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ABSTRACT

Motivation: Identification of disease-related genes using high-
throughput microarray data is more difficult for complex diseases
as compared with monogenic ones. We hypothesized that an
endophenotype derived from transcriptional data is associated with
a set of genes corresponding to a pathway cluster. We assumed that
a complex disease is associated with multiple endophenotypes and
can be induced by their up/downregulated gene expression patterns.
Thus, a neural network model was adopted to simulate the gene–
endophenotype–disease relationship in which endophenotypes were
represented by hidden nodes.
Results: We successfully constructed a three-endophenotype
model for Taiwanese hypertensive males with high identification
accuracy. Of the three endophenotypes, one is strongly protective,
another is weakly protective and the third is highly correlated
with developing young-onset male hypertension. Sixteen of the
involved 101 genes were highly and consistently influential to the
endophenotypes. Identification of SLC4A5, SLC5A10 and LDOC1
indicated that sodium/bicarbonate transport, sodium/glucose
transport and cell-proliferation regulation may play important
upstream roles and identification of BNIP1, APOBEC3F and
LDOC1 suggested that apoptosis, innate immune response and
cell-proliferation regulation may play important downstream roles in
hypertension. The involved genes not only provide insights into the
mechanism of hypertension but should also be considered in future
gene mapping endeavors.
Availability: Microarray data and test program are available at
http://ms.iis.sinica.edu.tw/microarray/index.htm
Contact: pan@ibms.sinica.edu.tw or hsu@iis.sinica.edu.tw
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
To effectively map disease genes of complex diseases is one of
the ultimate goals of genomic research. However, etiology of
complex diseases involves multiple pathways and their dynamic
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interactions with environmental factors (Sing et al., 2003;
Zerba et al., 1996). Gottesman and Gould (2003) advocated
reducing genetic heterogeneity and introduced the concept of
endophenotypes with characteristics that are closer to disease
genes than the disease itself. Pan et al. (2006) suggested taking
advantage of the vast amount of transcriptomic and proteomic data
from patients and, via data mining, generating endophenotypes
that conceptually resemble ‘pathway clusters’ which can then be
utilized as binary phenotypes or quantitative trait loci (QTLs)
for gene mapping. It has been demonstrated repeatedly that
microarray data from gene expression can be reduced to the gene
signature of specific cancer types and used for diagnosis/prognosis
(Macgregor, 2003; Perez-Diez et al., 2007; Quackenbush, 2006).
Little effort has been made to apply genome-wide expression
data to reveal a complex disease’s etiology or to facilitate gene
mapping.

Data-mining technology has been widely used in the analysis
of microarray data (Quackenbush, 2002; Valafar, 2002; Verducci
et al., 2006). To date, most studies have concentrated on identifying
differentially expressed genes between case and control subjects,
clustering the identified genes using certain correlation measures
and then linking the gene clusters to known functional pathways.
However, this scheme, which relies heavily on correlation measures
between genes, is more suitable for mapping rare diseases than
common complex diseases, which often involve multiple common
variants (Collins et al., 1997) and complex mechanisms (Gu et al.,
2002). In this article, we assume that multiple endophenotypes
(pathway clusters) for a complex disease exist and that such
a disease can be induced by various up/downregulated patterns
of these endophenotypes. To simulate the gene–endophenotype–
disease relationship that fulfills the above assumptions, we propose
using a one-hidden-layer, feed-forward neural network model with
endophenotypes represented by hidden nodes.

We describe below the procedure to construct the neural network
model used to obtain the gene–endophenotype–disease relationship.
We used microarray data obtained from a case–control study
in Taiwan to construct a gene-endophenotype-disease model for
male young-onset hypertension and tested the effectiveness and
consistency of the constructed model and endophenotypes.

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://ms.iis.sinica.edu.tw/microarray/index.htm
http://creativecommons.org/licenses/


[18:00 30/3/2009 Bioinformatics-btp106.tex] Page: 982 981–988

K.-S.Lynn et al.

2 METHODS

2.1 A neural network-based
gene-endophenotype-disease model

Based on current research, we made the following two assumptions regarding
the etiology of young-onset hypertension.

(1) There exist multiple endophenotypes, each of which represents a
pathway or a cluster of pathways (Pan et al., 2006), comprised of
a set of genes. In addition, each endophenotype can be in either an
up- or a downregulated mode predicted from the expression profiles
of the associated genes.

