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Abstract: Although there exists a variety of different catalysts for hydroboration of organic substrates
such as aldehydes, ketones, imines, nitriles etc., recent evidence suggests that tetra-coordinate
borohydride species, formed by activation, redistribution, or decomposition of boron reagents, are
the true hydride donors. We then proposed that Me2S-BH3 could also act as a hydride donor for the
reduction of various imines, as similar compounds have been observed to reduce carbonyl substrates.
This boron reagent was shown to be an effective and chemoselective hydroboration reagent for a
wide variety of imines.
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1. Introduction

Hydroboration can be considered as one of the most powerful methods for reduction
of various organic substrates such as aldehydes, ketones, imines, and nitriles under mild
reaction conditions [1–3]. Pinacolborane (HBpin) or catecholborane (HBcat) has been
predominantly used as the hydroborating agent in these particular transformations, but
the boron fragment (i.e., Bcat/Bpin) was normally sacrificed to yield, for example, free
alcohols (from carbonyls) or amines (from imines/nitriles). Furthermore, these reduction
reactions were mainly performed in the presence of catalytic amounts of a diverse range
of (in)organic/organometallic compounds [4–9]. Several of the described hydroboration
reactions were efficient as catalyst loadings as low as 0.001 mol%, resulting in excellent
substrate conversions [7]. Nevertheless, the exact role of these presumed (pre)catalytic
species has been divisive, as several reports provided convincing evidence for the existence
of hidden boron catalysis (HBC), i.e., the main role of the species that were introduced in
“catalytic” amounts was the formation, via activation, redistribution, or decomposition
(Scheme 1) of HBcat/HBipn, of boron-based compounds (e.g., hydroborates and boranes)
that then acted as the true catalysts [10–12].
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Scheme 1. Observed activation, redistribution and/or decomposition of HBcat/HBpin in presence
of nucleophiles (L) or other boranes (BAr3).

Four-coordinate borohydride compounds (e.g., HBR3
−) were identified to serve as the

(pre)catalysts for hydroboration of a hetero-atom containing unsaturated substrates such
as aldehydes, ketones and imines [11,12]. This would then suggest that L-BH3 (L = THF,
SMe2, NR3 (R = alkyl), N-heterocyclic carbene (NHC), etc.) could not only act as adequate
reagents for reduction of these types of substrates but also deliver more cost-effective
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hydroboration protocol(s) as certain BH3-containing species act as synthetic precursors
to HBpin/HBcat [13,14]. However, there appears to be a limited number of published
works that use these particular reagents (i.e., L-BH3) for this specific purpose, with THF-
BH3 being the preferred choice for hydroboration of mainly carbonyl substrates [15–20].
Furthermore, NHC-BH3 adducts were shown to be adequate reduction agents for C=X
fragments (X=N, O, etc.), but an addition of an activator (e.g., silica gel, p-toluenesulfonic
acid) was required [21,22]. The presence of protic activators (e.g., Al2O3) and/or protic
solvent media (e.g., MeOH) were also required for efficient reduction of these substrates
with, for example, NaBH4 and NaBH3CN [23–27]. Lastly, although ammonia borane
(NH3-BH3) has been used for reduction of various aldehydes, ketones, imines, etc. [28–31],
experimental and computational studies suggested that these particular reduction reactions
underwent a concerted (double) hydrogen transfer mechanism [28,31], which is not typical
for hydroboration reactions (see below). Therefore, herein we disclose chemoselective
hydroboration of imines using solely Me2S-BH3 as the reducing agent in the absence of
any activators and/or a protic solvent medium.

