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Abstract: Introduction: Melanoma brain metastases remain a devastating disease process with
poor prognosis. Recently, there has been a surge in studies demonstrating the efficacy of oncolytic
virotherapy for brain tumor treatment. Given their specificity and amenability to genetic modification,
the authors explore the possible role of oncolytic virotherapy as a potential treatment option for
patients with melanoma brain metastases. Methods: A comprehensive literature review including
both preclinical and clinical evidence of oncolytic virotherapy for the treatment of melanoma brain
metastasis was performed. Results: Oncolytic virotherapy, specifically T-VEC (Imlygic™), was
approved for the treatment of melanoma in 2015. Recent clinical trials demonstrate promising
anti-tumor changes in patients who have received T-VEC; however, there is little evidence for its use
in metastatic brain disease based on the existing literature. To date, only two single cases utilizing
virotherapy in patients with metastatic brain melanoma have been reported, specifically in patients
with treatment refractory disease. Currently, there is not sufficient data to support the use of T-
VEC or other viruses for intracranial metastatic melanoma. In developing a virotherapy treatment
paradigm for melanoma brain metastases, several factors must be considered, including route of
administration, need to bypass the blood–brain barrier, viral tumor infectivity, and risk of adverse
events. Conclusions: Evidence for oncolytic virotherapy treatment of melanoma is limited primarily
to T-VEC, with a noticeable paucity of data in the literature with respect to brain tumor metastasis.
Given the promising findings of virotherapy for other brain tumor types, oncolytic virotherapy has
great potential to offer benefits to patients afflicted with melanoma brain metastases and warrants
further investigation.

Keywords: oncolytic virotherapy; melanoma; brain metastases; neuroimmunology; neuro-oncology

1. Introduction

Melanoma, a cancer typically arising from melanocytes in the basal layer of the
epidermis, is a common source of metastatic disease to the central nervous system (CNS) [1].
Brain metastases may occur in 10–40% of patients with melanoma depending on the stage
at diagnosis, rising to 73% in autopsy series [2,3]. Diagnosis may be further complicated by
patients having metastatic disease without a known primary lesion, occurring in roughly
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5% of patients [4]. Between 40–60% of melanoma tumors possess a mutation in the BRAF
gene, resulting in oncogenic proliferation mediated by activation of the mitogen-activated
protein kinase (MAPK) pathway [5,6]. Up to 95% of BRAF-mutant melanomas have the
V600E mutation, which confers an approximately 12% increased risk of brain metastases
compared to wildtype patients [7,8].

A greater understanding of melanoma oncoprogression has led to the introduction of
several new interventions within the last decade. These include targeted therapies such
as vemurafenib and dabrafenib, both BRAF inhibitors with demonstrated clinical efficacy
in treating brain metastases carrying the BRAF V600E mutation [9]. Immunotherapies
including high-dose interleukin-2 (IL-2) and immune checkpoint inhibitors that target
programmed death 1 (PD-1) and its ligand (PD-L1) (e.g., nivolumab, pembrolizumab) have
also been introduced [10–16].

Despite these new therapeutics, prognosis remains poor in patients with metastatic
brain melanoma with a median overall survival of 4.4 to 4.7 months from time of brain
metastasis diagnosis [3], ranging from 5 to 9 months in patients receiving BRAF in-
hibitors [17–19]. Combined surgery/radiotherapy in conjunction with targeted therapy
or immunotherapy portends survival beyond 12 months, in some cases. However, resis-
tance to BRAF inhibitors often develops [20]. Moreover, intracranial hemorrhage, among
other systemic comorbidities, has been reported with these agents [1]. Relative to the
body of evidence surrounding the clinical efficacy of BRAF inhibitors, evidence regarding
immunomodulating antibodies is limited secondary to exclusion from clinical trials, with
reports of inflammatory reactions within the brain [11–16]. Additionally, the necessity
of corticosteroids to control cerebral edema in some patients raises concern for the re-
duced efficacy of immune checkpoint antibodies due to an attenuated immune response
from steroids.