(2) The development of hypertension requires specific up/downregulated
patterns of endophenotypes, and there exist distinct up/downregulated
patterns of endophenotypes for hypertensive cases and normotensive
controls.

We constructed a hypothetical gene-endophenotype-disease model that
involves n genes and m endophenotypes. The model can be represented
by a one-hidden-layer neural network with n input nodes and m hidden
nodes as follows: (i) the n input nodes correspond to n potential genes for
hypertension; (ii) the m hidden nodes correspond to m endophenotypes; (iii)
the connection weight, w1

i,j , between input node i and hidden node j represents
the influence of gene i on endophenotype j (1 ≤ i ≤ n, 1 ≤ j ≤ m, a zero weight
denotes that the gene is not connected to, or has virtually no effect on, the
endophenotype); (iv) the connection weight, w2

j , between hidden node j and
the output node indicates the influence of endophenotype j on the disease;
(v) all of the hidden nodes and the output node use sigmoid functions to
determine the status (active/inactive) of the nodes where θ1L

j is a threshold
value for hidden node j and θ2 is a threshold value for the output node. Next,
we developed a training algorithm to determine the network parameters,
including the number of hidden nodes and all the connection weights.

2.2 Determination of model’s parameters
Conventional network training algorithms, which focus on minimizing the
training error, require a data size that is usually much larger than modern
microarray studies can provide. However, training with insufficient data
can lead to poor generalization of the resultant network (Marinov and
Weeks, 2001). To generalize solutions for our gene-endophenotype-disease
model, we imposed the following five objectives for the network training: (i)
maximize the classification accuracy (E); (ii) maximize the proportion (Puniq)
of unique genes (genes that are not involved in multiple endophenotypes)
in the endophenotypes; (iii) maximize the absolute correlations (Rint)
among gene expression levels in an endophenotype; (iv) maximize the
correlation (RBP) between average model outputs and average blood pressure
measurements of patient subgroups determined by the patterns of binarized
hidden node output; and (v) maximize the proportion of the unused genes
(Punused). For the first objective, the proportion of data that are correctly
classified as hypertensive or as normotensive is used to represent the
classification accuracy. The second objective is designed to involve a gene in
as few endophenotypes as possible by setting some of the connection weights,
w1L

i,j , to zero (<10−3 in our model). The third objective aims to construct
endophenotypes by assembling genes with similar (both highly correlated
and highly anti-correlated) expression profiles across patients. The fourth
objective tends to link the model outputs with blood pressure measurements,
and the fifth objective is employed to remove redundant or irrelevant genes.

Let the network parameters (a combination of w1L
i,j , θ1L

j , w2L
j and θ2) be

denoted by a vector w, and m represents the number of hidden nodes in
the network (and the number of endophenotypes in the proposed model).
We propose to solve the following multiple objective (MO) problems to

construct our neural network model:

max
w,m

E

max
w,m

Puniq

max
w,m

Rint

max
w,m

RBP

max
w,m

Punused

, (1)

subject to
m ∈ Z+ (positive integers).

This is a mixed-integer, non-linear, MO problem. The task of
simultaneously determining the optimal values of w and m is NP-hard. We
propose to solve this MO problem with the following procedure:
Step 1: Set m = minit ;
Step 2: Repeat steps 2.1–2.2 until m = mfinal;

Step 2.1: Solve the unconstrained MO problem (1);
Step 2.2: Record the computed objective values and the corresponding w,
and then set m = m + 1.

Step 3: Set the minimal network complexity mopt to m′, where the average
of the sum of the recorded objective values reaches the maximum.
Step 4: Among those w’s that satisfy (1) as m = mopt , choose the one that
meets the prespecified requirement for model construction.

We note that, in an MO problem, a point that simultaneously reaches the
global optimal solutions of all the objective functions is usually non-exist.
Instead, there are infinite so-called ‘global non-inferior solutions’ that are of
interest in an MO problem (Coello, 1999; Fonseca and Fleming, 1995). We
employed the Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and
Thiele, 1999) in our study because of its effectiveness in finding multiple near
global non-inferior solutions (see Appendix A in Supplementary Material for
details). The SPEA statistical search method is less efficient in convergence
speed compared with gradient-based search methods. To overcome such a
drawback, we initially employed SPEA to reach near-global non-inferior
solutions, chose the suitable ones with high E, Rint and RBP, and then used a
greedy search method to obtain global non-inferior solutions. In this study,
the greedy search was performed by solving a series of constrained, single-
objective, optimization problems. That is, the five objectives were solved one
at a time, leaving the other four constrained by their most updated values.