2. Results & Discussion

Instead of generating an “optimized” reaction condition with one of the examined
imines and then implementing this procedure for the rest of the substrates, we decided to
optimize each transformation in order to maximize the substrate conversions. Thus, the
reactions were screened by varying the amount of Me2S-BH3 and the reaction temperature
while the reactants were mixed in about 1 mL of CDCl3 in a sealed J. Young NMR tube. The
most important outcomes and observations are summarized in Table 1. In a vast majority of
examined transformations, heating to 60 ◦C was necessary to obtain quantitative substrates
conversions with Me2S-BH3 loadings varying between 0.75 and 1.50 equiv. For example,
most of the reaction mixtures showed negligible reactivity at room temperature, while
imine substrates with enhanced steric properties (entries 5 and 6, Table 1) required, in
general, 1.50 equiv loadings of Me2S-BH3 with respect to the imine. Reductions of imines
that contain a 2,6-disopropylaniline fragment (e.g., entry 5) have been rarely examined,
presumably due to low conversions of these particular substrates under the reported
reaction conditions [32,33]. Furthermore, reduction of the imines that contained N-aryl
substituents (entries 4 and 12) required not only a lower Me2S-BH3 loading (e.g., 0.75 vs.
1.10 mmol) but also a shorter reaction time (e.g., 6 vs. 12 h) in comparison to their N-alkyl
containing analogues (e.g., entries 2 and 3 vs. entry 12). This can be potentially explained by
the presence of the resonance structures involving the N-aryl fragment puling the electron
density away from the N=C fragment and hence allowing hydride transfer to the carbon
atom of this fragment (see below). It was then not surprising to observe that the presence of
an electron withdrawing group (CF3) had a rate-enhancing effect (entry 7) while an electron
donating group (OMe) had an opposite effect (entry 8). These observations suggested that
the rate limiting step for the examined reactions was nucleophilic in nature (i.e., hydride
transfer from a B-H fragment to the imine substrate; see below) and not electrophilic (i.e.,
formation of a imine-BH3 adduct) [20].

More importantly, according to 1H-NMR spectroscopy, all reactions resulted exclu-
sively or solely in the anticipated reduction of the C=N double bond. This was particularly
important for the reduction of the imine substrates that also contained an alkenyl group
(i.e., α,β-unsaturated imines; entries 13 and 14, Table 1). Quantitative substrate conversions
with excellent chemoselectivities (>98%) were achieved with these particular imines, while,
at the same time, generating the fastest reaction rates among the examined substrates,
despite the transformations performing at −78 ◦C (for the selectivity purposes). Lastly,
according to the results summarized in Table 1, it appeared that this reduction protocol fa-
vored, in terms of reaction rates, ketimines over aldimines, which is not typically observed
in the literature [10,32–45]. At the moment, the precise reason(s) for this observation is(are)
not known but it may suggest that the electrophilic step i.e., coordination of imine to BH3



Molecules 2021, 26, 5443 3 of 9

(see below) was rate determining, as one would expect that the hydride transfer (i.e., the
nucleophilic step) would be less favored for ketimines over aldimines.

Table 1. Summary of reaction conditions to achieve quantitative conversion of imines 1.
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As mentioned in the introduction, catalytic hydroboration of unsaturated C=X frag-
ments (X=O, N, etc., but X 6=C) has been a controversial topic. However, there is a significant
body of evidence suggesting that four-coordinate B-H containing compound(s) (usually
anionic), generated by activation, decomposition, or redistribution of boron reagents, act
as initial hydride donors and hence as initiators of catalytically active species [11,12]. Clark
and co-workers suggested a mechanism (Scheme 2a) that involved “activation” of HBpin
(or HBcat) by coordination of a nucleophile (the electrophilic step), followed by hydride
transfer (the nucleophilic step) from boron to the substrate (e.g., aldehyde), to yield the
corresponding anion (e.g., alkoxide) [46]. This anion would then bind to another molecule
of H-Bpin to generate the catalytically active species (e.g., [HBpin(alkoxy)]−). Thus, we
propose that for reduction of imines with Me2S-BH3, initial hydride transfer occurs from
either Me2S-BH3 or imine-BH3 (A, Scheme 2b) to produce amide anion B. This anion then
displaces Me2S from Me2S-BH3 to generate the catalytically active species C, which acts
as a hydride donor to another imine completing the cycle while also yielding reduced
species D.

