-intact PDAC. Finally, 6 of the
25 HR-d cases showed a PD-L1 Combined Positive Score of >=1, whereas none of the
HR/MMR-intact cases met this threshold (p<0.00001). These results provide
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immunohistochemical evidence for intra-tumoral CD8+ T-cell enrichment and PD-L1
positivity in HR-d PDAC, suggesting that HR-d PDAC may be amenable to ICI
treatment strategies.
Keywords: pancreatic cancer, tumor microenvironment, T-cell inflammation, immunotherapy, PD-L1
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading
cause of cancer death worldwide and its incidence is rising yearly
(1). It is one of the most lethal malignancies, with a 5-year survival
rate of less than 10% (1). Nearly 80% of patients are diagnosed with
incurable locally advanced or metastatic disease and are treated
with systemic chemotherapy (2). However, the effectiveness of
empiric chemotherapeutic regimens, such as FOLFIRINOX (5-
fluorouracil, leucovorin, irinotecan and oxaliplatin) and
gemcitabine plus nab-paclitaxel, remains poor (2). The 20% of
patients who undergo curative-intent resection and receive
adjuvant therapy reach a median overall survival of only 22.8 to
54.4 months, which highlights the systemic behavior of PDAC
even at its earliest stage (3–5).

While empiric chemotherapy regimens remain the backbone of
systemic treatment for PDAC, these treatment strategies have not
led to marked improvements in survival [2]. Thus, guided by
biomarker-driven treatment breakthroughs in other difficult-to-
treat cancers and facilitated by the identification of PDAC
molecular subtypes, precision medicine and immunotherapy
strategies have emerged. The most characterized molecular PDAC
subtypes are based on 1) genomic tumor alterations driven either by
germline predisposition or somatic oncogenic aberrations and 2)
transcriptomic expression patterns (6). Associations of these
subtypes with PDAC progression and treatment responses have
demonstrated their potential clinical value (7–9).

Homologous recombination repair (HR) deficiency (HR-d)
PDAC is an actionable molecular subtype. It is primarily driven
by germline mutations in BRCA2, BRCA1 and PALB2, which are
present in 5-10% of incident PDAC cases (2, 10–13). In addition,
7-10% of PDAC cases without germline mutations in HR-
associated genes harbor molecular hallmarks of HR-d driven
by somatic or epigenetic events (14). HR-d PDAC is sensitive to
platinum-based cytotoxic regimens and poly(ADP-ribose)
polymerase (PARP) inhibitors, which exploit the intrinsic
deficiency of HR-d tumor cells to repair DNA double strand
breaks with high-fidelity (15). In addition, the genomic
instability of HR-d tumors, characterized by specific genomic
alterations that include deletions with flanking microhomology
and the COSMIC Signature 3 pattern of base-substitution
mutations, may lead to increased neoantigens and a T cell-
mediated anti-tumor response with therapeutic sensitivity to
immune checkpoint inhibitors (ICIs) (16, 17). Durable
treatment responses to ICIs have been demonstrated in cancers
with T cell-inflamed phenotypes, but the ability of HR-d PDAC
to induce anti-tumor immunity has not been established (18).
Moreover, the PDAC tumor microenvironment is generally
immunosuppressive and a role for ICIs in PDAC has only
2

been demonstrated for the rare and hypermutated mismatch
repair (MMR) deficient (MMR-d) subtype, which exhibits
inherent immunogenicity (19, 20). Thus, to assess the potential
actionability of HR-d PDAC using ICIs, we characterized the
spatial distribution of immune cells relative to tumor cells in HR-
d versus HR/MMR-intact PDAC.
MATERIALS AND METHODOLOGY

Patient Cohorts
Tumor specimens from patients with pathological diagnoses of
PDAC from two case series were evaluated. The first series
included 141 PDAC cases from the Quebec Pancreas Cancer
Study [QPCS, NCT04104230 (21)]. This series consisted of 130
consecutive patients enrolled in the QPCS between April 2012
and September 2018, with available primary resected PDAC
specimens for construction of a tissue microarray (TMA). To
compensate for the lower incidence of HR-d and MMR-d
compared to HR/MMR-intact PDAC, we also included cases
with germline mutations in HR or MMR genes (n=11) that were
enrolled in the QPCS following construction of the TMA. These
included primary (n=8) and metastatic (n=3) PDAC specimens
from cases enrolled between October 2018 and December 2020.
The second series consisted of 115 cases from the PanCuRx
Translational Research Initiative, which were represented on a
previously constructed TMA (22). Patient demographics, clinical
characteristics and survival outcomes for both series were
extracted from prospectively maintained study databases.
Overall survival was calculated from the date of radiological
diagnosis until death or censor date. Clinical staging was based
on the 8th edition of the American Joint Committee on Cancer.