We also adopted a 5-fold cross-validation technique to improve the
generalization of computed network parameters and to test the consistency
of the constructed endophenotypes. In each of the five validation iterations,
we first trained the network by solving (1) using SPEA for 300 generations to
obtain near-global non-inferior solutions. Then, the solution with the highest
sum of E, Rint and RBP was used as the starting point and a greedy search
was employed to obtain a global non-inferior solution. During the training
process, early stopping was used to avoid overtraining (Amari et al., 1996).
The final network parameters were selected from the resultant five solutions
that had the best average performance on the five datasets.

2.3 Identification of significant hypertension genes and
mechanisms

To probe the finer structure and to identify key elements in each of
the computed endophenotypes, we constructed a tree of gene clusters
for each endophenotype based on correlations between gene profiles.
First, the correlations between all pairs of genes in an endophenotype
were computed. And then the average linkage method, Unweighted Pair
Group Method with Arithmetic mean (UPGMA), was adopted for the tree
construction. In each endophenotype, the hierarchical structure of gene
clusters determined successively in their mergence order may reveal certain
sequential relationships, e.g. from upstream to downstream. To relate a gene
cluster to its corresponding endophenotype, we first computed the weighted
sum of genes in a cluster for connection weights, and then correlated it with
the endophenotype output. Clusters with a high correlation coefficient were
considered influential to their corresponding endophenotype.
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Significance of a gene in an endophenotype was evaluated by two
indices: (i) the connection weight between a gene and its corresponding
endophenotype and (ii) the sum of the correlations between a gene and
all other genes in the endophenotype. The first index characterizes the
influence of a gene on its corresponding endophenotype and thus genes
with a high connection weight may be somewhat downstream in the disease
pathogenesis. On the other hand, the second index indicates the degree of
association with other genes in the endophenotype, therefore, genes with a
high correlation sum may play a significant role upstream in the pathway
of disease pathogenesis. In selecting potential hypertension genes in each
endophenotype, we targeted those genes that both had the top 15 index
values for either one of the two indices and also were within influential
gene clusters.

2.4 Data collection and preprocessing
The study was approved by the Institution Review Board of Academia
Sinica and all participants provided written informed consent. Subjects
were recruited from the clients of MJ Life Enterprise Co. Ltd. (Taiwan),
a healthcare facility, from September 8 to December 31, 2004. The inclusion
criteria were: (i) 20–50 years of age; (ii) BMI < 35; (iii) fasting for at
least 8 h; (iv) fasting blood sugar < 126 mg/dl; (v) not taking hypertension
medication; (vi) no history of cancer or other major illnesses of the liver,
kidneys, heart or lungs; and (vii) no acute hypertension-related symptoms
in the previous 2 weeks. Blood pressure was measured three times for each
participant according to the established protocol (Pan et al., 2001) and the
average of the last two was used for hypertension diagnosis.Aparticipant was
classified as a hypertension case if the systolic pressure was >140 mmHg,
or the diastolic pressure was >90 mmHg; otherwise, the participant was
classified as a normotensive control. Secondary hypertension patients were
excluded. A total of 77 newly diagnosed non-medicated young-onset male
hypertensive cases (age 37.6 ± 7.2) and 82 male normotensive controls (age
36.9 ± 6.6) were included in this study.

Unlike in the field of cancer genetics, it is difficult to acquire affected tissue
from hypertensive patients. Fortunately, using blood instead of affected tissue
to obtain gene expression profiles has been proposed as a possible alternative
in several proof-of-concept studies (Bull et al., 2004; Chon et al., 2004;
Matsunaga et al., 2002). In this study, fasting blood (10 ml) was obtained
from each participant, then stabilized and frozen immediately at –70˚C. Then,
total RNA was extracted from the whole blood. Finally, four replicates of
microarray data were generated for each participant, using Human OneArray
(Phalanx Biotech Group, Taiwan), a one-channel array. Each microarray chip
contained 39 200 polynucleotide data, of which 22 184 were mapped to the
latest draft of the human genome.

