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Abstract: Hybrid proline-rich proteins (HyPRPs) belong to the family of 8-cysteine motif (8CM)
containing proteins that play important roles in plant development processes, and tolerance to biotic
and abiotic stresses. To gain insight into the rice HyPRPs, we performed a systematic genome-wide
analysis and identified 45 OsHyPRP genes encoding 46 OsHyPRP proteins. The phylogenetic
relationships of OsHyPRP proteins with monocots (maize, sorghum, and Brachypodium) and a dicot
(Arabidopsis) showed clustering of the majority of OsHyPRPs along with those from other monocots,
which suggests lineage-specific evolution of monocots HyPRPs. Based on our previous RNA-Seq
study, we selected differentially expressed OsHyPRPs genes and used quantitative real-time-PCR
(qRT-PCR) to measure their transcriptional responses to biotic (Magnaporthe oryzae) and abiotic (heat,
cold, and salt) stresses and hormone treatment (Abscisic acid; ABA, Methyl-Jasmonate; MeJA, and
Salicylic acid; SA) in rice blast susceptible Pusa Basmati-1 (PB1) and blast-resistant near-isogenic
line PB1+Pi9. The induction of OsHyPRP16 expression in response to the majority of stresses and
hormonal treatments was highly correlated with the number of cis-regulatory elements present in
its promoter region. In silico docking analysis of OsHyPRP16 showed its interaction with sterols of
fungal/protozoan origin. The characterization of the OsHyPRP gene family enables us to recognize
the plausible role of OsHyPRP16 in stress tolerance.
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1. Introduction

Being sessile in nature, plants are continuously exposed to biotic and abiotic stresses that adversely
affect their productivity. The plant defense response against biotic stresses can be categorized into
pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI) and effector-triggered
immunity (ETI) [1]. In both PTI and ETI, the activation of a complex network of signaling cascade
pathways leads to the induction of resistance response mediated through pathogenesis-related (PR)
genes, reactive oxygen species (ROS) and secondary metabolites [2]. The initiation of PR proteins
against various biotic stresses has been reported in different plant species [3,4]. Among the 17 classes of
PR proteins [5], the 8-cysteine motif (8CM) containing PR proteins belong to the prolamin superfamily,
which can be further categorized into subfamilies including non-specific lipid transfer proteins (nsLTPs),
2S albumins, alpha-amylase/trypsin inhibitors, and hydrophobic seed proteins [6,7]. The 8CM is
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usually 90–100 amino acid residues long with a conserved pattern of cysteine residues spaced as
C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C [6,8]. The 8CM proteins are different from the other eight cysteine
residue-containing proteins, such as lectins and agglutinin, based on the size, the pattern of cysteine
spacing, an array of disulfide bonds, and hydrophobicity profile [9].

In several 8 CM containing proteins, the proline-rich repeats precede the 8CM, and such proteins
are classified as HyPRPs. However, the N-terminal domain of HyPRPs resembles the structural
cell-wall proline-rich proteins (PRPs) [10,11], they lack the characteristic amino acid motifs of PRPs
and are highly variable in their size and proline repeats composition [8,12]. The presence of atypical
N-terminal proline-rich repeat domain and typical C-terminal 8CM domain categorize the HyPRPs
together with the 8CM containing proteins of prolamin superfamily [8]. The structural analysis of
a typical 8CM domain-containing protein, nsLTP, revealed that four disulfide bonds between eight
cysteine residues are essential for a stable hydrophobic cavity that can accommodate various lipids
and hydrophobic ligands with high specificity and plasticity [13–15].