Patients with brain metastasis are often excluded from major melanoma clinical trials
secondary to concerns of overall poor survival, and, arguably the largest barrier to sys-
temic treatment, concerns related to blood–brain barrier (BBB) drug penetration [21]. This
contributes to a lack of data, and therefore treatments for melanoma brain metastasis are
extrapolated mainly based on results of clinical trials involving only extracranial metas-
tases [21]. This is especially problematic, given evidence that the tumor microenvironment
of the CNS induces molecular and genetic changes in melanoma cells, contributing to in-
creased resistance and ineffectiveness of targeted therapies against brain metastases [22–26].
Thus, there is a need to explore alternative treatment options with demonstrated sufficient
CNS penetrance and tolerability that do not overburden patients with systemic cytotoxicity.
Oncolytic virotherapy (OV), a newly emerging form of immunotherapy, may serve to fill
this niche and warrants further exploration, especially given evidence that certain viruses
can effectively cross the BBB (Figure 1) [27–37].

OV has shown great promise in treating CNS malignancies, including high-grade
glioma (HGG) [38–43]. Many viral strains are available for genetically modified use to
selectively infect cancer cells, which can be administered either locally within the tumor
site or systemically to stimulate an anti-tumor immune response [44]. In this review, we
survey the literature for reports of OV, either preclinical or clinical, to explore its potential
role in treating metastatic melanoma disease to the brain.
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Figure 1. Depiction of oncolytic virotherapy for treatment of brain tumors. Viruses can be administered either systemically
through intravenous injection or directly into the tumor or tumor bed status-post resection. Oncolytic viruses preferentially
target and selectively infect tumor cells, triggering tumor cell death through a variety of mechanisms including induction
of apoptosis, direct cell lysis, or through recruitment of local immune mediators. Artwork courtesy of Roberto C. Suazo,
Medical Illustrator and Graphic Design Project Manager for the Department of Neurological Surgery, University of Miami.

2. Oncolytic Virotherapy

The oncolytic properties of viruses were discovered based on chance observation in
the early 1900s with a more formal investigation of these viruses in the late 20th century,
following the advent of recombinant DNA technology [38,45,46]. OVs are advantageous
in that they are amenable to genetic modification with the use of reporter genes enabling
specificity and targeting of tumor-specific entry receptors, signaling pathways, and cell
surface antigens [47]. OV can be considered to have dual functionality, with one component
being the virus’s intrinsic oncolytic properties, and the other being its ability to act as a
precise drug delivery tool given its high specificity for genetically programmed molecular
targets. Along with melanoma and HGG, other malignancies in which OV has shown
promise in clinical trials include pancreatic, bladder, ovarian, prostate, and hepatocellular
carcinomas [48].

Herpes simplex virus (HSV) is among the first and most studied oncolytic virother-
apeutic hosts [49], and other viruses currently being studied for their potential use in
various cancers include poxvirus, reoviruses, and coxsackieviruses [50]. Each virus induces
oncolysis through unique mechanisms depending on how they were engineered. While
many viruses induce direct lysis of malignant cells, some induce a local inflammatory
reaction via enhanced lymphocytic recruitment and infiltration within the tumor microen-
vironment. Meanwhile, other viruses inhibit cellular migration and invasion, therefore
attenuating tumor extravasation and metastasis [51–53]. These viruses’ exact activities may
vary depending on the exact molecular profile of cancer involved, and characterization of
these mechanisms continues to be investigated. In contrast to other therapeutic options, a
significant advantage of certain oncolytic viruses is their ability to easily pass the BBB given
natural tropisms for neural tissue or ability to utilize immune cells as carriers [27,54–56].
This advantage has been frequently demonstrated with HSV, vaccinia virus, reovirus,
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parvovirus, and adenovirus, among others [49,57,58]. Despite the ability of some oncolytic
viruses to cross the BBB, a disadvantage to systemic administration involves patients’
immune systems neutralizing the virus before it reaches the target site in the brain, which
would make direct stereotactic injection advantageous in this regard [59]. Our knowledge
of OV is continuously expanding. OV represents an exciting new domain for general cancer
treatment, and specifically for treatment of melanoma brain metastases.