Micoarray arrays data were subjected to quality control using parameters:
percentage of present calls, coefficient of variations (CV) and Pearson
correlation (R), and array quality filter (see Appendix B in Supplementary
Material for details). For each subject, the qualified (392 out of 636) replicates
were merged using a weighted (1/SD) average. A logarithm and Z-score
global normalization were then applied to all the averaged values. A total of
103 out of 22 184 genes that were differentially expressed (P < 0.01) between
hypertensive and normotensive groups were used in the model construction.
We divided our dataset into a training set and a test set: the former containing
61 hypertensive cases (age 38.0 ± 7.3) and 61 age-matched normotensive
controls (age 37.1 ± 6.9), whereas the latter comprised of the remaining
16 hypertensive cases (age 36.4 ± 6.8) and 21 normotensive controls (age
36.4 ± 5.9). The training set was further divided into five subsets (of sizes
12, 12, 12, 12 and 13) for model construction and selection via 5-fold cross-
validation. According to the sample size table suggested by Tsai et al.(2005),
our training dataset (sample size 61 and gene number 22184) was more than
capable of achieving an accuracy of 0.99 or a sensitivity of 0.95 at the family-
wise power of 90%, at the expected number of false positive of 1, and at
mean difference (standardized effect size) of 2. In addition, our technical
replications are likely to further improve the above figures.

Table 1. Performances of the five neural network models constructed via
the 5-fold cross-validation

E Puniq Rint RBP Punused

Model 1

Training sets 0.959 ± 0.012 0.612 0.461 ± 0.005 0.626 ± 0.158 0

Validation sets 0.960 ± 0.047 0.612 0.708 ± 0.013 0.289 ± 0.139 0

Test set 0.865 0.612 0.654 0.775 0

Model 2

Training sets 0.959 ± 0.010 0.709 0.417 ± 0.021 0.564 ± 0.084 0

Validation sets 0.960 ± 0.040 0.709 0.664 ± 0.021 0.207 ± 0.250 0

Test set 0.811 0.709 0.609 0.711 0

Model 3a

Training sets 0.967 ± 0.009 0.772 0.452 ± 0.006 0.815 ± 0.073 0.019

Validation sets 0.967 ± 0.035 0.772 0.689 ± 0.028 0.412 ± 0.292 0.019

Test set 0.946 0.772 0.648 0.895 0.019

Model 4

Training sets 0.951 ± 0.014 0.738 0.451 ± 0.011 0.741 ± 0.058 0

Validation sets 0.950 ± 0.054 0.738 0.709 ± 0.012 0.466 ± 0.490 0

Test set 0.811 0.738 0.668 0.725 0

Model 5

Training sets 0.976 ± 0.009 0.738 0.432 ± 0.007 0.825 ± 0.109 0

Validation sets 0.976 ± 0.035 0.738 0.696 ± 0.014 0.479 ± 0.292 0

Test set 0.865 0.738 0.654 0.781 0

aModel 3 is adopted as the final model which is specified by values in bold face.

3 RESULTS

3.1 Model’s architecture and performance
Following the construction process described in Section 2.2, we
first set minit = 2, and set mfinal = 8 to ensure that the computed
endophenotypes contained a sufficient number of genes. During each
iteration, the MO problem solver, SPEA (3000, 500, 0.9, 0.9, 0.9,
300) (see Appendix A in Supplementary Material for details), was
employed to solve the associated MO problem. After computation of
nearly all the near-global non-inferior solutions, we observed that
the maximal mean value of the objective sums occurred at m = 3.
In addition, the standard deviation of the objective sum was also
small when m = 3 suggesting that the model was rather stable at this
value. Therefore, we adopted a three-endophenotype model for the
remainder of the model construction process.

We then evaluated the performances of the five neural network
models constructed via the 5-fold validation datasets. Table 1
provides simple performance statistics of the five models. We
selected the third model (constructed via the third dataset) because
it had the best average performance (E = 0.967, Puniq = 0.772,
Rint = 0.499, RBP = 0.734 and Punused = 0.019, with training and
validation datasets combined) and minimum performance variations
in most of the objectives. Accordingly, the constructed model was
capable of achieving an accuracy of 96.72% (i.e. 118 out of 122
subjects) in distinguishing hypertensive cases from normotensive
controls in the dataset. The three constructed endophenotypes
contained 62, 33 and 38 genes. Among these genes, 78 (41, 14 and
28 accordingly in the three endophenotypes) were unique (contained
in only one endophenotype) and 23 were shared (contained in more
than one endophenotypes) resulting in 101 genes that were actually
used in the model. As a result, the proportion of unique genes,
Puniq, was 0.772 (78/101) and the proportion of unused genes,
Punused, was 0.019 (2/103). Furthermore, the minimal averaged gene
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correlation, Rint , of the three endophenotypes was 0.499, while the
correlation between the average network outputs and the average
blood pressure measurements in each subgroup,RBP, was 0.734.
The three endophenotypes are illustrated in Figure 1 and detailed
information about the selected genes is listed in Appendix C in
Supplementary Material.

