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Abstract: Obesity is a major risk factor for developing gallstone disease (GSD). Previous studies have
shown that obesity is associated with an elevated Firmicutes/Bacteroidetes ratio in the gut microbiota.
These findings suggest that the development of GSD may be related to gut dysbiosis. This review
presents and summarizes the recent findings of studies on the gut microbiota in patients with GSD.
Most of the studies on the gut microbiota in patients with GSD have shown a significant increase in
the phyla Firmicutes (Lactobacillaceae family, genera Clostridium, Ruminococcus, Veillonella, Blautia,
Dorea, Anaerostipes, and Oscillospira), Actinobacteria (Bifidobacterium genus), Proteobacteria, Bacteroidetes
(genera Bacteroides, Prevotella, and Fusobacterium) and a significant decrease in the phyla Bacteroidetes
(family Muribaculaceae, and genera Bacteroides, Prevotella, Alistipes, Paludibacter, Barnesiella), Firmicutes
(genera Faecalibacterium, Eubacterium, Lachnospira, and Roseburia), Actinobacteria (Bifidobacterium genus),
and Proteobacteria (Desulfovibrio genus). The influence of GSD on microbial diversity is not clear.
Some studies report that GSD reduces microbial diversity in the bile, whereas others suggest the
increase in microbial diversity in the bile of patients with GSD. The phyla Proteobacteria (especially
family Enterobacteriaceae) and Firmicutes (Enterococcus genus) are most commonly detected in the bile
of patients with GSD. On the other hand, the composition of bile microbiota in patients with GSD
shows considerable inter-individual variability. The impact of GSD on the Firmicutes/Bacteroidetes
ratio is unclear and reports are contradictory. For this reason, it should be stated that the results
of reviewed studies do not allow for drawing unequivocal conclusions regarding the relationship
between GSD and the Firmicutes/Bacteroidetes ratio in the microbiota.
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1. Introduction

Obesity is defined as excessive fat accumulation that may impair health; obesity is a
result of an imbalance between energy intake and expenditure [1,2]. Today obesity has
become pandemic; about 1.9 billion people on the planet are overweight: overall, about
13% of the world’s adult populations (11% of men and 15% of women) were obese in
2016 [3]. The World Health Organization (WHO) estimated that nearly 2.8 million deaths
annually are a consequence of overweight and obesity-associated conditions [3], such as
atherosclerosis, diabetes, gallstone disease (GSD), etc. [4–6].

GSD is a common benign gastrointestinal disease affecting 10–15% of adults around
the world that greatly contributes to health care costs [7–10]. Risk factors of the GSD are
age, female sex, obesity, insulin resistance, physical inactivity, genetic background, dietary
factors (high carbohydrate, high-calorie intake), dyslipoproteinaemia, certain diseases
(such as diabetes mellitus, nonalcoholic fatty liver disease (NAFLD), hypertension, and
cardiovascular disease) and medications (hormone replacement therapy, fibrates, etc.),
social and economic issues, fertility, and intestinal factors (with increased absorption
of cholesterol, slow intestinal motility, and dysbiosis) [7–10]. Obesity is a major risk
factor for developing GSD [9–12] because it is accompanied by increased synthesis and
excretion of cholesterol into bile [13], wherein the amount of cholesterol produced is
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directly proportional to being overweight [11].Obesity is regarded as an inflammatory
condition [14]. Inflammation may be the potential link between insulin resistance and
gallstones [15]. Insulin resistance is considered a risk factor for GSD, as it may lead to
excess biliary cholesterol production and saturation [16,17] and alone may be responsible
for gallbladder dysmotility [18]. However, the absence of a relationship between body
mass index (BMI) and GSD had been reported in several epidemiologic studies [7,8,19].
The possible pathogenesis for the close association between obesity and GSD iscomplex
and not fully understood.

A significant relationship exists among food intake, energy balance and gut pep-
tides that are secreted from gastrointestinal enteroendocrine cells, such as ghrelin, leptin,
glucagon-like peptide-1, cholecystokinin (CCK), peptide tyrosine tyrosine (PYY), and sero-
tonin [20]. Let’s focus on two of them. Ghrelin, an orexigenic peptidyl hormone secreted
from the stomach, was discovered in 1999 and is associated with feeding and energy
balance [21]. Ghrelin increases appetite and energy expenditure and promotes the use of
carbohydrates as a source of fuel at the same time as sparing fat [22]. The development of
resistance to leptin andghrelin, hormones that are crucial for the neuroendocrine control of
energy homeostasis, is a hallmark ofobesity [23]. The impact of acyl-ghrelin on glucose
metabolism and lipid homeostasis may allow for novel preventative or early interven-
tion therapeutic strategies to treat obesity-related type 2 diabetes and associated metabolic
dysfunction [24]. There were no differences for total bile acids, insulin, ghrelin, and glucose-
dependent insulinotropic polypeptide between patients with GSD and the control group
without gallstones [25]. Mendez-Sanchez et al. (2006) found an inverse correlation of
serum ghrelin levels and theprevalence of GSD in alogistic regression analysis (OR = 0.27,
95% CI 0.09–0.82, p = 0.02) [26]. Authors suggest that serum ghrelin concentrations are
associated with a protective effect of GSD and this is related to a motilin-like effect of
ghrelin on the gallbladder motility. However, themedian of serum ghrelin values did not
show a difference between the patients and controls (660 vs. 682 ng/L) [26].