Construction of Tissue Microarrays
TMAs for the QPCS cases were created using an automated tissue
microarrayer (TMA Grand Master, 3DHistech, RRID:
SCR_021257). Representative tumor regions were identified on
hematoxylin and eosin (H&E) stained slides by a board-certified
pathologist (A.O., Z.H.G.) and marked on its corresponding
formalin-fixed and paraffin-embedded (FFPE) block. Each case
(n=130) was represented on a TMA by three 1.5-mm tumor
cores. The PanCuRx TMA was previously constructed and
included 115 cases that were each represented by at least two 1.5-
mm cores (22).

Immunostaining and Spatial Analysis of
Tumor Infiltrating Immune Cells
TMA and individual patient blocks were cut at a 4-micrometer
(mm) thickness for immunohistochemistry (IHC). Multiplex
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chromogenic IHC was performed using the Discovery Ultra
Autostaining Platform (Ventana Medical Systems, RRID:
SCR_021254), with chromogenic detection kits from Ventana
Medical Systems (No. 760-247, teal; No. 760-229, purple; No.
760-500, DAB, RRID: AB_2753116; No. 760-250, yellow; No.
760-271, green). QPCS and PanCuRx slides were stained for CD8
(Ventana, 790-4460, RRID: AB_2335985), Pan-cytokeratin
(PanCK; Ventana, 760-2135, RRID: AB_2810237), Forkhead
box P3 (FOXP3; 1:200, Abcam, ab20034, RRID: AB_445284),
and programmed death-ligand 1 (PD-L1; E1L3N clone, 1:100,
Cell Signaling, 13684S, RRID: AB_2687655) in combination with
the DISCOVERY Amp HQ kit (Ventana, 760-4602). The QPCS
series was also stained for CD68 (1:100, Abcam, ab125212,
RRID: AB_10975465). Staining specificity was confirmed by
board-certified pathologists (M.C.G., P-O.F.).

Immunostained slides were scanned using the Aperio AT2
ScanScope (Leica Biosystems, RRID: SCR_021256) at a 20x
magnification. We trained a classifier algorithm on the HALO
Image Analysis software (Indica Labs; RRID: SCR_018350) to
use PanCK staining for assignment of tumor cell clusters.
Regions of necrosis, blood vessels, acinar cells and islet cells
were excluded. Tumor and immune cells were counted using the
Multiplex-IHC v.3.0.4 package on HALO and averaged across
replicate tumor cores for each case. Immune cell densities were
calculated by normalizing immune cell counts to the total area of
tumor clusters (mm2). For log10 transformation, cases with
immune cell counts of zero were assigned a value
corresponding to 90% of the lowest non-zero immune count in
the cases evaluated.

To distinguish between immune cells infiltrating the tumor
versus those encroaching the tumor perimeter, immune cells
were classified as intra-tumoral if they were located within 10
mm from the edge of a tumor cell (Figure 1A). Immune cells
were considered peri-tumoral if they were located between 10
mm and 50 mm from the tumor cell cluster perimeter. Immune
cells that were more than 50 mm away from a tumor cell cluster
perimeter were categorized as stromal. The CD8+:FOXP3+
ratio was calculated by dividing the total number of CD8+
cytotoxic T-lymphocytes by the total number of FOXP3+
regulatory T-lymphocytes (Tregs) in each core, and
averaging across tumor replicates. The Combined Positive
Score (CPS) was calculated for each core as previously
described (23) and averaged across tumor replicates. A CPS
of ≥1 was considered positive. The HALO analysis for PD-L1
staining was validated with manual scoring by a board-certified
pathologist (M.C.G.).