Similar performances were achieved on the test data (E = 0.946,
Puniq = 0.772, Rint = 0.648, RBP = 0.895 and Punused = 0.019). The
test accuracy of 94.59% (35 out of 37) may seem high for a machine
learning algorithm. However, the test accuracies of the other four
models were 86.49% (32 out of 37), 81.08% (30 out of 37), 81.08%
and 86.49%, respectively, making the average test accuracy of all
five models at 85.95%. The high accuracy of 94.59%, although there
are only five cases differing from the lowest accuracy of 81.08%,
may be due to high correlation between the test dataset and the third
training dataset.

3.2 Characteristics and effectiveness of the
constructed endophenotypes

To visualize different endophenotypic patterns in the hypertensive
cases and in the normotensive controls, using a threshold of
0.5, we binarized the values of the endophenotypes to either 1
(Fig. 2g and h; red color indicates upregulation) or 0 (Fig. 2g
and h; blue color indicates downregulation). For example, the
pattern {Blue, Blue, Blue} of the first patient group (first column,
Fig. 2g) was interpreted as genes having little rather than no effect
for the three endophenotypes on hypertension. For comparison
purposes, the original endophenotype values were also shown in
Figure 2i and j. Similar patterns were observed on the test dataset
(Figure in Appendix D in Supplementary Material). We observed
four phenomena from the two figures.

Observation 1—unique hypertensive patterns: two major and
unique (not seen in normotensive controls) patterns {Blue, Blue,
Red} (second column, Fig. 2g) and {Blue, Red, Red} (fourth
column, Fig. 2g) were observed in the male hypertensive patients.
In combining the training and test results, 28 cases were
associated with the former pattern and 29 cases with the latter,
which comprised a total of 74.03% (57/77) of the hypertensive
population.

Observation 2—unique normotensive patterns: two major and
unique (not seen in hypertensive cases) patterns {Red, Blue,
Blue} (second column, Fig. 2h) and {Red, Red, Blue} (fourth
column, Fig. 2h) were observed in the male normotensive subjects.
With the training and test results combined, 21 controls were
associated with the former pattern and 30 controls with the latter,
which included a total of 62.20% (51/82) of the normotensive
population.

Observation 3—overlapping patterns: five patterns {Blue, Blue,
Blue}, {Blue, Red, Blue}, {Red, Blue, Red}, {Red, Red, Red}
and {Blue, Red, Red} were observed in both the case and
control groups. Subjects associated with these patterns seemed to
have borderline blood pressure measurements (systolic/diastolic
blood pressure = 140/90 mmHg) than those with the unique
patterns.

Observation 4—protective/risk endophenotypes for hypertension:
endophenotype 3 was upregulated in most of the hypertensive
cases (65/77) and downregulated in most of the normotensive
controls (61/82) (Fig. 2g and h). This finding suggests that

endophenotype 3 has a strong effect on raising blood pressure.
In contrast, a reverse pattern in endophenotype 1 suggests
its strong effect on reducing blood pressure. The effect of
endophenotype 2 is rather ambiguous. It was upregulated in more
than half of the controls (47/82) and in less than half of the
hypertensive cases (34/77), suggesting that endophenotype 2 is
weakly associated with reducing blood pressure. Similar conclusions
can be drawn using the magnitude and sign of the connection weights
(2.1797, −1.5534 and −2.0513 for endophenotypes 1, 2 and 3,
respectively) between the endophenotypes and the decision nodes
of the model.

In comparison with individual genes, the constructed
endophenotypes also improved the efficacy of distinguishing
hypertensive cases from normotensive controls. For a single
gene, MIST was the most differentially expressed gene between
cases and controls in our dataset (unadjusted P = 2.11 × 10−5).
However, the three endophenotypes were differentially expressed
[P = (5.78 × 10−27, 0.0384 and 3.87 × 10−13), respectively]
between cases and controls.