Leptin is associated with obesity: although it should reduce food intake and body
weight, in obese patientsthe serum leptin levels are higher than in the lean individuals and
do not manage reducing their food intake [27]. Insulin and leptin play an important role in
the development of prediabetes and NAFLD, which is a risk factor for GSD. There could be
the following pathogenic links: obesity promotes insulin resistance; high levels of insulin
increase leptin levels; leptin cannot lead to decreased insulin levels and decreased appetite
because of leptin resistance in the nervous system and the adipose tissue; and high levels
of leptin promote hepatic steatosis which in turn increases insulin resistance [27]. Positive
correlations between serum leptin and BMI, CCK, total cholesterol, and insulin were found
in the gallstone group [28].

Gut microbiota can regulate levels of these gut peptides and thus regulate intestinal
metabolism via the microbiota-gut-brain axis [20]. Serum ghrelin levels were negatively
correlated with Bifidobacterium, Lactobacillus and B. coccoides–Eubacterium rectale, and posi-
tively correlated with Bacteroides and Prevotella [29]. Leptin was negatively correlated with
Clostridium, Bacteroides and Prevotella, and positively correlated with Bifidobacterium and
Lactobacillus [29].The results of the studies on the relationship between GSD, obesity, and
incretin hormones remain controversial.

GSD and obesity have similar prevalence [10]. Most of the above risk factors are
common to GSD and obesity. Despite the increasing number of scientific publications on
the gut microbiota in obesity, there is a lack of studies that assess the gut microbiota in GSD.
Research on this topic is limited and mainly focused on the study of certain genera and
species of microorganisms, but not the Firmicutes/Bacteroidetes ratio. Many studies have
shown that, in humans, obesity is associated with an increased Firmicutes/Bacteroidetes ratio
in comparison with lean or “healthy obese” individuals [1,2,30–42]. This review presents
and summarizes the recent findings of studies on the gut microbiota in patients with GSD
regarding the Firmicutes/Bacteroidetes ratio, as a possible biomarker of obesity, given that
obesity is a key risk factor for GSD.
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The Gut Microbiome and Its Functions

Bacteria emerged 3.8 billion ago [43]. There are about 10 trillion human cells in the
human body and about 100 trillion cells outside and inside our bodies being of microbial
origin [44,45]. The gut microbiome is a dynamic assembly of microorganisms and the
resultant products of their collective genetic and metabolic materials, containing from 2
to 20 million microbial genes by the human microbiome’s predominantly in the gut [44].
The gut microbiome plays an array of biological functions ranging from controlling gut–
immune system axis, providing several key metabolites and maintaining an optimal
digestive system due to the presence of genes, which encode digestive enzymes that are not
present in human cells but are associated with the metabolism and fermentation of many
food compounds necessary for the host’s nutrition [46]. A greater richness and diversity of
bacterial species in the human intestine may be an indicator of health [45,47,48].

2. The Firmicutes/Bacteroidetes Ratio
2.1. Short Characteristics of the Firmicutes and the Bacteroidetes

As the dominant gut microbiota in healthy adult humans [4], intestinal bacteria include
members of both the Firmicutes (range of quantitative data–20.5% up to 80% [49–53]) and
the Bacteroidetes (from 13.85% up to 75.3% [20,49,51,52]). Major taxa of the Firmicutes to
be included of more than 200 genera [53,54]. Proteobacteria, Fusobacteria, Actinobacteria,
Cyanobacteria, and Verrucomicrobia phyla also are present as minor players [54].

Some Bacteroides spp. and Prevotella spp. have a variety of glycans and glycosidases
that can utilize polysaccharides [53,55]. Other important functions of Bacteroides spp. in-
clude deconjugation of bile acids [56]. The gut microbiota, especially Bacteroides intestinalis,
and to a certain extent Bacteroides fragilis and E. coli, also has the capacity to deconjugate
and dehydrate the primary bile acids and convert them into the secondary bile acids in
the human colon [57]. Bacteria belonging to the phylum Bacteroidetes have high functional
redundancy, whereas the phylum Firmicutes was comprised of a large number of more
functionally diverse core bacteria [53,54,58]. Commensal Clostridial clusters XIVa and IV
plays an important role in the host and gut homeostasis from the metabolic point of view
through the production of short-chain fatty acids, normalizes intestinal permeability, in-
volved the brain–gut axis regulation, in the immune system development, etc. [59]. Many
Firmicutes’ abilities are related to the host’s body weight: obesity-associated gut microbiota
is enriched in Clostridium leptum [54], Roseburia intestinalis, Eubacterium ventriosum,
Eubacterium hallii [60], Lactobacillus reuteri [42], Blautia hydrogenotorophica, Coprococcus catus,
Ruminococcus bromii, Ruminococcus obeum [50]. However, other Firmicutes are abundant
in non-obese individuals: Clostridium cellulosi, associated with the degradation of plant
material [60,61], Clostridium orbiscindens (currently known as Flavonifractor plautii), capable
of utilizing flavonoids [52], Clostridium bolteae, Blautia wexlerae [58], Clostridium difficile,
the Staphylococcus genus [40], Oscillospira guillermondii [60], Faecalibacterium (prausnitzii),
Lactobacillus plantarum, and paracasei [42]. Also, two Bacteroides species (B. faecichinchillae
and B. thetaiotaomicron) [58] and Akkermansia muciniphila, and Methanobrevibacter smithii [42]
were significantly more abundant in stool samples from non-obese compared with obese
subjects. Such differences in the “behaviour” of bacteria cannot be explained only by their
metabolic properties, because of the exact functions of bacteria are still unclear.