The expression profile of HyPRPs has been primarily used to infer their functions. For example, the
stress-inducible expression of BnPRP (Brassica napus), CcHyPRP (Cajanus cajan), EARLI1 (Arabidopsis),
GhHyPRP3 (Gossypium hirsutum), GhHyPRP4, JsPRP1 (Juglans sigillata), MfHyPRP (Medicago falcata),
MsPRP2 (Medicago sativa) suggest their role in abiotic stress tolerance. [16–24]. Similarly, the induced
expression of AtDHyPRP1 (Arabidopsis), CcHyPRP, JsPRP1, GmHyPRP (Glycine max) and SbPRP
(Glycine max) in response to bacterial or fungal or viral pathogens indicate their role towards biotic
stresses [24–28]. In response to various signaling molecules such as phytohormones, H2O2, NO,
and other oxidative stress-inducing molecules, the altered expression of HyPRPs including JsPRP1,
MfHyPRP, SbPRP, and SlHyPRP1 (Solanum lycopersicum), suggests their role either directly or indirectly
in the defense-related signaling pathways [23,24,26,29].

The functional analysis of HyPRPs suggests their diverse roles in biotic and abiotic stress
tolerance, morphogenesis, and cellular and developmental processes [9,19,20,30–34]. The functional
characterization of HyPRP genes, including EARLI1, PtrPRP (Poncirus trifoliata), and GhHyPRP4,
suggests their positive role in the freezing or cold tolerance [19,21,35,36]. The overexpression of
CcHyPRP, GhHyPRP3, JsPRP1, and MfHyPRP were found to enhance tolerance toward multiple
abiotic stresses, such as salinity and cold stress [20,22,23,37]. In contrast, tomato SlHyPRP1 and
SpHyPRP1 (Solanum pennellii) were found to negatively regulate the stress response against drought,
salt, and oxidative stresses in tomato [29]. The Arabidopsis HyPRP, AZI1, was found to play
an essential role as a vital component in systemic acquired resistance (SAR), during Pseudomonas
syringae infection [38]. Similarly, tobacco overexpressing JsPRP1 exhibited strong resistance against
Colletotrichum gloeosporioides infection [24]. Conversely, the CaHyPRP1 (Capsicum annuum) and
GbHyPRP1 (Gossypium barbadense) were found to negatively regulate the basal defense during biotic
stresses, possibly through suppression of ROS [39,40]. All the above studies highlighted the importance
of HyPRPs in biotic and abiotic responses, and therefore, it is of great significance to identify and
characterize the HyPRPs in plants. Although Dvořáková et al. [12] identified members of the HyPRPs
gene family in seven plant species, including rice, they explained the comparative sequence diversity
among the HyPRPs gene family members.

Rice (Oryza sativa L.) is a cereal that is widely consumed as a staple food; therefore, sustainable
rice production is a key factor towards insuring food security for our world’s continuously-growing
population. It is essential to reduce the losses associated with various biotic and abiotic stresses to
achieve sustainability in rice production. Owing to the significance of HyPRPs in biotic and abiotic
stress tolerance, in the present investigation, we carried out genome-wide identification, comparative
phylogeny and duplication analysis on the HyPRP gene family in rice. Furthermore, we performed the
qRT-PCR based expression profiling of rice HyPRPs genes in response to biotic and abiotic stresses,
and phytohormone treatment in rice blast susceptible PB1 and near-isogenic blast-resistant rice line
PB1+Pi9 [41–43]. The present investigation provides a basic framework that can be explored to unravel
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the biological significance of rice HyPRPs and to target the putative candidate genes of this 8CM gene
family to devise strategies for the development of climate-resilient crop plants.