3. Virotherapy and Melanoma

OV is the most recent addition to the arsenal of melanoma treatments, gaining
FDA approval in 2015 [42]. It can be used to treat both BRAF- and non-BRAF-mutated
melanomas. While current data are limited on the efficacy of OV for clinical use, specifically
in melanoma cases with brain metastases, preliminary studies have begun to emerge in the
literature [43–46].

In 2015, the first oncolytic virotherapeutic agent, talimogene laherparepvec (T-VEC),
was approved by the FDA for use in metastatic melanoma [60]. T-VEC is a modified
oncolytic HSV that expresses the granulocyte–macrophage colony-stimulating factor (GM-
CSF). This virus contains mutations in infectious cell proteins 34.5 and 47, which allow
the virus to selectively infect tumor cells and inhibit tumor cell expression of major histo-
compatibility complex class I antigens. This serves to initiate a specific immune response
against only tumor cells infected by the virus [61].

T-VEC can be injected either intralesionally or into local lymph nodes. It is useful in
treating non-visceral melanoma metastases, with 34% of non-visceral lesions decreasing
over 50% in size [62]. OPTiM, a phase III clinical trial, determined the overall response
rates for T-VEC (26.4%) compared to control GM-CSF (5.7%) for patients with melanoma
staged up through IVM1a [63]. Since the authors could not find a statistically significant
improvement compared to control in patients with lung or other visceral extracranial
metastases (i.e., stages IVM1b-IVM1c), the FDA approved T-VEC for use only up to stage
IVM1a [64]. It is important to note that the authors reported durable response rates as
their outcome measure, which serve as a source of bias given their subjectivity. Another
potential source of bias is the high percentage of patients who discontinued treatment
at three months, namely 29.2% in the T-VEC cohort and 56.0% in the GM-CSF cohort.
Additionally, similarly to clinical trials for other therapeutic agents, stage IVM1d lesions
or intracranial metastases were not included. Despite these limitations, the OPTiM trial
and subsequent FDA approval of T-VEC represent an encouraging step toward an effective
treatment strategy for metastatic brain disease due to melanoma [65].

In addition to T-VEC, non-neurovirulent rhinovirus:poliovirus chimera (PVSRIPO)
has been described for treatment-refractory melanoma in a phase I clinical trial showing
promising antitumor activity [66]. However, to date, the majority of data regarding vi-
rotherapy and melanoma treatment are limited to T-VEC, likely because this is the only
FDA-approved oncolytic virus for the treatment of melanoma [67–70].

4. T-VEC Compared to Other Therapies

The emergence of T-VEC as a novel therapy for melanoma is promising, but the
question of how it compares to existing therapies is necessary to address. A year after the
approval of T-VEC for treating metastatic melanoma, a meta-analysis was performed to
compare the overall survival of melanoma patients treated with T-VEC, ipilimumab, or
vemurafenib [71]. The study included four randomized controlled trials: OPTiM (T-VEC),
MDX0101-20 (ipilimumab), CA184-024 (ipilimumab), and BRIM-3 (vemurafenib) [64,72–74].
The authors defined two main cohorts: patients with all stages of the disease and patients
without bone, brain, lung, or visceral metastases (i.e., stages IIIb to IVM1a). The study
concluded that T-VEC results in superior overall survival compared to ipilimumab and
vemurafenib in patients without visceral metastatic disease. This difference is diminished
when looking at patients with all stages of the disease. With respect to brain metastases,
a small proportion of patients (<10% overall) was included. It is not feasible to extrapo-
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late the effectiveness of T-VEC for patients with metastatic brain disease based on these
analyses, as patients with brain metastases were lumped into the “all patients” category.
Attempts to isolate and compare only those patients with brain metastases would not be
possible due to insufficient statistical power. Additionally, since brain metastases have been
shown to behave uniquely compared to extracranial metastases [23], it remains difficult to
determine whether T-VEC would also perform similarly to ipilimumab or vemurafenib in
these patients.