2.2. The Story of “Discovery” of the Firmicutes/Bacteroidetes Ratio

Increased efficiency of energy harvest, due to alterations in the gut microbiota has
been implicated in obesity in mice [31,32,62] and humans [38].Alterations affecting the
dominant intestinal phyla the Firmicutes and the Bacteroidetes were first described by Ley
et al. (2005) in obese animals [1]. In the analysis of the cecal microbiota (by the 16S rRNA
gene sequences) of genetically obese ob/ob mice, lean ob/+ and wild-type +/+ siblings,
ob/ob animals have a 50% reduction in the abundance of Bacteroidetes and a proportional
increase in Firmicutes compared with lean mice [1]. The authors also pointed out that
an increase ofthe Firmicutes/Bacteroidetes ratio may help promote adiposity in ob/ob mice.
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The Firmicutes/Bacteroidetes ratio is also under debate as a possible biomarker of obesity
and related dysfunctions [53,62–66]. A low Firmicutes/Bacteroidetes ratio was found to
be associated with lean phenotypes, younger age, cardiovascular health, and a balanced
immune system and is generally considered beneficial for health [67–69].

2.3. The Firmicutes/Bacteroidetes Ratio in Obesity: Pro

Ley et al. (2006) have shown that the microbiota in obese subjects shows an ele-
vated proportion of the Firmicutes and a reduced population of the Bacteroides. Conversely,
the relative proportion of the Bacteroidetes decreased in humans on a weight-loss pro-
gram [30]. 16S rRNA gene sequencing revealed a lower proportion of Bacteroidetes, more
Actinobacteria in obese versus lean individuals, but no significant difference in Firmicutes
in 31 monozygotic twin pairs and 23 dizygotic twin pairs [33]. Armougom et al. [34]
confirmed a reduction in the Bacteroidetes community in 20 obese patients compared with
20 normal-weight individuals (p < 0.01). Zuo et al. (2011) reported that obese people
had fewer cultivable Bacteroides than their normal-weight counterparts [37]. In the gut
in obese adolescents, the total microbiota was more abundant on the phylum Firmicutes
(94.6%) as compared with Bacteroidetes (3.2%) [39]. In the systematic review (PubMed:
2005–2017) adecrease in the Bacteroidetes phylum and Bacteroides/Prevotella groups was
related to high BMI and the Firmicutes phylum was positively correlated with weight gain
in children between 0 and 13 years of age [40]. In an adult Ukrainian population, the Firmi-
cutes/Bacteroidetes ratio was significantly associated with BMI (OR = 1.23, 95% CI 1.09–1.38)
and this association continued to be significant after adjusting for confounders such as age,
sex, smoking and physical activity (OR = 1.33, 95% CI 1.11–1.60) [41]. The recent systematic
review confirmed that individuals with obesity have a greater the Firmicutes/Bacteroidetes
ratio, more Firmicutes, Fusobacteria, Proteobacteria, Mollicutes, and less Bacteroidetes [42].

2.4. The Firmicutes/Bacteroidetes Ratio in Obesity: Contra

However, other human trials not only failed to confirm a high proportion of Firmicutes
in obese patients [63,70–78] and, but reported even the opposite: about higher amounts
of Bacteroidetes, and decreased amounts of Clostridium cluster XIVa in obese subjects as
compared with lean donors [71]. Proportions of the genus Bacteroides were greater in
overweight volunteers than lean and obese volunteers and the Firmicutes/Bacteroidetes ratio
changed in favour of the Bacteroidetes in overweight and obese subjects [72]. Duncan et al.
(2008) found that weight loss did not change the relative proportions of the Bacteroides spp,
or the percentage of the Firmicutes present, in the human gut [73]. In another study, no
significant differences in the Firmicutes/Bacteroidetes ratios were found between obese and
normal-weight adults [74] or obese and normal-weight children [75]. Two meta-analyses
have shown that the content of the Firmicutes and the Bacteroidetes and their ratio is not a
consistent feature distinguishing lean from obese human microbiota generally [76,77].

Many authors have concluded that there is no simple taxonomic signature of obesity in
the microbiota of the human gut and that significant technical and clinical differences exist
between published studies [63] and that the phylum level difference of the gut microbiota
between obese and lean individuals might not be universally true [78]. Likely explanations
for these controversies are discussed below.

3. Role of the Microbiota in the Pathogenesis of Gallstone Disease

The pathogenesis of cholesterol GSD is multifactor, it is determined by five primary
defects: genetic background and LITH genes, hepatic hypersecretion of biliary choles-
terol, rapid precipitation of solid cholesterol crystals in bile, gallbladder dysmotility, and
intestinal factors (with increased absorption of cholesterol, slow intestinal motility, and
dysbiosis) [10].

In recent years, attention has been focused on the potential impact of the gut micro-
biota on the pathogenesis of pigment and cholesterol gallstones. It is proved that intestinal
dysbiosis makes a significant contribution to the development of not only the GSD it-
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self [5,6,79–82], but also to the development of numerous disorders that are risk factors for
GSD, including obesity [31–42], type 2 diabetes [83], hypercholesterolemia [20,52], diet [84],
NAFLD [85–88], cardiovascular diseases [68,89], physical inactivity [29,90,91], etc.