Identification of HR-d and MMR-d Cases
Across the two series, 192 cases (QPCS n=114; PanCuRx
n=78) were evaluable (Table 1 and Supplementary Table 1).
These cases were classified into HR/MMR-intact, HR-d
o r MMR-d subg roup s and th e i r immune tumor
microenvironment was compared (Supplementary Tables 2,
3). To identify HR-d cases in the QPCS series, we performed
germline testing using lymphocyte DNA for BRCA1, BRCA2,
and PALB2 mutations. There were 52 cases previously tested
by whole genome sequencing (WGS, n=11), whole exome
Frontiers in Oncology | www.frontiersin.org 3
sequencing (WES, n=1), or targeted sequencing using genes
panels that included BRCA1, BRCA2, and PALB2 (n=40,
Supplementary Table 4) (13, 24, 25). The remaining 62
cases that had not undergone germline genetic testing were
evaluated using the INVITAE Multi-Cancer gene panel
(Supplementary Table 4). Germline mutations for the
PanCuRx series were abstracted from previously reported
WGS of lymphocyte DNA (22).

For cases that had undergone tumor whole genome
sequencing (8, 17, 22), we calculated the HRDetect score
using previously described methodology (26). Assignment of
cases to the HR-d subgroup was based on the presence of a
germline BRCA1, BRCA2 or PALB2 mutation and, if available,
an HRDetect score of ≥0.9. If an HRDetect score was
unavailable, cases with germline mutations were kept in the
HR-d subgroup. Cases that carried a germline mutation, but did
not meet the HRDetect threshold, were considered HR-intact.
An HRDetect score of >0.7 for a low tumor cellularity case
(303.001) was accepted to signify HD-d. In the absence of a
germline HR-gene mutation, cases that had an HRDetect score
>0.9 and evidence of somatic HR-gene inactivation were
classified as HR-d.

We surveyed the QPCS and PanCuRx case series for germline
MMR-gene mutations to identify potential MMR-d cases
(Supplementary Tables 2, 3). However, assignment to the
MMR-d subgroup was based on IHC for MMR protein
deficiency (i.e., MLH1, MSH2, MSH6, PMS2) or an MSIsensor
score ≥20 (https://github.com/niu-lab/msisensor2). For the
QPCS series, IHC for MLH1 (G168-15, Biocare Medical,
RRID: AB_1059376), MSH2 (G219-1129, Cell Marque, RRID:
AB_1160591), MSH6 (EPR3945, Abcam, RRID: AB_2144959)
and PMS2 (EPR3947, Cell Marque) was performed using a
BenchMark ULTRA IHC Staining Module (Roche Diagnostics)
with the OptiView DAB IHC Detection Kit. IHC staining was
analyzed using the ImageScope software. Cases were considered
MMR-intact if tumor cells displayed nuclear staining of all 4
MMR proteins. Cases were classified as MMR-d if tumor cells
had complete loss of nuclear staining in one or more MMR
proteins, with retained nuclear staining in adjacent stroma.
Absence of MMR protein expression on a TMA core was
confirmed by staining a whole section slide. MMR-d
classification for the PanCuRx case series was based on
previously reported IHC for MLH1, MSH2, MSH6 and PMS2
or MSIsensor scores (19, 22). Cases were assigned to the
HR/MMR-intact subgroup if they did not meet criteria for
HR-d or MMR-d subclassification or if they could not be
eva lua ted for tumor molecu la r ha l lmarks due to
biospecimen availability.

Statistical Analyses
All statistical analyses were performed using R Software (version
4.0.4, R Foundation for Statistical Computing). Continuous
variables were expressed as mean ± standard deviation (SD),
and differences were compared using the Wilcoxon test. Fisher’s
Exact Test was used to compare the proportion of cases in the
HR/MMR-intact versus HR-d groups meeting the PD-L1 CPS
threshold of ≥1. Overall survival was estimated using the
April 2022 | Volume 12 | Article 860767
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Kaplan–Meier method and compared between groups using a
log-rank test.

Study Approval
All participants provided written informed consent. The study
was conducted in accordance with the principles of the
Frontiers in Oncology | www.frontiersin.org 4
Declaration of Helsinki. The McGill University and the McGill
University Health Centre (MUHC) Institutional Review Boards
(#A02-M118-11A, #2018-3171, #2018-4139) approved the
QPCS study, and the Institutional Review Board of the
University Health Network (#15-9596) provided approval for
the PanCuRx case series.
A

C

B

FIGURE 1 | Distribution of CD8+ T-cells in PDAC. (A) Definitions of intra- tumoral, peri- tumoral and stromal regions. (B) Representative H&E images for HR/MMR-
intact, HR-d and MMR-d PDAC with corresponding immunostaining for CD8 (brown) and Pan-cytokeratin (PanCK, teal). Black arrows show examples of CD8+
staining. (C) Comparison of CD8+ T-cell densities in HR/MMR-intact versus HR-d PDAC across the three tumor regions. The MMR-d case is shown as a reference
for an immunogenic PDAC. NS, not significant.
April 2022 | Volume 12 | Article 860767
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RESULTS