Several limitations underlying the methodology employed by this meta-analysis
deserve mention. Most notably, a traditional network meta-analysis was forgone due to
a lack of standard comparators across studies. Instead, two algorithms (modified Korn
and two-step Korn methods) were applied to the ipilimumab and vemurafenib studies.
For example, the number of patients with visceral metastatic disease varied greatly across
studies. Given that patients with visceral disease will have poorer prognosis regardless
of treatment choice, the algorithms employed by Quinn et al. attempt to correct overall
survival by assigning a calculated modifier based on the following variables: gender,
Eastern Cooperative Oncology Group (ECOG) performance status, presence of visceral
metastasis, presence of brain metastasis, and lactate dehydrogenase (LDH) status [71].
Fleeman et al. noted a flaw in the algorithmic analysis of Quinn et al. regarding the
inclusion of LDH as a coefficient [75].

Given that LDH status is not relevant for patients with non-visceral disease (i.e., stage
IIIb to stage IVM1a disease), inclusion of LDH in analysis reduces the size and impact of
the other variables, leading to falsely improved relative efficacy of T-VEC. Moreover, the
study by Quinn et al. attempts to pool data from both ipilimumab studies, despite vast
differences in their treatment arms. Namely, MDX0101-20 was a three-armed trial in which
patients received ipilimumab plus glycoprotein 100 (gp100) peptide vaccine, gp100 alone,
or ipilimumab alone [72]. In contrast, CA184-024 sought to compare ipilimumab plus
dacarbazine versus placebo plus dacarbazine [73]. The meta-analysis by Quinn et al.
assumes no treatment effect due to gp100 and dacarbazine and considers patients receiving
combination therapy as equal to those receiving ipilimumab only. Finally, differences in
dosing and other treatment-related factors contributed to the considerable heterogeneity
among these data. The aforementioned assumptions, along with utilization of the Korn
model, have been deemed inappropriate by Fleeman et al., who advise caution when
interpreting the results from Quinn et al. [75].

Based on these findings, it remains unclear how T-VEC performs when compared
to immunotherapeutic agents for patients with intracranial disease, as the current data
prevent us from drawing conclusions regarding the efficacy of T-VEC for brain metastases.

5. Clinical Efficacy for Intracranial Metastasis

To date, only two case reports have been published demonstrating initial clinical
experience utilizing OV. One of the earliest case reports describing utilization of OV in
a patient with melanoma brain metastases was published in 2018 and included T-VEC,
pembrolizumab, and whole-brain radiotherapy (WBRT) after the initial failure of combined
nivolumab/ipilimumab treatment [76]. The patient was a 68-year-old male who presented
with multiple extracranial and intracranial metastases, including two right frontal lobe
lesions (7.7 mm and 4.3 mm) and a single right cerebellar mass. Despite GammaKnife in
conjunction with nivolumab/ipilimumab treatment, the patient developed several new
scattered brain metastases. At this time, a roughly 1-month course of WBRT (3750 cGy in
15 daily fractions) was initiated, followed by T-VEC (every two weeks) and pembrolizumab
(every three weeks) therapy after completion of the patient’s WBRT course. An inoculation
dose of 4 mL of T-VEC was administered in a large axillary mass for a total of 13 treatments
over six months. During this time, a brain MRI demonstrated a reduction in metastatic
disease burden and attenuated vasogenic edema. The patient reported no significant side
effects, with substantially increased tolerability of T-VEC compared to immunotherapy.
However, due to systemic extracranial disease progression, T-VEC was discontinued, and
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roughly six months after discontinuing T-VEC, the patient passed away secondary to
complications related to CNS metastases.