Gut microbiota affects the pathogenesis of GSD through several mechanisms. Some
bacteria alter the composition of bile directly via β-glucuronidase, cholyl-glycyl hydrolase,
phospholipase A1, or urease activities, or by biofilmformationthereby promoting calcium
bilirubinate (pigment) stone generation [92,93]. Till now, it has not been clear whether
bacterial pathogens of the biliary tree contribute to the stone formation or alternatively
if the presence of gallstones promotes chronic colonization [15]. The activity of the gut
microbiota could also be linked to the development of GSD by altering the concentration
of serum lipids [94], and biliary lipids in bile and/or increasing the faecal excretion of bile
salts [95]. Gut microbiota can modulate bile acid metabolism through the activity of bile
salt hydrolases, which deconjugate bile acids, and the activity of 7α-dehydroxylase, which
converts primary bile acids (cholic acid and chenodeoxycholic acid) to secondary bile acids
(deoxycholic acid and lithocholic acid) [94].

Bile acids regulate metabolism via activation of specific nuclear receptors (e.g., farne-
soid X receptor, pregnane X receptor, vitamin D receptor, and cell surface G protein-coupled
receptors, such as the G protein-coupled bile acid receptor (TGR5 and Gpbar-1)) [96,97].
The effect of the farnesoid X receptor is antilithogenic:farnesoid X receptor activation
in the intestine by bile acids induces fibroblast growth factor 15 expression, which sup-
presses the expression of cholesterol 7α-dehydroxylase in the liver [98]. Gallstone patients
had significantly higher levels of 7α-dehydroxylating bacteria than individuals without
gallstones [99]. The increase of 7α-dehydroxylation activity of the intestinal microflora
promoted the deoxycholic acid excess in the bile acid pool [100], and the increase in the per-
centage of deoxycholic acid in bile and bile acid hydrophobicity leads to a decrease in the
cholesterol microcrystal nucleation time and the formation of cholesterol gallstones [101].

4. The Firmicutes/BacteroidetesRatio and GSD
4.1. Gut Microbiota
4.1.1. Gut Microbiota in Mice and Cholelithiasis

Many reports are underlining the association of the gut microbiota with the pathogen-
esis of cholesterol cholelithogenesis in mice [15,102,103] and humans [5,6,80–82,93,100,104–
119].

Alteration of indigenous gut microbiota by bacteria transferring has been shown to
make germ-free mice more susceptible to the formation of cholesterol gallstones [102].
In a study of mice without and with cholesterol gallstones (induced by a lithogenic diet)
using 16S rRNA gene sequencing, it was found that in the faeces of mice, the Firmi-
cutes/Bacteroidetes ratio and the Firmicutes content decreased (from 59.71% under chow diet
to 31.45% under lithogenic diet, p < 0.01), the richness and alpha diversity of the microbiota
also significantly reduced [103]. Cholelithogenic enterohepatic Helicobacter spp. (phylum
Proteobacteria) have been identified and their important role in the formation of cholesterol
gallstones in mice and perhaps in humans has been shown [15].

4.1.2. Gut Microbiota in Humans and Gallstones

In the gallstone group included 30 patients, the diversity of intestinal bacteria and
the abundances of certain phylogroups significantly decreased, especially Firmicutes, the
Firmicutes/Bacteroidetes ratio was also significantly decreased compared with the control
group included 30 healthy individuals [6]. 7α-dehydroxylating gut bacteria (the Clostridium
genus) were significantly increased, whereas cholesterol-lowering bacteria (the Eubacterium
genus) were significantly reduced. Clostridium was positively correlated with secondary
bile acids. It can be assumed that an increase in Clostridium and a decrease in Eubacterium
contribute to bile saturation with cholesterol in patients with gallstones [100]. In the
gallstone group, Ruminococcus gnavus could be used as a biomarker, while in the control
group–Prevotella 9 and Faecalibacterium [6].
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Keren et al. (2015) showed that intestinal microbial diversity, the abundances of the
genus Roseburia and the species Bacteroides uniformis were decreased, and those of the family
Ruminococcaceae and the genus Oscillospira were increased in patients with gallstones before
cholecystectomy compared with the controls [5]. After cholecystectomy in the patients with
gallstones, the abundance of the phylum Bacteroidetes, and also the family Bacteroidaceae and
the genus Bacteroides showed a significant increase. Gallstone patients had higher overall
concentrations of faecal bile acids [5]. Roseburia was significantly positively correlated with
faecal cholesterol, but not with bile acids; Oscillospira correlated negatively with primary
bile acids and faecal cholesterol concentration and positively–with the secondary bile
lithocholic acid in the faeces. Thus, the authors suggest that Oscillospira may predispose
individuals to cholesterol gallstones [5]. Cholecystectomy alters bile flow into the intes-
tine and bidirectional interactions between bile acids and intestinal microbiota, thereby
increasing bacterial degradation of bile acids into faecal secondary bile acids [104,105].
Deoxycholic acid can inhibit the growth of thececal microbiota in rats; moreover, members
of the Bacteroidetes phylum (Bacteroides vulgatus, Bacteroides sartorii) are more sensitive to sec-
ondary bile acids exposure than members of the Firmicutes phylum (Clostridium innocuum,
Blautia coccoides) [120]. Deoxycholic acid concentrations were negatively correlated with
the Bacteroidetes phylum in patients with GSD [5]. Increasing levels of the cholic acid cause
a dramatic shift toward the Firmicutes (from 54.1% before of administration of cholic acid
up to 95% after [120]), particularly Clostridium cluster XIVa and increasing production of
the harmful deoxycholic acid [104,121].