Clinical Characteristics
Across the QPCS and PanCuRx case series, 192 PDAC cases
were characterized, which included 166, 25, and 1 HR/MMR-
intact, HR-d, and MMR-d cases, respectively (Table 1). The
germline mutations and tumor genomic features of the HR-d
and MMR-d cases are summarized in Table 2, and their clinical
characteristics at tumor biospecimen acquisitions are detailed in
Table 3. The HR-d group demonstrated a longer median overall
survival (OS; 29.1 months versus 19.9 months, p=0.0073;
Supplementary Figure 1). Notably, the HR-d group included a
greater number of patients diagnosed with stage III/IV disease
compared to the HR/MMR-intact group (52.0% versus
4.2%, p<0.0001).

Increased Intra-tumoral Density of CD8+
T-cells and FOXP3+ Tregs in HR-d PDAC
HR-d tumors had a higher CD8+ T-cell intra-tumoral density
compared to the HR/MMR-intact group (131.1 ± 154.9 cells/
mm2 versus 40.5 ± 50.9 cells/mm2, p<0.0001; Figure 1).
However, there was no difference in CD8+ T-cell infiltration in
the peri-tumoral or stromal regions between the two groups. The
CD8+ T-cell landscape for the MMR-d case is shown in parallel
as a reference for a PDAC microenvironment responsive to
immunotherapy. Following resection of the primary and
adjuvant therapy with gemcitabine/capecitabine, this patient
(750.001) developed a mesenteric recurrence, which responded
to pembrolizumab (Supplementary Figure 2).

We subsequently evaluated the landscape of FOXP3+ Tregs and
CD68+ tumor-associated macrophages (TAMs) in HR/MMR-
intact versus HR-d tumors (Figure 2). FOXP3+ Tregs density was
higher in the intra-tumoral region of HR-d versus HR/MMR-intact
tumors (25.5 ± 27.3 cells/mm2 versus 13.6 ± 13.4 cells/mm2,
p=0.049), while there was no difference in FOXP3+ staining in
the peri-tumoral or stromal regions between the two groups.
Moreover, the ratio of CD8+ to FOXP3+ cells was higher in HR-
d versus HR/MMR-intact cases (23.9 ± 52.7 versus 9.8 ± 23.8,
p=0.023). Similarly, the CD8+ to FOXP3+ ratio in the MMR-d
Frontiers in Oncology | www.frontiersin.org 5
tumor was also elevated. CD68+ TAM population densities were
comparable across the three spatial compartments in HR-d and
HR/MMR-intact PDAC.

Increased PD-L1 Expression in
HR-d PDAC
We observed higher PD-L1 expression in the HR-d versus the HR/
MMR-intact group (5.1 ± 11.9 versus 0.03 ± 0.1, p=0.0025). Six of
the 25 HR-d tumors met the PD-L1 Combined Positive Score (CPS)
threshold of ≥1, whereas none of the 163 evaluable HR/MMR-intact
tumors reached the positivity threshold (p<0.00001; Figures 3A, B).
The 6 HR-d cases with a CPS score ≥1 consisted of 4 cases with
treatment-naïve primary PDAC biopsies (1024.001, 1183.001,
1235.001, 1337.001) and 2 metastatic biopsies (543.001, liver
metastasis; 1099.001, peritoneal metastasis). Case 543.001 was
treatment naïve at the time of biopsy, whereas case 1099.001 had
undergone a course of neoadjuvant FOLFIRINOX for stage III
disease. The biopsied metastatic peritoneal nodule was identified at
the time of surgical exploration and the curative-intent resection
was aborted following the intra-operative finding of metastatic
disease. Importantly, the MMR-d case with treatment sensitivity
to pembrolizumab also met the CPS threshold (Figure 3B,
Supplementary Figure 2).
DISCUSSION

Genomic and transcriptomic profiling of PDAC has identified
distinct molecular subclasses, such as HR-d (6). These advances
have led to opportunities for targeted therapies and treatment
stratification according to subclass assignment. Treatment
responses to platinum-based therapies and PARP inhibitors
have been demonstrated for HR-d PDAC (14, 27, 28).
However, these therapies rarely lead to complete tumor
responses and their durability is limited (17, 27). Therefore,
there remains a clinical need to improve the current treatment
strategies for HR-d PDAC. To this end, the genomic instability
associated with HR-d PDAC may result in a tumor
microenvironment amenable to ICI therapies. In the present
TABLE 1 | Clinical characteristics of the 192 evaluable PDAC cases.