Recently, Abe and Yamataka proposed that reduction of carbonyl compounds using
BH3 (in THF), the first step was H3B-carbonyl adduct formation (similar to A, Scheme 2b),
followed by a hydride transfer step via a BH3-assisted transition state (Scheme 2c) [20].
However, although a majority of our examined hydroboration reactions require excess
Me2S-BH3, it was still possible to achieve quantitative imine reduction with sub-stoichiometric
amounts (0.75 mol%) of this boron reagent for several transformations (entries 1, 4, 13 and
14; Table 1). This suggested that, at least in certain instances, it was not only possible to
reduce more than one imine substrate with one equivalent of Me2S-BH3 but also that the
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BH3-catalysed hydride transfer step (in our case going from A to D) step was less likely
to occur. Furthermore, it was also suggested that the hydride transfer step (e.g., A→ D
in our case) occurred via a bimolecular transition state (Scheme 2d) [19]. This would help
explain our observation that more than one equivalent of imine was reduced by MeS2-BH3
but a recent theoretical study indicated that a similar transition was high in energy [47].
Regardless of the nature of the hydride transfer step(s), it is still important to mention that
we identified, via 11B[1H]-NMR spectroscopy, several proposed intermediates described in
Scheme 2b. After mixing Me2S-BH3 and N-benzylideneaniline in a 1:1 mol ratio at room
temperature for 6 h, it was possible to detect respective intermediates A (δB ~ −9 (cis) and
−14 (trans) ppm, Figure 1; [48]), D (δB ~ 41 ppm; [49]) and E (δB ~ 31 ppm; [50,51]). The
fact that unreacted Me2S-BH3 (δB ~ −20 ppm) was also present strongly suggested the
existence of an equilibrium process between this reagent and intermediate A as indicated
in Scheme 2b.
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Figure 1. 11B[1H]-NMR spectrum of a mixture (1:1) between Me2S-BH3 and N-benzylideneaniline after 6 h.

In conclusion, we have shown that Me2S-BH3 could also be used for reduction of a
number of imines under mild reaction conditions and excellent chemoselectivity control.
We have also managed to detect several key intermediates in the overall reaction pathway,
which should aid in a better understanding of the overall hydroboration mechanism.
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3. Materials and Methods

All imines were synthesized according to the literature reports (Table 2), while Me2S-
BH3 was purchased from a commercial source and used as received. CDCl3 was dried
by distilling it over CaSO4, while CH2Cl2 was dried by distilling over CaH2. Reduction
of imines was performed using standard Schlenk techniques, while subsequent work-up
steps (with MeOH) were performed in on a benchtop.

Table 2. Literature references for the synthesis of the examined imines and spectroscopic data for the corresponding amines.
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14 iPr CH=CHPh (trans) Me [55] [60]

General procedure for reduction of imines: After 1.0 mmol of an imine (entries 1–12)
and Me2S-BH3 (amounts according to Table 1) were mixed in a sealed J. Young NMR tube
using about 1 mL of CDCl3, the reaction mixture was left at 60 ◦C for the time duration
indicated in Table 1. For α,β-unsaturated imines (entries 13 and 14), the reactants were
mixed in CH2Cl2 at −78 ◦C. After the reaction was completed (via 1H-NMR spectroscopy),
it was quenched with 5 mL of MeOH, followed by removal of all volatiles under reduced
pressure. The crude product mixture was then dissolved in 10 mL ethyl acetate, washed
three times with 10 mL of water/brine, and dried with MgSO4. All amine samples were
collected as oils after removal of solvent apart from benzylmethylamine (entry 1) and
N-benzylaniline (entry 4), which were obtained as solids. The spectroscopic data for all
amines matched those reported (Table 2).

Purity was assessed by 1H and 13C[1H]-NMR spectroscopy and all samples were >95%
pure. 1H (400.2 MHz), 13C[1H] (100.6 MHz), and/or 11B[1H] (128.6 MHz) NMR spectra of
reactions and/or isolated amines in CDCl3 were recorded on a Bruker Avance III 400.