3.3 Gene cluster structure and major genes
Gene clusters that were determined successively in their mergence
order are presented by colored blocks in the first column of
Figure 1. Clusters with a high correlation coefficient between cluster
outputs and the outputs of their corresponding endophenotypes
were considered influential to their corresponding endophenotype
(Fig. 1, second column, clusters containing genes highlighted in
purple).

We evaluated the significance of each gene in an endophenotype
using the two indices described in Section 2.3 (Fig. 2, bar height
in the sixth column represents index 1 and that in the third column
shows index 2). Among the 15 genes with the highest index 1 values
in each endophenotype, many were present within the influential
gene clusters, including: the 48th (FLJ31393), 50th (BNIP1), 52nd
(SLC4A5) and 57th (LOC283116) genes in endophenotype 1, the
1st (APOBEC3F), 5th (FLJ12221), 9th (SLC5A10), 11th, 12th, 18th
and 19th genes in endophenotype 2, and the 6th, 9th (LDOC1),
20th (ATP1A4), 21st (STAT2), 22nd, 31st, 34th and 35th genes
in endophenotype 3. Among these genes, SLC4A5 and STAT2
were previously identified as candidate genes for hypertension
(Hunt et al., 2006; Pan et al., 1997); ATP1A4 was correlated with
hypertension in an animal study (Tian et al., 2001). Furthermore,
according to the Gene Ontology Annotation (GOA) database
(Camon et al., 2004), SLC5A10, BNIP1 and LDOC1 are related to
sodium ion transport, induction of apoptosis and negative regulation
of cell-proliferation, respectively.

With regards to the second index, the top 15 genes in each
endophenotype included within the most influential clusters were
the 52nd (SLC4A5) in endophenotype 1, the 1st, 2nd (APOBEC3F),
4th (SEC61A2), 6th (C6orf206), 7th, 8th (CHST8), 9th (SLC5A10),
11–13th, 16th (SDOS), 17th and 19th genes in endophenotype
2, and the 1st, 2nd, 3rd (SLC5A10), 4th, 5th (ECM1), 6th,
7th (LOC338864), 8th (MUC1), 9th (LDOC1), 10th, 15th and
19th genes in endophenotype 3. Among these genes, SEC61A2
is known to interact with ApoB, the main apolipoprotein of
chylomicrons and low-density lipoprotein (LDL) (Chen et al., 1998)
and according to GOA, CHST8 is associated with central nervous
system development.
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Fig. 1. The three constructed endophenotypes indicated in red, green and blue. From left to right the figure shows: (1) cluster tree of genes in each
endophenotype (the dark and light shades are used to distinguish subclusters), (2) correlation coefficient between the gene cluster and its corresponding
endophenotype, (3) normalized correlation (0–1) of the gene with others in the endophenotype, (4) P-value of the endophenotype to hypertension, (5) P-value
(0–0.01) of a gene to hypertension, (6) absolute weight (0–0.7) of a gene to its corresponding endophenotype, (7) sequence number of the gene in the
endophenotype, (8) gene symbol (highly consistent and influential genes are highlighted in purple, while genes with hypertension-related functions are
highlighted in yellow), (9) cytogenetic information, (10) Unigene ID from Unigene build #163 and (11) major functions of selected genes.
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Fig. 2. Average blood pressure values [diastolic blood pressure (DBP),
systolic blood pressure (SBP)] and average network outputs across various
endophenotypic patterns using training data: a blue circle or cross indicates
a data point for an individual; error bars indicate the means and standard
errors (SEs) of subject subgroups. (a and b) Individual DBP, their mean
values and SEs. (c and d) Individual SBP, their mean values and SEs. (e
and f) The network outputs, their mean values and SEs. (g and h) Binarized
endophenotype values (using a threshold of 0.5) showing endophenotypic
patterns. (i and j) Original endophenotype values represented in a gradation
of red and blue colors (refer to the color bar at the right-hand side for actual
magnitude); the vertical blocks between the black dashed lines denote subject
subgroups defined by different endophenotype patterns (refer to g and h);
horizontal blocks denote endophenotypes.