Wang W et al. (2018) identified ageing-associated faecal microbiota in a healthy
population, which was lost in cholecystectomy patients [81]. Absent intestinal bacteria,
such as Bacteroides, were also negatively related to secondary bile acids in cholecystectomy
patients. The abundances of Prevotella, Desulfovibrio, Barnesiella, Paludibacter, and Alistipes
all decreased, whereas those of Bifidobacterium, Anaerostipes, and Dorea all increased in the
cholecystectomy patients [81].

In the frame of a case-control study, Yoon W et al. (2019) showed that Blautia obeum
and Veillonella parvula, which have azoreductase activity, were more abundant in faecal
samples in the 27 patients of the cholecystectomy group compared to the control group [82].
The abundance of family Muribaculaceae belonging to the phylum Bacteroidetes was de-
creased and that of the family Lactobacillaceae was increased in the cholecystectomy group.
At the genus level, the abundance of Ruminococcus was greater in the cholecystectomy
group [82].The actual number of taxa observed in a faecal sample was significantly lower in
the cholecystectomy group. However, the difference in the diversity of the gut microbiota
between the cholecystectomy and control groups was subtle [82].

Two years after cholecystectomy, eight patients with the symptomatic post-chole-
cystectomy syndrome, eight patients with the asymptomatic post-cholecystectomy syn-
drome, and eight healthy individuals were examined [106]. It was shown that Firmicutes
and Bacteroidetes had similar abundance and contents among the three groups. The gut
microbiome of the symptomatic post-cholecystectomy syndrome patients was dominated
by Proteobacteria in faeces and contained little Firmicutes and Bacteroidetes [106].

Wu et al. (2013) studied the composition of bacterial communities of the gut, bile, and
gallstones from 29 cholesterol gallstone patients and the gut of 38 healthy controls [107] by
16S rRNA gene sequencing method. They found a significant increment of the gut bacterial
phylum Proteobacteria anddecrement of gut bacterial genera Faecalibacterium, Lachnospira,
and Roseburia. When compared with gut, a significantly decreased level of the bacterial
phylum Bacteroidetes in the biliary tract was found. The Firmicutes/Bacteroidetes ratio in
faeces in patients with GSD did not differ in comparison with the control group [107].

Ren X et al. (2020) examined stool samples from 104 subjects (equally post-cholecyst-
ectomy patients and healthy controls) which were collected for 16S rRNA gene sequenc-
ing to analyze the bacterial profile [80]. It was shown noteworthy compositional and
abundant alterations of bacterial microbiota in post-cholecystectomy patients, character-
ized as Bacteroides ovatus, Prevotella copri, and Fusobacterium varium remarkably increased;



J. Pers. Med. 2021, 11, 13 7 of 18

Faecalibacterium prausnitzii, Roseburia faecis, and Bifidobacterium adolescentis significantly
decreased. Machine learning-based analysis, that integrates gut microbiota and other an-
thropometric parameters, showed a pivotal role of Megamonas funiformis in discriminating
post-cholecystectomy patients from healthy controls. Additionally, the duration after chole-
cystectomy notably affected bacterial composition in post-cholecystectomy patients [80].

Eventually, if we summarize the results of most studies of the microbiota in patients
with GSD different authors found both a significant increment of gut bacterial phyla
Firmicutes (Lactobacillaceae family, genera Clostridium, Ruminococcus, Veillonella, Blautia,
Dorea, Anaerostipes, and Oscillospira), Actinobacteria (Bifidobacterium genus), Proteobacteria,
Bacteroidetes (genera Bacteroides, Prevotella, and Fusobacterium) (Figure 1) and significant
decrement of gut bacterial phyla Bacteroidetes (Muribaculaceae family, and genera Bacteroides,
Prevotella, Alistipes, Paludibacter, Barnesiella), Firmicutes (genera Faecalibacterium, Eubac-
terium, Lachnospira, and Roseburia), Actinobacteria (Bifidobacterium genus), and Proteobacteria
(Desulfovibrio genus) (Figure 2). In other words, in patients with GSD, an increase and
decrease in almost all major intestinal bacterial phyla were detected. In one study the
Firmicutes/Bacteroidetes ratio in faeces in patients with GSD was significantly decreased in
comparison with the controls [6], in two studies–did not differ [106,107]. In addition to
Firmicutes and Bacteroidetes as the main phyla, Proteobacteria and other phyla may contribute
to the gut dysbiosis in patients with GSD.
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Figure 1. Characteristics of the gut microbiome of patients with GSD. A significant increase of the phyla 

Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes is reflected. The number in square brackets indicates a 

Figure 1. Characteristics of the gut microbiome of patients with GSD. A significant increase of the phyla Firmicutes,
Actinobacteria, Proteobacteria, and Bacteroidetes is reflected. The number in square brackets indicates a reference in the list
of references.
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Figure 2. Characteristics of the gut microbiome of patients with GSD. A significant decrease of the phyla Firmicutes,
Actinobacteria, Proteobacteria, and Bacteroidetes is reflected. The number in square brackets indicates a reference in the list
of references.