1H and 13C[1H]-NMR spectroscopic data for isolated amines (Supplementary Materials):

N-methyl-1-phenylmethanamine (Entry 1): 1H-NMR (400.2 MHz, CDCl3): δ 7.31 (m, 2H),
7.25 (m, 3H), 3.86 (s, 2H), 3.05 (s, br, 1H), 2.32 (s, 1H), 2.31 (s, 2H). 13C-NMR (CDCl3,
100.6 MHz): δ 136.5, 136.3, 129.8, 129.5, 128.3, 128.2, 127.7, 127.7, 66.8, 66.2, 48.4, 47.7.
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N-benzylpropan-2-amine (Entry 2): 1H-NMR (400.2 MHz, CDCl3): δ 7.25 (m, 4H), 7.17
(m, 1H), 3.71 (s, 2H), 2.79 (hept, 3J = 6.2 Hz, 1H), 1.57 (s, br, 1H), 1.03 (d, 3J = 6.2 Hz, 6H).
13C-NMR (CDCl3, 100.6 MHz): δ 140.6, 128.4, 128.2, 126.9, 51.6, 48.1, 22.9.

N-benzyl-2-methylpropan-2-amine (Entry 3): 1H-NMR (400.2 MHz, CDCl3): δ 7.25 (m, 4H),
7.15 (m, 1H), 3.66 (s, 2H), 1.11 (s, 9H). 13C-NMR (CDCl3, 100.6 MHz): δ 140.1, 127.4, 127.3,
125.8, 49.9, 46.2, 28.0, 27.3.

N-benzylaniline (Entry 4): 1H-NMR (400.2 MHz, CDCl3): δ 7.26 (m, 5H), 7.10 (m, 2H), 6.67
(m, 1H), 6.59 (m, 2H), 4.64 (s, br, 1H), 4.25 (s, 2H). 13C NMR (CDCl3, 100.6 MHz): δ 146.4,
137.9, 128.3, 127.6, 126.7, 126.3, 117.1, 112.4, 47.7.

N-benzyl-2,6-diisopropylaniline (Entry 5): 1H-NMR (400.2 MHz, CDCl3): δ 7.29 (m, 5H),
7.04 (m, 3H), 4.00 (s, 2H), 3.24 (hept, 3J = 6.8 Hz, 2H), 1.16 (d, 3J = 6.8Hz, 12H). 13C NMR
(CDCl3, 100.6 MHz): δ 142.9, 128.6, 128.1, 127.5, 123.7, 56.0, 27.8, 24.3.

N-(2,6-dimethylbenzyl)propan-2-amine (Entry 6): 1H-NMR (400.2 MHz, CDCl3): δ 6.93 (m,
3H), 3.66 (s, 2H), 2.84 (hept, 3J = 6.2 Hz, 1H), 2.32 (s, 6H), 1.05 (d, 3J = 6.2 Hz, 6H). 13C-NMR
(CDCl3, 100.6 MHz): δ 135.9, 127.2, 125.9, 48.6, 44.6, 21.9, 18.5.

N-(4-(trifluoromethyl)benzyl)propan-2-amine (Entry 7): 1H-NMR (400.2 MHz, CDCl3): δ
7.59 (d, 3J = 8.0 Hz, 2H), 7.47 (d, 3J = 8.0 Hz, 2H), 3.86 (s, 2H), 2.87 (hept, 3J = 6.2 Hz, 1H),
1.78 (s, br. 1H), 1.13 (d, 3J = 6.2Hz, 6H). 13C-NMR (CDCl3, 100.6 MHz): δ 144.7, 129.3, 129.0,
128.3, 125.6, 125.3, 122.9, 50.9, 48.2, 22.8.

N-(4-methoxybenzyl)propan-2-amine (Entry 8): 1H-NMR (400.2 MHz, CDCl3): δ 7.18 (d,
3J = 8.4 Hz, 2H), 6.78 (d, 3J = 8.4 Hz, 2H), 3.71 (s, 3H), 3.64 (s, 2H), 2.78 (hept, 3J = 6.2 Hz,
1H), 1.66 (s, broad, 1H), 1.02 (d, 3J = 6.2 Hz, 6H). 13C-NMR (CDCl3, 100.6 MHz): δ 158.6,
132.6, 129.4, 113.8, 55.3, 50.9, 48.0, 22.8.