4 DISCUSSION

4.1 Generalization of the constructed model
An artificial neural network is a powerful classification tool
capable of generating complex boundaries between different classes
of data. However, with limited and noisy data, some training
algorithms may construct a network that picks up noise in the
data and thus loses its generalization capability. The 85.95%
(average) accuracy evaluated on the test dataset suggested that
our procedure is capable of constructing a generalized neural
network model to simulate the gene–endophenotype–hypertension
relationship. The overall 26 misclassifications by the five models
in the test dataset were due to 11 normotensive controls and 2
hypertensive cases. Most of the misclassified subjects had borderline
blood pressure (SBP/DBP = 120/80 mmHg). Of the 11 misclassified
controls, 10 were prehypertension (SBP> 120 or DBP> 80) and 1
was hypotension (SBP/DBP = 101/56.5). Of the 10 prehypertensive
subjects, 7 were high-normal (SBP> 130 or DBP> 85 based on
JNC VI). On the other hand, both misclassified hypertensive cases
(SBP/DBP = 137.5/93 and 143.5/77.5) were in stage-1 hypertension

(SBP = 140–159 or DBP = 90–99 based on JNC VI) with relatively
lower blood pressure values.

Recall that our model and endophenotypes were computed via
the third dataset prepared for 5-fold validation. We evaluated
the consistency of the endophenotypes and that of the identified
significant genes by comparing them with those computed via the
other four datasets. For the consistency of the endophenotypes,
we found that 48 (out of 62), 23 (out of 33) and 29 (out of
38) genes in the three endophenotypes were also appeared in
the corresponding endophenotype computed via at least two other
datasets (reproducibility = 75.19%). For the consistency of the
significant genes identified by index 1, we found that 4, 4 and 4 of the
top 15 genes in the three endophenotypes were also among the top
15 genes of the corresponding endophenotype computed via at least
two other datasets. On the other hand, when using index 2, there were
13, 4 and 10 of the top 15 genes in the three endophenotypes that also
appeared in the top 15 genes of the corresponding endophenotype
computed via at least two other datasets. The significant genes
selected by index 1 were less consistent than those by index 2,
most likely because index 1 was computed using a single connection
weight, which is very sensitive to the quality of data.

Four of the 12 consistent significant genes identified by index 1
were among the aforementioned influential gene clusters, including
BNIP1 in endophenotype 1, APOBEC3F in endophenotype 2, the
34th gene and LDOC1 in endophenotype 3. On the other hand, 12 of
the 27 consistent significant genes identified by index 2 were among
the influential gene clusters, including SLC4A5 in endophenotype
1; SLC5A10, SDOS, the 13th and 17th genes in endophenotype 2;
and SLC5A10, ECM1, LOC338864, LDOC1, the 2nd, 4th and 6th
genes in endophenotype 3.

4.2 Potential mechanisms in the endophenotypes
We proposed that genes with high correlations to other genes in an
endophenotype may be closer to the genetic origin of hypertension.
In our model, SLC4A5, SLC5A10 and LDOC1 belong to such a
type suggesting that sodium/bicarbonate transport, sodium/glucose
transport and cell-proliferation regulation may play important
upstream roles in pathogenesis of hypertension. On the other hand,
genes with large connection weights to an endophenotype may be
closer to the development of hypertension. BNIP1, APOBEC3F
and LDOC1 are such genes consistently identified in our models,
suggesting that induction of apoptosis, innate immune response and
cell-proliferation regulation may play important downstream roles
in development of hypertension.

Although not as consistent as the aforementioned genes,
ATP1A4 and STAT2 with high index 1 values suggesting that
magnesium/potassium ion transport and calcium ion binding may
lead to the development of hypertension. In addition, CHST8 and
SEC61A2 with high index 2 values suggesting that central nervous
system and LDL may also contribute to the hypertension onset. The
roles of several genes with either high index 1 or 2 remain unknown
and require further investigation.