Using metagenomic DNA sequencing, researchers have been able to categorize indi-
viduals as either high gene count (HGC) or low gene count (LGC) [44]. HGC individuals
are generally considered to have a greater repertoire of microbial metabolic functions, a
functionally more robust gut microbiome, and greater overall health, including a lower
prevalence of obesity and metabolic disorders [48]. Examples of bacterial taxa that have
been associated with human health and proper gastrointestinal function include Bacteroides,
Bifidobacterium, Clostridium clusters XIVa and IVa (butyrate producers), Eubacterium, Fae-
calibacterium, Lactobacillus, and Roseburia. Bacterial species that might protect against
weight gain and are enriched in HGC individuals include Anaerotruncus colihominis, Bu-
tyrovibrio crossotus, Akkermansia spp., and Faecalibacterium spp. [48]. The studies of the
gut microbiota in patients with GSD included in our review demonstrated a reduction
of bacterial taxa that have been associated with human health, i.e., genera Bacteroides,
Faecalibacterium, Roseburia, Eubacterium, an increase in Lactobacillaceae family, and oppositely
directed changes in Bifidobacterium.

4.1.3. Bile Microbiota in Humans and Gallstones

The presence of bacterial amplicons belonging to Firmicutes, Bacteroidetes, and Acti-
nobacteria, and Proteobacteria phyla in the human intact gallbladder bile was proved by 16S
rRNA gene sequencing [108,109]. Associations between alpha- and beta-diversity, a taxo-
nomic profile of bile microbiota (Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes
phyla, analyzed with 16S rRNA gene sequencing), and taurocholic and taurochenodeoxy-
cholic bile acid levels were evidenced in 37 Russian patients with GSD [110].

At the phylum level, Bacteroidetes was statistically more abundant in the bile of patients
with GSD (24.00%) compared to the control (13.49%) [109]. Members of the families
Bacteroidaceae, Prevotellaceae, Porphyromonadaceae, and Veillonellaceae were more frequently



J. Pers. Med. 2021, 11, 13 9 of 18

detected in patients with GSD. The genus Dialister and enterobacteria Escherichia-Shigella
also showed a significantly higher representation in the bile in the patients with GSD [109].
The Shannon diversity index was statistically higher in the bile of the control group than
that obtained in the patients with GSD [102].However, it was not taken into account that
bile samples from the gallbladder of individuals from a control group were obtained from
liver donors, and they were not only treated with antibiotics but also not fully examined to
exclude hepatobiliary or other important pathology [109].

The Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla dominated the
biliary microbiota in the persons, all of whom were diagnosed with GSD, at that biliary
tract microbiota of participants with GSD showed substantial person-to-person varia-
tion [79]. Metagenomic sequencing of bile from gallstone patients showed that oral cav-
ity/respiratory tract inhabitants were more prevalent than intestinal inhabitants [108].
At the same time, bile samples from gallstone patients had reduced microbial diversity
compared to healthy faecal samples [108]. Among patients with the new onset of com-
mon bile duct stones, five dominant phyla were identified: Proteobacteria (60%), Firmicutes
(27%), Bacteroidetes (4%), Actinobacteria (3%), and Unclassified_Bacteria (3%) in biliary mi-
crobiota [111]. At the genus level, the five genera with the highest relative abundances in
patients with the new onset of common bile duct stones were Escherichia/Shigella, Halomonas,
Klebsiella, Streptococcus, and Enterococcus [111].

In patients with cholangiolithiasis associated with sphincter of Oddi laxity, Proteobac-
teria and Firmicutes were the most widespread phylotypes, especially Enterobacteriaceae, in
the bile, which was collected intraoperatively [112]. In the bile of the cholecystectomized
gallstone patients Escherichia coli, Salmonella sp., and Enterococcusgallinarum were detected
by using next-generation sequencing technology [113]. Enterobacteriaceae are frequently iso-
lated from bile aspirates or gallbladder bile from GSD patients using cultural [114,115] and
culture-independent techniques [116,117]. The biliary microbiota (investigated by using
16S rRNA amplicon sequencing) had a reduced diversity comparatively with the duodenal
microbiota in gallstone patients [117]. Although the majority of identified bacteria were
greatly diminished in bile samples, three Enterobacteriaceae genera (Escherichia, Klebsiella,
and an Unclassified genus) and Pyramidobacter were abundant in bile [117].

In terms of bile microbial distribution, analyzed by the 16S rRNA encoding gene
(V3-V4), patients with recurrent common bile duct stone had significantly higher Proteobac-
teria, while Bacteroidetes and Actinobacteria are significantly lower compared with the control
group at the phylum level [117]. At the family level, Enterobacteriaceae was significantly
abundant in the bile samples of the recurrence stone group compared with the control
group. At the genus level, the recurrence stone group had significantly more Escherichia.
The diversity of bile microbiome in patients with recurrent common bile duct stone is lower
than that in the control non-cholelithiasis group [117].

During a cholecystectomy, mucosal DNA extraction and metagenomic sequencing
were performed to evaluate changes in the microbiota between chronic calculous cholecys-
titis and gallbladder cancer patients [118]. At the phylum level, Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria were found to be stable in both groups. The diversity of the
biliary microbiota was significantly lower in the calculous cholecystitis group, compared
with the gallbladder cancer group [118].