N-benzhydrylpropan-2-amine (Entry 9): 1H-NMR (400.2 MHz, CDCl3): δ 7.21 (m, 10H),
4.89 (s, 1H), 2.67 (hept, 3J = 6.2 Hz, 1H), 1.40 (s, br, 1H), 1.00 (d, 3J = 6.2 Hz, 6H). 13C-NMR
(CDCl3, 100.6 MHz): δ 144.5, 128.4, 127.4, 126.9, 64.3, 46.2, 23.1.

N-(1-phenylethyl)propan-2-amine (Entry 10): 1H-NMR (400.2 MHz, CDCl3): δ 7.20 (m, 4H),
7.13 (m, 1H), 3.80 (q, 3J = 6.4 Hz, 1H), 2.54 (hept, 3J = 6.2 Hz, 1H), 1.25 (d, 3J = 6.4 Hz, 3H),
0.94 (d, 3J = 6.2 Hz, 3H), 0.91 (d, 3J = 6.2 Hz, 3H). 13C-NMR (CDCl3, 100.6 MHz): δ 145.1,
127.4, 125.7, 125.4, 54.0, 44.5, 23.8, 23.0, 21.1.

N-isopropylcyclohexanamine (Entry 11): 1H-NMR (400.2 MHz, CDCl3): δ 2.89 (hept,
3J = 6.2 Hz, 1H), 2.43 (m, 1H), 1.81 (m, 2H), 1.65 (m, 2H), 1.54 (m, 2H), 1.10 (m, 4H), 0.97
(d, 3J = 6.2 Hz, 6H), 0.95 (m, 1H). 13C-NMR (CDCl3, 100.6 MHz): δ 53.5, 44.8, 34.0, 26.2,
25.3, 23.4.

N-cyclohexylaniline (Entry 12): 1H-NMR (400.2 MHz, CDCl3): δ 7.08 (t, 3J = 7.8 Hz, 2H),
6.55 (m, 3H), 3.75 (br s, 1H), 3.17 (m, 1H), 1.98 (m, 2H), 1.67 (m, 2H), 1.57 (m, 1H), 1.27 (m,
2H), 1.10 (m, 3H). 13C-NMR (CDCl3, 100.6 MHz): δ 147.1, 129.3, 117.1, 113, 4, 52.0, 33.4,
25.9, 25.0.

(E)-N-isopropyl-3-phenylprop-2-en-1-amine (Entry 13): 1H-NMR (400.2 MHz, CDCl3): δ
7.24 (m, 5H, Phenyl), 6.50 (d, 3J = 15.8 Hz, 1H), 6.29 (dt, 3J = 15.8 Hz, 3J = 6.4 Hz, 1H), 3.39
(d, 3J = 6.4 Hz, 2H), 2.87 (hept, 3J = 6.2 Hz, 1H), 1.39 (s, broad, 1H), 1.08 (d, 3J = 6.2Hz, 6H).
13C-NMR (CDCl3, 100.6 MHz): δ 137.1, 131.1, 128.6, 128.5, 127.3, 126.2, 48.4, 48.1, 22.9.

(E)-N-isopropyl-1,3-diphenylprop-2-en-1-amine (Entry 14): 1H-NMR (400.2 MHz, CDCl3):
δ 7.26 (m, 10H, phenyl), 6.53 (d, 3J = 15.8 Hz, 1H), 6.31 (dd, 3J = 15.8 Hz, 3J = 7.3 Hz, 1H),
4.51 (d, 3J = 7.3 Hz, 1H), 2.83 (hept, 3J = 6.2 Hz, 1H), 1.11 (d, 3J = 6.2 Hz, 3H), 1.08 (d,
3J = 6.2 Hz, 3H). 13C-NMR (CDCl3, 100.6 MHz): δ 143.1, 136.98, 132.9, 130.0, 128.5, 128.4,
127.4, 127.3, 127.1, 126.4, 62.4, 45.6, 23.2, 22.8.
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