A second case report involved utilization of OV in a patient with metastatic brain
melanoma of unknown primary [77]. This case was a 60-year-old female patient who
presented with severe dizziness triggered by movement and increased fatigue. A brain
MRI revealed a contrast-enhancing, well-circumscribed intradural spinal cord lesion at the
craniocervical junction. A subtotal resection was achieved. Full-body scans did not show a
primary source, and dermatology evaluation did not reveal a cutaneous primary. Despite
this, histologic examination was consistent with BRAF-negative metastatic melanoma. The
patient declined radiotherapy and did not qualify for BRAF inhibitors, and immunotherapy
was not an option given her residence in Latvia. For this reason, the oncolytic virus Rigivir
was pursued as a treatment option. Rigivir, an unmodified Enteric Cytopathogenic Human
Orphan type 7 (ECHO-7) picornavirus, was the first OV in the world to gain regulatory ap-
proval for the treatment of melanoma, local treatment of skin and subcutaneous melanoma
metastases, and prevention of relapse and metastasis after radical surgery [59,78]. However,
Rigivir has not yet gained approval in the United States. The patient was initiated on 2 mL
of intramuscular Rigivir for two days, followed by an additional 1.5 mL intramuscularly
and 0.5 mL intranasally on the third day. She then received weekly doses of Rigivir for the
next five months, following a dosing schedule of two weeks of 2 mL intramuscular injection
followed by one week of combined 1.5 mL intramuscular/0.5 mL intranasal administration.
She then began taking the drug every two weeks, and after another two years, this interval
was increased to every three weeks. During a nearly 4-year follow-up, the patient exhibited
neither disease progression nor new brain metastases while on chronic Rigivir.

In the first case, OV appears to have limited efficacy on extracranial disease while
intracranial metastases appeared to remain stable until after the patient was taken off OV
therapy. These findings align with the observation that brain metastases and extracranial
metastases have unique molecular profiles [23] and warrant the exploration of OV with
combination therapies to better achieve total body remission. The second case is the first of
its kind to employ chronic OV after subtotal brain metastasis resection, prolonging survival
well above that reported in the literature. Based on these case reports and other published
trials, OV appears to be well tolerated with minimal systemic toxicity. Further study in
more extensive trials is necessary to better characterize the efficacy of OV against metastatic
brain disease from melanoma.

6. Overcoming Barriers to Virotherapy

Given the limited available evidence, we must continue to draw upon preclinical
studies in animal models as well as extrapolate data from other brain tumor types that may
be applied in patients with melanoma brain metastases. The primary challenge of using
OV to treat metastatic disease is systemic delivery to specific target organs [50].

There are several obstacles to systemically administered oncolytic viruses. These in-
clude complement and antibody-mediated neutralization, as well as uptake by phagocytic
macrophages; additionally, further filtering of oncolytic viruses occurs in the liver, spleen,
and other tissues, effectively reducing the viral load reaching the target tumor [27]. The
BBB serves as an additional obstacle to systemically injected viruses. The question remains
whether viruses permeate through the BBB or, perhaps more plausibly, if viruses invade
infected endothelium in tumor vasculature before spreading to tumor cells. Nonetheless,
viral penetrance into the CNS has been reported with several viruses due to their intrinsic
neurovirulent properties, including Semliki Forest virus, vaccinia virus, chimeric vesicular
stomatitis virus, parvovirus H-1, Mengovirus, and Seneca Valley virus-001 in both animal
models and human trials. There also exists the option of loading oncolytic viruses onto
carrier stem cells known as “trojan horses”, which is being investigated for adenovirus
strains in two clinical trials involving malignant glioma patients. The authors believe intra-
tumoral and peritumoral resection cavity injections to be the simplest route of oncolytic
virus administration for ensuring delivery to tumor cells. In fact, this is the most studied
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route of administration that appears to be well tolerated in trials exploring OV for the
treatment of HGG. To date, 51 clinical trials have been completed investigating OV for
HGG treatment [39], and therefore similar investigations modeling these trials should be
undertaken for metastatic brain melanoma.