HR/MMR-intact HR-d MMR-d
(n=166) (n=25) (n=1)

Age at diagnosis, mean ± SD 66.3 ± 10.0 59.7 ± 11.7 55.0
Gender, n (%)
Male 91 (54.8) 15 (60.0) 0 (0)
Female 75 (45.2) 10 (40.0) 1 (100)

Stage at diagnosis, n (%)
Early Stage (I & II) 159 (95.8) 12 (48.0) 1 (100)
Late Stage (III & IV) 7 (4.2) 13 (52.0) 0 (0)

Primary tumor resection specimens or biopsies, n (%)
Treated 26 (15.7) 9 (36.0) 0 (0)
Treatment Naïve 139 (83.7) 14 (56.0) 1 (100)

Metastatic tumor biopsies, n (%)
Treated 0 (0) 1 (4.0) 0 (0)
Treatment Naïve 1 (0.6) 1 (4.0) 0 (0)
April 2022 | Volume 12 | Article
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study, we show increased intra-tumoral CD8+ T-lymphocyte
infiltration and PD-L1 positivity by immunohistochemistry,
corroborating previously reported transcriptomic evidence for
T-cell inflammation in HR-d PDAC (22, 29). Although
evaluation of the composition of cytotoxic, memory and
exhausted intra-tumoral CD8+ T-lymphocyte populations in
HR-d is subject to further investigation, there is evidence that
infiltrating CD8+ T-lymphocytes are activated in HR-d. Indeed,
Connor et al. showed that the cytolytic activity of infiltrating
CD8+ T-lymphocytes, as measured by expression of granzyme A
and perforin, and expression of co-regulatory genes, including
cytotoxic T-lymphocyte antigen 4, programmed cell death 1 and
indolamine 2,3-dioxygenase 1, was increased in HR-d and
Frontiers in Oncology | www.frontiersin.org 6
MMR-d PDAC (22). Moreover, these gene expression changes
correlated with higher frequency of somatic mutations and
tumor-specific neoantigens.

ICI therapies promote an anti-tumor immune response by
disrupting signals that inhibit T-cell cytolytic activity (30). Cancers
that exhibit immunogenicity, such as melanoma, have robust
responses to ICI regimens with striking tumor regression and
long-term survival (30). CD8+T-cell tumor infiltration has been
associated with such potent and durable ICI treatment responses
(31). Importantly, the proximity of cytolytic CD8 T-cells to tumor
cell bed is predictive of ICI efficacy (32). However, while CD8+T-
lymphocytes are adjacent to tumor cells in the microenvironment
of melanoma tumors, the CD8+T-lymphocyte infiltrate in PDAC
TABLE 2 | Germline mutations and tumor genomic features of the HR-d and MMR-d cases.

Subgroup Classification ID Germline Mutation Somatic (Tumor) Alteration ¶ HRDetect
Score †

MSIsensor
Score †

MMR IHC

HR-d 348.001 BRCA1
c.2681_2682delAA

Intact

1048.001 BRCA1 c.1018C>T BRCA1 LOH >0.999 1.76
PCSI_0476 BRCA1 c.5319dupC BRCA1 deletion (chr17:41249032-

chr17:56361777)
>0.999 2.05

70.001 BRCA2 c.3398del5 BRCA2 c.1794_1798del >0.999 2.17 Intact
99.001 BRCA2 c.4691dupC Intact
392.001 BRCA2 c.8677C>T BRCA2 c.2050C>T >0.999 1.62 Intact
543.001 BRCA2 c.3545delTT Intact
908.001 BRCA2 c.8297delC BRCA2 LOH >0.999 0.17 Intact
1024.001 BRCA2

c.1805_1806insA
BRCA2 LOH >0.999 2.2

1183.001 BRCA2 c.4284dup Intact
1195.001 BRCA2 c.3170_3174del Intact
1227.001 BRCA2 c.8537_8538del Intact
1235.001 BRCA2 c.3170_3174del n/a
1337.001 BRCA2 c.6275_6276del Intact
PCSI_0017 BRCA2 c.5946delT BRCA2 LOH * >0.999 2.44
PCSI_0048 BRCA2 c.5946delT BRCA2 LOH >0.999 0.96 Intact
PCSI_0075 - BRCA2 c.5718_5719del, BRCA2