In four patients who underwent cholecystectomy for acute calculous cholecystitis
metagenome analysis of bile, faeces, and saliva was performed [119]. In all the examined
patients with acute calculous cholecystitis, Escherichia coli (Enterobacteriaceae family) was
found in large quantities in the bile, in two of them-also in the faeces, in the third patient,
Bifidobacterium prevailed in the faeces. This is not enough to conclude the relationship
between the intestinal microbiota and acute calculous cholecystitis, since if bile samples
were taken during surgery, then saliva and faeces were collected by patients during hospi-
talization (it is not clear before or after the cholecystectomy) [119].
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During endoscopic retrograde cholangiopancreatography, a total of 44 bile samples of
patients with GSD were collected. Bacterial infection in bile samples was detected in 54.5%
of patients with GSD. Escherichia coli showed a significant association with gallstones [122].

Thus, bile samples from patients with GSD had reduced microbial diversity in some
studies and increased microbial diversity in others compared to healthy faecal samples.
Nevertheless, most authors recognize that patients with GSD have reduced bacterial
diversity of intestinal and bile microbiota. The phyla Proteobacteria (especially family
Enterobacteriaceae) and Firmicutes (Enterococcus genus) were more often detected in the bile
of patients with GSD, and the phyla Bacteroidetes and Synergistes (Pyramidobacter genus)
were less frequently detected.

Some reports described live bacteria and bacterial DNA as long-term constituents in
different fat depots in obesity and diabetes mellitus type 2 [123,124]. In humans with the
metabolic syndrome, altered microbiome composition together with a defective intestinal
barrier has been suggested to facilitate translocation of microbes, thereby contributing to
low-grade inflammation. A recent study demonstrated a bacterial signature in mesenteric
adipose tissues without the obvious presence of blood: members of the Enterobacteriaceae
family compartmentalize in the extra-intestinal tissues of people with diabetes mellitus type
2 independently of obesity [123]. The authors suggest that members of the Enterobacteriaceae
family are key players in diet-induced dysmetabolism in the host. Unfortunately, the
intriguing topic of possible translocation of living bacteria (perhaps even members of the
Enterobacteriaceae family) from the gut to other body sites in patients with GSD remains
undiscovered.

So, when analyzing available studies of intestinal and bile microbiota in animals and
patients with GSD [5,6,15,79–82,92,93,100,102–119] there were no unidirectional changes
in the Firmicutes/Bacteroidetes ratio. This situation with opposite results is typical not only
for GSD. For comparison, we will briefly present the results of several studies reporting
differences in phylum levels in patients with non-alcoholic fatty liver disease (usually
associated with obesity): the phylum Bacteroidetes–increased [86], decreased [88,125], did
not differ [87,126], the phylum Firmicutes–decreased [86,87], increased [126], and the Firmi-
cutes/Bacteroidetes ratio decreased [88].

This variation in the relative abundance of the phylum of the gut corresponds to the
analysis of seven studies in Finucane et al. (2014): Bacteroidetes–from 0% to 90%, Firmicutes–
from 0 to 100% [63]. This also applies to GSD. For example, the highest abundance of
Firmicutes phylum in the human gastrointestinal tract in one GSD patient was 93.30% and
the lowest was 1.17% in another. A similar result was also seen in bile with a high of 55.10%
and low of 0.08% [107]. In another study, the range of relative abundance of Firmicutes
phylum was 0–92% in the bile of patients with GSD [79].

5. Some Reasons for the Lack of Unity in the Assessment of the
Firmicutes/Bacteroidetes Ratio

Gut microbiota is changing with human development and is influenced by many
confounding variables which could prevent the existence of a unique taxonomic signature
as a standard feature for obesity and associated comorbidities such as GSD [64,83,89].

1. Gender, age, differences in host genetics [4]. There are differences in the gut microbiota
between males and females, such as higher levels of Bacteroides–Prevotella group in
males [127] and a higher proportion of Firmicutes in females [128]. However, Bezek
et al. (2020) found the highest abundance of Bacteroidetes phylum in females [51]. The
Firmicutes/Bacteroidetes ratio evolves during different life stages. For infants (up to
10 months), adults (25–45 years), and elderly individuals (70–90 years), these ratios
were 0.4, 10.9, and 0.6, respectively [44].

2. Vaginal delivery or C-section, methods of milk feeding [129].
3. Changes in the gut microbiota under the influence of a variety of diets have been

widely studied [30–32,35,36,38,47,52,62,72,73,84,91,129–131]. It was noted that the
amount of stool energy in a proportion of ingested calories was positively correlated
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with the abundance of the phylum Bacteroidetes and negatively–with the abundance of
the phylum Firmicutes in the faeces [38]. As a rule, the “western diet” increases biliary
secretion of bile acids and reshapes the gut microbiota in obesity by increasing the
Firmicutes and decreasing the Bacteroidetes [35,62]. Several population-based studies
have shown that populations given increased amounts of polyunsaturated fats have a
significant risk of developing gallstones [9,12,132–134]. The MICOL study, however,
showed no such association [135]. Gutiérrez-Díaz et al. (2018) support a link between
diet, biliary microbiota, and GSD [84]. Comparing to health control in patients
with GSD, dairy product intake was negatively associated with the proportions of
Bacteroidaceae and Bacteroides, and several types of fibre, phenolics, and fatty acids
were linkedto the abundance of Bacteroidaceae, Chitinophagaceae, Propionibacteraceae,
Bacteroides, and Escherichia-Shigella [84]. However, the timing of these changes is
surprising. In response to dietary perturbations, the gut microbiota took from 24
h [130] to 3.5 days [36] to change detectably and reaches a new steady state. Repeated
dietary shifts demonstrated that most changes to the gut microbiota are reversible [36].
Also, Carmody et al. (2015) suggest, that the effects of dietary intake overshadow
any pre-existing differences between strains due to host genotype [36]. Add to
this the inter-individual variability in the processing of dietary compounds by the
human gastrointestinal tract [136] and the hope of finding patterns in the relationship
“microbiota–host–diet” becomes quite vague.