4.3 Identification of causal pies and patient groups
Rothman’s (1976) concept of sufficient causes provides a theoretical
framework of how multiple causal pies or phenocopies of a disease
dilute the effect of target genes, resulting from either genetic or
environmental causes. The following example demonstrates how
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Fig. 3. Gene expression plot of the three endophenotypes: each vertical strip
represents a subject; each horizontal strip represents a gene; the colors used to
indicate expression level is illustrated at the color bar in the right-hand side.
The vertical blocks between black lines denote subject subgroups defined
by different endophenotypic patterns (refer to Fig. 2g and h); horizontal
blocks denote endophenotypes. The ‘S1’, ‘S2’ and ‘S3’ are magnified views
of GCGR expression level of the three major subject groups (indicated in
the three yellow boxes).

the significance of a gene can vary in different types of patients.
We compared the expression levels of GCGR, a candidate gene for
hypertension, obtained from two major case subgroups (denoted
as S1 and S2 in Fig. 3) with those obtained from a major control
subgroup (denoted as S3 in Fig. 3). The GCGR was not significantly
differentiable (P = 0.16) between S1 and S3, however, it was
significantly differentiable (P = 0.03) between S2 and S3. Therefore,
conventional approaches for modeling a particular disease may fail
to identify potential genes when only examining gene expression
profiles.

Although the gene expression profile in Figure 3 is not as clear as
those of many gene mapping studies in the field of cancer genomics,
it still exhibits certain patterns that differentiate hypertensive cases
from controls. For example, in the top gene cluster (endophenotype
1 in our model), the predominantly {Red, Blue, Red, Blue} pattern
(the dominant color in the block between the green dashed lines)
is evident in the majority of male hypertensive cases. In contrast,
the predominantly {Blue, Red, Blue, Red} pattern is evident in the
majority of male controls. Patterns containing multiple color blocks
were also observed in other gene clusters of cases and controls.
Such patterns show how multiple mechanisms may work together
to trigger disease onset.

4.4 Potential improvement
To ensure that the constructed endophenotypes are biomedically
significant, we linked the model’s outputs to blood pressure
measurements. Participants’ blood pressures were obtained at
different time points throughout the day; thus, these values may not
truly reflect the condition of the participants. We linked the average
model outputs to the average blood pressure measurements in each
subgroup to reduce fluctuation between individuals. A model with

more meaningful outputs could be constructed if multiple blood
pressure readings (e.g. over a 24 h period) were available.

The model performance could also be improved if more
genes are used for model construction. Due to multiple causal
pathways and genetic heterogeneity, certain disease genes may not
express differentially between diseased and normal groups on the
surface. In the absence of a priori knowledge regarding disease
pathogenesis, this problem can be resolved by introducing more
genes into the model. Because our training procedure adopts a SPEA
approach instead of a gradient-based approach, the memory and
computation time requirement remain manageable for large datasets.
Regarding cardiovascular disease, Sing et al. (2003) pointed
out that a biological model of genome–phenotype relationships
should incorporates interactions between possible genetic and
environmental factors. Although gene–gene interactions (these are
partly included in our endophenotypes) and environmental factors
were not considered in this study, they can be input into the model if
properly encoded. However, the sample size must also be increased
with the number of variables to ensure that the computed results are
statistically meaningful.

5 CONCLUSIONS
We have proposed a neural network-based model that simulates
the gene–endophenotype–disease relationships for complex diseases
where genetic heterogeneity is involved. In a real application,
we successfully constructed a three-endophenotype model for
Taiwanese hypertensive males. The model achieved high
identification accuracy and was generalized to an independent set
of data. The three computed endophenotypes, one strong protective,
another weakly protective and the third highly risk, can be applied
to predict young-onset male hypertension and to determine patient
subgroups. Moreover, the three endophenotypes were consistent
among datasets.

Among the 101 genes involved in our model, we identified
SLC4A5, SLC5A10 and LDOC1 as key upstream genes in each
of the three endophenotypes, whereas BNIP1, APOBEC3F and
LDOC1 were identified as key downstream genes in hypertension
pathogenesis. In addition, four genes (ATP1A4, GCGR, SLC4A5,
STAT2) were hypertension candidate genes and eight genes were
associated with hypertension-related functions. These findings may
help researchers to better understand the causes of hypertension.
Several novel genes residing in multiple chromosomes were also
found to be highly influential to the three endophenotypes. However,
future studies are needed to examine whether and how these genes
are involved in the pathogenesis of hypertension.

We have also developed a procedure for constructing the proposed
model. The procedure is capable of computing multiple models in
a single iteration so that researchers can choose the most suitable
one for their research needs. The developed procedure is applicable
to other microarray platforms as well as to other genetic markers,
such as single nucleotide polymorphisms (SNPs) and short tandem
repeat polymorphic (STRP) markers.
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