c.6579A>G
>0.999 1.46 Intact

PCSI_0142 BRCA2
c.9435_9436delGT

BRCA2 LOH >0.999 1.74 Intact

PCSI_0176 BRCA2
c.3167_3170delAAAA

BRCA2 LOH * >0.999 1.14

PCSI_0218 BRCA2
c.3167_3170delAAAA

BRCA2 c.8910G>A >0.999 0.73 Intact

PCSI_0472 - BRCA2 c.5718_5719del, BRCA2 c.316
+1G>T

>0.999 2.32

PCSI_0477 BRCA2 c.9097dupA BRCA2 LOH >0.999 1.69
PCSI_0492 BRCA2 c.4003G>T BRCA2 LOH >0.999 2.80
303.001 PALB2 c.2323C>T PALB2 c.2174C>G 0.742 § 1.36 Intact
1099.001 PALB2 Deletion

(exon 11)
Intact

MMR-d 750.001 MSH2 c.942+3A>T MSH2 & MSH6
deficient
April
 2022 | Volume 12
¶ Somatic alterations were ascertained by whole genome sequencing.
† Shown are available results for cases with tumor whole genome sequencing.
* Patient-derived tumor xenograft tissue was used for whole genome sequencing when the patient tumor sample was insufficient.
§ Low tumor cellularity following laser microdissection (30.1%), which may have resulted in uncalled structural events and an HRDetect score of 0.742.
- Indicates no germline mutation identified.
LOH, loss of heterozygosity. MMR IHC, immunohistochemistry for mismatch repair proteins.
n/a Indicates insufficient tissue for immunohistochemistry.
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is primarily restricted to the stroma (33). Despite such
observations suggesting that PDAC does not generally evoke an
anti-tumor immune response, genomic and transcriptomic
characterization of PDAC and its microenvironment has alluded
to the existence of PDAC subclasses harboring immunogenicity
Frontiers in Oncology | www.frontiersin.org 7
(34, 35). The subclass prototype for PDAC with immunogenicity
and responsiveness to ICIs is MMR-d, which exhibits elevated
levels of tumor mutation burden (TMB) and tumor infiltrating
CD8 T-lymphocytes compared toMMR-intact PDAC (19, 20, 36).
Similarly, if the genomic instability that underlies HR-d PDAC
TABLE 3 | Clinical characteristics of the HR-d and MMR-d cases at tissue acquisition.

Subgroup
Classification

ID Age at Diag-
nosis (years)

Sex Stage Chemotherapy Prior to
Tissue Acquisition

Radiation Therapy Prior
to Tissue Acquisition

Tissue Acquisition Procedure Tissue
Acquired

HR-d 348.001 77 M II No No Pancreaticoduodenectomy Primary
Tumor

1048.001 64 M IV No No Percutaneous Biopsy Primary
Tumor

PCSI_0476 42 M IIA FFX No Pancreaticoduodenectomy Primary
Tumor

70.001 47 M IV FFX No Distal pancreatectomy +
splenectomy + RFA of liver

metastases

Primary
Tumor

99.001 46 M III FFX, GC Yes Pancreaticoduodenectomy + PV
resection + SMA resection