2. Results and Discussion

2.1. Identification and Annotation of Putative OsHyPRPs in Rice

The scanning of hidden Markov model (HMM) profile resulted in the identification of 65, 156 and
134 proteins containing Hydrophob_seed (PF14547), Tryp_alpha_amyl (PF00234), and LTP_2 (PF14368)
domains, respectively. The PfamScan was used to confirm the presence of these domains, which resulted
in the identification of 50, 130, and 131 proteins with Hydrophob_seed domain, Tryp_alpha_amyl
domain, and LTP_2 domain, respectively. By combining the results, a total of 179 proteins were detected
as unique proteins, where four proteins (LOC_Os07g11310.1, LOC_Os07g12080.1, LOC_Os07g11630.1,
and LOC_Os07g11650.1) based on the BLAST similarity were found to be trypsin-alpha amylase
inhibitors or cereal storage proteins and therefore removed from the further analysis. We manually
inspected the sequences of the remaining 175 candidate proteins and excluded 126 proteins, which
lacked proline-rich repeats and 8CM. Additionally, we removed three proteins without N-terminal
signal peptides. Using this stringent process, we identified a total of 46 putative OsHyPRPs encoded
by 45 OsHyPRPs genes in rice, which showed characteristic N-terminal signal peptides followed by
proline residues repeats and C-terminal conserved 8CM motifs. However, in the previous studies by
Dvorakova et al. [12] and Boutrot et al. [44], identified 31 and 21 genes, respectively, encoding HyPRPs
in the whole rice genome. Such a difference in the number of identified HyPRPs may be due to the use
of different identification approaches and the continuous refinement of the rice genome. The multiple
sequence alignment of OsHyPRP protein sequences showed the conservation of the eight-cysteine
skeleton in the 8CM region, while the proline-rich region was found to be highly non-conserved
(Figure 1).

Figure 1. The multiple sequence alignment of OsHyPRPs showing conserved regions. The conserved
amino acid residues in the black box are N-terminal signal peptides (may extend further for several
proteins due to alignment constrains), while the C-terminal 8CM of OsHyPRPs is marked in the red
box. The 8CM region is typical to the other 8CM protein with a conserved eight cysteine skeleton. The
region in-between the black and red boxes showed the non-conserved proline-rich region, which is
atypical to the proline-rich cell wall structural proteins.
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The Physico-chemical characteristics of the 46 identified OsHyPRPs are summarized in Table 1.
The average molecular mass and the theoretical pI of mature OsHyPRP proteins was estimated to be
16.3 kDa and 7.3 pI, respectively. The signal peptide length for OsHyPRP proteins varied from 20 to 32
amino acid residues. Using signalP, we predict that the majority of OsHyPRPs targets to the secretory
pathway, with few exceptions, where OsHyPRP24 and OsHyPRP46 target to the mitochondria, while
OsHyPRP43, OsHyPRP44, and OsHyPRP45 target to the chloroplast (Table 1).

Table 1. List of Hybrid proline-rich proteins (HyPRPs) in rice and some of their features.