4. The presence of pathological conditions (diabetes mellitus [83], cardiovascular dis-
ease [89], inflammatory bowel disease [64], etc.). For example, the sphincter of Oddi
laxity is associated with cholangiolithiasis, probably due to enhanced reflux of intesti-
nal contents that change the microenvironment [112]. Compared with patientswith
cholangiolithiasis with normal sphincter of Oddi, patients with sphincter of Oddi
laxity possessed more varied microbiota [112].

5. Treatment (antibiotics [137], metformin [138], etc.). Metformin shifts gut microbiota
composition through the enrichment of Akkermansia muciniphila as well as several
SCFA-producing microbiotas (Butyrivibrio, Bifidobacterium bifidum, etc.) [138].

6. The influence of exercise training on the gut microbiome has also been examined [29,
91,131] and it has been shown that exercise alone increased the Firmicutes/Bacteroidetes
ratio, irrespective of diet [91].

7. Human microbiota differs according to the geographical location of the studies [113,
139–141]. It was found a positive correlation between Firmicutes and latitude and a
negative correlation between Bacteroidetes and latitude [139]. In the frame of study
of human gut microbiota community structures in urban and rural populations in
Russia, two clusters were obtained: the first was driven by the genus Prevotella, and
the second exhibited a high representation of Bifidobacterium and various genera of
the phylum Firmicutes. The urban and rural metagenomes were distributed equally
between the clusters: 53% of the first and 52% of the second cluster were urban [141].

8. Lifestyle. Sleep deprivation correlates with changes in the gut microbiome, with an
increase of the Firmicutes/Bacteroidetes ratio, higher abundances of the families Coriobac-
teriaceae and Erysipelotrichaceae, and lower abundance of Tenericutes [51,142]. Stress,
occupation, temporal dynamics and stability of the microbiome: diurnal oscillations
in the relative abundance of almost 10% of all bacterial taxawere detected [143].

9. The extreme variability of the Firmicutes/Bacteroidetes ratio can be attributed to the
different experimental designs (insufficient sample size [144]), microbiota fingerprint-
ing, and genome analyses (choice of the primers the 16S rRNA target region, DNA
extraction technique [145], and sequencing platform) [50,146]. Besides, members of
the Bacteroidetes and Actinobacteria were significantly more stable components of the
microbiota than the population average, while the Firmicutes and Proteobacteria were
significantly less stable [147]. The plasticity vs. stability dichotomy of the human mi-
crobiome was confirmed in a study by David et al. (2014): when analyzing microbiota
samples over several months, only 5% of the gut species were defined as belonging to
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a stable temporal core microbiome. Yet, each person still maintained a personalized
microbiome [140].

10. There are also hard-to-determine factors, such as the Earth’s geomagnetic field,
weather, etc.

6. Conclusions

Meta-analysis has shown that the microbial changes associated with obesity may be
minor shifts in the community that escape detection with significance tests [77]. It may
be the case that the microbiome’s effect on obesity is not mediated through its taxonomic
composition but rather its function, since closely related taxa can have widely varying
functions and distantly related taxa can have similar functions [63]. It is proved that variable
combinations of species from different phyla could ‘presumptively’ fulfil overlapping
and/or complementary functional roles required by the host, a scenario where minor
bacterial taxa seem to be significant active contributors [39]. For example, the cocolonization
of germ-free mice with B. Thetaiotaomicron and E. rectale constitutes a mutualism, in which
both members show a clear benefit [148] and the efficiency of fermentation of dietary
polysaccharides to short-chain fatty acids by B. thetaiotaomicron increases in the presence of
M. Smithii [149].

Based on the analysis of the great number of contradictory results reported in the
literature, it is currently difficult to associate specific microbial signatures or the Firmi-
cutes/Bacteroidetes ratio with determining health status and more specifically to consider
it as a hallmark of GSD and/or obesity. However, most authors believe that both obe-
sity [33,34,40,48,64,130] and GSD [5,6,81,103,109,111,117–120] are associated with reduced
microbial diversity.Therefore, it is important to look at the overall composition of the gut
microbial population structure as an indicator of obesity and obesity-associated pathologies,
such as GSD, rather than simply the Firmicutes/Bacteroidetes ratio [150]. However, in my
opinion, it is possible to modify this ratio, e.g., to introduce a coefficient that characterizes
BMI, to calculate the ratio not of the Firmicutes phylum, but only of the Clostridia class, and
so on.

Further studies should focus on the possibility of modulating the intestinal microbiota
to find out whether variations in the microbiota may be a target for lowering the risks and
prevalence rates of GSD. Future studies to identify specific bacterial species or populations
associated with the obesity or GSD phenotype will help optimize disease therapies through
microbiome-informed patient stratification, through personalized treatment decisions. A
better understanding of bacterial communities in both the gut and biliary tract of gallstone
patients is crucial in developing strategies to promote personalized microbiome-based GSD
prediction and treatment responsiveness.
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