Primary
Tumor

392.001 61 F II No No Pancreaticoduodenectomy Primary
Tumor

543.001 75 M IV No No Percutaneous Biopsy Liver
Metastasis

908.001 53 F III FFX No Pancreaticoduodenectomy Primary
Tumor

1024.001 70 M IV No No Percutaneous Biopsy Primary
Tumor

1183.001 57 F III No No Percutaneous Biopsy Primary
Tumor

1195.001* 74 F II No No Percutaneous Biopsy Primary
Tumor

1227.001 39 M IV No No Percutaneous Biopsy Primary
Tumor

1235.001 60 F III No No Percutaneous Biopsy Primary
Tumor

1337.001 62 F III No No Percutaneous Biopsy Primary
Tumor

PCSI_0017 53 F III GC No Pancreaticoduodenectomy Primary
Tumor

PCSI_0048 76 M IB No No Pancreaticoduodenectomy Primary
Tumor

PCSI_0075 75 M IIA No No Distal pancreatectomy Primary
Tumor

PCSI_0142 43 M IIB No No Pancreaticoduodenectomy Primary
Tumor

PCSI_0176 56 F IB GC Yes Pancreaticoduodenectomy Primary
Tumor

PCSI_0218 50 M IIB No No Pancreaticoduodenectomy Primary
Tumor

PCSI_0472 75 M IA No No Pancreaticoduodenectomy Primary
Tumor

PCSI_0477 63 M IB No No Pancreaticoduodenectomy Primary
Tumor

PCSI_0492 66 F III GC No Pancreaticoduodenectomy Primary
Tumor

303.001 56 M III FFX Yes Total pancreatectomy + PV
resection + right hemicolectomy

Primary
Tumor

1099.001 52 F III FFX Yes Surgical exploration/metastatic
peritoneal biopsy

Peritoneal
Metastasis

MMR-d 750.001 55 M II No No Subtotal pancreatectomy +
splenectomy

Primary
Tumor
April 2022 | Volume 12 | Ar
*Treated concrrently for for lung cancer and excluded from the overall survival analysis.
RFA, radiofrequency ablation; PV, portal vein; SMA, superior mesenteric artery.
FFX, FOLFIRINOX; GC, gemcitabine/cisplatin.
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leads to increased levels of neoantigens and tumor
immunogenicity, the immune cell landscape of HR-d PDAC
should also be distinguishable from the typical immune cold
PDAC microenvironment. To this end, our results
demonstrating elevated levels of intra-tumoral CD8+ T-cells in
HR-d compared to HR/MMR-intact PDAC suggest that HR-d
Frontiers in Oncology | www.frontiersin.org 8
PDAC harbors a microenvironment with an inherent anti-tumor
immune response. In support of the hypothesis that the genomic
instability of HR-d tumors results in increased immunogenicity, a
retrospective study of melanoma patients treated with ICI therapy
found that tumors that regressed were enriched for BRCA2 loss of
function mutations and harbored a higher TMB (37).
A

B

C

D

FIGURE 2 | FOXP3+ Treg and CD68+ TAM infiltration in PDAC. (A) Representative FOXP3 (brown), CD68 (purple) and PanCK (teal) immunostaining for HR/MMR-
intact, HR-d and MMR-d PDAC. Black and red arrows show examples of FOXP3+ and CD68+ staining, respectively. (B, C) Comparison of FOXP3+ Treg (B) and
CD68+ TAM (C) densities in HR/MMR-intact versus HR-d PDAC across the intra-tumoral, peri- tumoral and stromal regions. (D) Comparison of overall CD8+:
FOXP3+ ratios between HR/MMR-intact versus HR-d PDAC. The MMR-d case is shown as a reference. NS, not significant.
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We also evaluated the tumor microenvironment topography of
FOXP3+ Tregs and CD68+ TAMs, since their immunosuppressive
properties counterpoise the anti-tumor effect of cytotoxic CD8+ T-
lymphocytes (38, 39). Tregs and TAMs may lower ICI efficacy and
contribute to ICI resistance (40). Moreover, elevated levels of tumor
infiltrating Tregs and TAMs correlate with poor outcomes in
PDAC and other malignancies (31). We detected Tregs and
TAMs in both HR-d and HR/MMR-intact cases, but we only
observed a difference in the intra-tumoral density of Tregs between
the two groups. The increase in intra-tumoral Tregs suggests an
immunosuppressive counterbalance response to the anti-tumoral
effect of the CD8+ T-cell infiltration. The MMR-d case with a
durable response to pembrolizumab exhibited comparable levels of
Tregs and TAMs in its intra-tumoral, peri-tumoral and
stromal regions.

HR-d cases had a significantly higher CD8+:FOXP3+ ratio
compared to HR/MMR-intact cases. The CD8+:FOXP3+ ratio
may be a more functional measure of anti-tumor immunity and a
better indicator of ICI responsiveness compared to CD8+ and
FOXP3+ measurements alone (41). As the proportion of CD8+
to FOXP3+ rises, escape of CD8+ cytotoxic activity is facilitated
with the dilution of Tregs and their inhibitory effects. The
Frontiers in Oncology | www.frontiersin.org 9
resultant milieu may also enhance the efficacy of ICI therapies.
However, the CD8+:FOXP3+ threshold that signifies ICI
responsiveness remains to be defined.