In a preclinical study, Du et al. attempted to improve OV delivery by systemic and
intracarotid injection of mesenchymal stem cells (MSCs) infected with oncolytic HSV
(oHSV) into mice with melanoma brain metastases [79]. They did not inject MSC-oHSV
locally into brain lesions. Mice treated with MSC-oHSV experienced significant remission
of their brain lesions compared to mice injected with either purified virus or uninfected
MSCs. This finding was consistent among mice with both wildtype BRAF and BRAF V600E
mutations. MSC-oHSV in combination with PD-L1 immunotherapy demonstrated even
greater efficacy, with more mice achieving disease remission. Here, immunotherapy may
work synergistically with virotherapy, enhancing the immune response to infected tumor
cells. Further work exploring intra-arterial delivery of oncolytic viruses is ongoing [80].

Another issue related to OV involves the virus’s ability to disseminate into tumor
tissue after reaching the target site. Poor viral penetration is believed to be due to inefficient
passage through dense networks of extracellular matrices. To combat this, transgenic viral
lines containing structural proteins such as decorin, which can bind collagen fibrils to other
matrix components, have been explored. Once attached, decorin hinders extracellular
matrix remodeling and allows improved penetration of the oncolytic virus into tumor
cells [58]. Given their relative ease of genetic modification, oncolytic viruses have the
potential to be enhanced by the insertion of highly specific vectors that serve to achieve a
particular goal, whether this goal is optimizing virus delivery or reducing local expression
of an oncogenic tumor factor [81,82].

7. Future Directions

The field of OV remains in its nascency and is an active area of research. As such,
many new oncolytic viruses are being explored in addition to those mentioned in this
article. Rigivir should be an area of further clinical exploration the United States, given its
preliminary findings overseas. The significant advantage of OV lies in its modifiability, as
transgenic variations are developed with relative ease. This enables oncolytic viruses to
be genetically engineered with exceptionally high specificity and tumor penetrability, all
while avoiding the systemic toxicities inherent in more non-specific cancer therapy options
in use today.

The body of research presented thus far on OV indicates that it may be a promising
treatment option for metastatic brain melanoma. While the lack of robust data precludes us
from formally recommending virotherapy, we believe it to be a promising area of further
exploration. Unfortunately, patients with metastatic brain melanoma are often excluded
from clinical trials. This contributes to the relative lack of published studies in this patient
population and remains one of the most considerable obstacles to our understanding of
how best to treat patients with melanoma brain metastases. However, this should not be
discouraging, as preclinical studies continue to push new boundaries in introducing either
new or genetically enhanced oncolytic viruses. Given the evidence of OV’s efficacy in
various other primary and metastatic brain tumors, as well as the promising preliminary
findings presented in this review, the authors believe that further exploration of OV for
brain metastases of melanoma is warranted.

8. Conclusions

OV is the most recent addition to the arsenal of treatments for metastatic melanoma,
having already gained FDA approval to treat extracranial metastases. OV is a promising
treatment option, as it can be used to treat both BRAF and non-BRAF-mutated melanomas.
Despite the lack of data at this time, OV is ideally suited for metastatic brain disease, given
that it is amenable to passage through the BBB based on previous preclinical and clinical
reports. In addition, its efficacy in other brain tumor types, most notably high-grade glioma,
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warrants further exploration of its efficacy in the setting of metastatic brain melanoma.
As current data regarding its effectiveness are limited, OV may be employed in specific
circumstances in which melanoma patients with metastatic brain disease fail or do not
qualify for traditional treatment options.
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