Although Tregs are considered to be pro-tumoral and have
been associated with poor clinical outcomes in PDAC (31, 41),
their role may be more complex. Depletion of Tregs in a
transgenic mouse model of exocrine pancreatic cancer did not
relieve the Treg immunosuppressive effects, but instead led to
tumor progression (42). TAMs are also peculiar immune cells
that exhibit functional plasticity with their phenotypic
polarization governed by environmental signals (40). The
functional continuum of TAMs ranges from pro-tumor to
anti-tumor activity. In PDAC, immunosuppressive polarization
of TAMs has been proposed, which is likely promoted by the
predominantly hypoxic PDAC microenvironment (39).
Although the exact contributions of Tregs and TAMs to the
pro-tumor versus anti-tumor counterforces in the PDAC
microenvironment are not fully understood, their roles are
likely largely immunosuppressive considering their abundance
across all PDAC and the generally immune cold PDAC
microenvironment (31, 40, 43). Moreover, their prevalence in
MMR-d may underlie the lower efficacy of ICIs in MMR-d
A

B

FIGURE 3 | PD-L1 positivity in PDAC. (A) Representative PD-L1 immunostaining for HR/MMR- intact, HR-d and MMR-d PDAC. The top row shows tumors stained
with PD-L1 (brown), while the bottom row shows the same tumor sections stained with PanCK (teal) following PD-L1 staining (brown). Red arrows in top panel show
examples of PD-L1 staining. (B) Comparison of the proportion of cases in the HR/MMR-intact versus HR-d groups meeting the Combined Positivity Score (CPS)
threshold of ≥ 1. Six of 25 HR-d cases had a CPS of ≥1, whereas none of the 163 evaluable HR/MMR-intact cases met the PD-L1 positivity threshold of ≥1. The
MMR-d case scored >1.
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PDAC compared to other MMR-d cancers (44). Therefore, ICI
therapies PDAC subtypes with immunogenicity, including
MMR-d, may be enhanced with the addition of agents that
target suppressive immune cells such as TAMs (45).

Expression of PD-L1 by tumor or tumor-infiltrating immune
cells has emerged as a clinical biomarker for anti-tumor immunity
that may be enhanced with ICI therapy (23, 46). However, PD-L1
status is not a predictive biomarker of ICI sensitivity across all
cancer types. Indeed, Davis et al. reviewed 45 FDA ICI approvals
and found that PD-L1 was only predictive in 29% of cases, with the
remainder either not tested or not predictive (47). Despite these
limitations, in addition to MMR testing, PD-L1 expression
currently remains the only feasible clinical assay for ICI treatment
selection across cancer types (30). As such, we compared PD-L1
positivity by IHC in HR-d versus HR/MMR-intact PDAC, and
found increased PD-L1 immunostaining in the HR-d group. Since
guidelines for interpreting PD-L1 staining in PDAC have not been
established, we applied the Combined Positive Score (CPS) that is
recognized as a clinically relevant scoring method of PD-L1
positivity in solid tumors (23, 48). Although tumors that do not
meet the CPS positivity threshold of ≥1 may respond to ICIs,
tumors that reach the CPS cutoff have a higher likelihood of
responding effectively to anti-PD-1 therapy. Strikingly, 6 of 25
HR-d cases and the MMR-d case met the ≥1 CPS threshold, while
none of the 163 evaluable HR/MMR-intact cases reached the
benchmark. These observations support a role for anti-PD-1
therapy in HR-d PDAC. Moreover, considering the heterogeneity
of treatment responses to platinums and PARP inhibitors across
HR-d PDAC (14, 17), sensitivity to anti-PD-1 may also be variable
in HR-d PDAC and may be correlated with PD-L1 positivity.
Finally, a limitation of this research registry-based study is the
inclusion of cases that were treatment naïve at the time of tissue
acquisition as well as cases following pre-treatment with chemo-
and/or radiation therapy that may have altered their tumor
microenvironment (49).

In summary, we demonstrate that HR-d PDAC exhibits a
distinguishable tumor microenvironment with enhanced
immunogenicity and PD-L1 positivity compared to HR/MMR-
intact PDAC. These findings provide immunohistochemical
correlation of the previously reported genomic and transcriptomic
results classifyingHR-d PDAC as amolecular subtype with inherent
immunogenicity, and provide motivation for clinical trials to
evaluate the efficacy of immunotherapy regimens in HR-d PDAC.
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