Locus IDs Nomenclature
Signal Peptide Mature Protein

Amino Acid Target a Amino Acid Mass (kDa) pI

LOC_Os02g44310.1 OsHyPRP1 22 S 111 11.27 8.14
LOC_Os02g44320.1 OsHyPRP2 22 S 104 10.65 6.24
LOC_Os02g49280.1 OsHyPRP3 28 S 233 23.6 5.43
LOC_Os03g01300.1 OsHyPRP4 29 S 110 11.32 5.04
LOC_Os03g01320.1 OsHyPRP5 24 S 160 13.97 8.37
LOC_Os03g14615.1 OsHyPRP6 25 S 404 41.07 8.91
LOC_Os03g14630.1 OsHyPRP7 25 S 103 10.66 8.50
LOC_Os03g14642.1 OsHyPRP8 26 S 122 12.29 8.15
LOC_Os03g14654.1 OsHyPRP9 26 S 132 13.1 8.44
LOC_Os03g26800.1 OsHyPRP10 27 S 112 11.16 6.20
LOC_Os03g43050.1 OsHyPRP11 20 S 221 23 4.69
LOC_Os04g46810.1 OsHyPRP12 23 S 105 10.8 8.65
LOC_Os04g46820.1 OsHyPRP13 23 S 106 10.91 8.43
LOC_Os04g46830.1 OsHyPRP14 22 S 115 7.4 8.02
LOC_Os04g52250.1 OsHyPRP15 27 S 175 17.56 4.88
LOC_Os04g52260.1 OsHyPRP16 32 S 122 12.18 8.04
LOC_Os06g07220.1 OsHyPRP17 22 S 224 23.35 8.96
LOC_Os06g43600.1 OsHyPRP18 27 S 228 23.89 8.86
LOC_Os06g43600.2 OsHyPRP19 27 S 228 23.89 8.86
LOC_Os06g46780.1 OsHyPRP20 28 S 240 23.79 5.51
LOC_Os06g46870.1 OsHyPRP21 28 S 242 23.98 5.51
LOC_Os07g29230.1 OsHyPRP22 26 S 247 25.26 5.24
LOC_Os07g37385.1 OsHyPRP23 26 S 283 28.86 9.89
LOC_Os07g39640.1 OsHyPRP24 19 M 186 19.14 4.72
LOC_Os07g43290.2 OsHyPRP25 22 S 141 14.61 8.40
LOC_Os10g09920.1 OsHyPRP26 25 S 103 10.36 3.97
LOC_Os10g11370.1 OsHyPRP27 21 S 336 35.39 8.88
LOC_Os10g11730.1 OsHyPRP28 23 S 143 15.18 5.15
LOC_Os10g20830.1 OsHyPRP29 23 S 114 11.75 6.44
LOC_Os10g20840.1 OsHyPRP30 23 S 114 11.82 6.86
LOC_Os10g20860.1 OsHyPRP31 23 S 110 11.51 5.98
LOC_Os10g20890.1 OsHyPRP32 28 S 98 10.17 7.08
LOC_Os10g40420.1 OsHyPRP33 34 S 128 12.58 8.68
LOC_Os10g40430.1 OsHyPRP34 23 S 123 12.27 7.07
LOC_Os10g40440.1 OsHyPRP35 23 S 119 12.05 6.62
LOC_Os10g40460.1 OsHyPRP36 25 S 106 10.96 6.85
LOC_Os10g40470.1 OsHyPRP37 24 S 107 10.99 6.92
LOC_Os10g40480.1 OsHyPRP38 24 S 112 11.58 7.72
LOC_Os10g40510.1 OsHyPRP39 21 S 112 11.49 7.38
LOC_Os10g40520.1 OsHyPRP40 22 S 100 10.42 8.00
LOC_Os10g40530.1 OsHyPRP41 21 S 111 11.55 8.05
LOC_Os10g40614.1 OsHyPRP42 26 S 141 13.17 7.91
LOC_Os11g02165.1 OsHyPRP43 29 C 222 22.95 9.45
LOC_Os12g02105.1 OsHyPRP44 28 C 219 22.43 9.35
LOC_Os12g28880.1 OsHyPRP45 24 C 148 15.28 8.74
LOC_Os12g29040.1 OsHyPRP46 20 M 190 20.01 8.26

a Subcellular target for each protein. S: secretory pathway; M: mitochondria: C: chloroplast.
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2.2. Chromosomal Location, Gene Duplication and Structural Analysis of OsHyPRPs

The mapping of 46 OsHyPRP genes on 12 rice linkage groups (LGs) revealed their biased
distribution (Figure 2). Out of 46 OsHyPRP genes, 35 genes (>75%) are present on LG3, LG4, LG6,
and LG10 with 8, 5, 5, and 17 OsHyPRP genes, respectively, while the LG1, LG5, LG8, and LG9 are
devoid of OsHyPRPs (Figure 2). The gene cluster analysis showed that 31 OsHyPRP genes (>67%)
are present in nine clusters, distributed on six LGs with the largest gene cluster of 10 genes on LG10.
The gene duplication analysis of OsHyPRP genes revealed the presence of 11.1%, 20%, 8.8%, and 62%
of singleton, dispersed, proximal, and tandem duplication, respectively. Of the total 46 OsHyPRP
genes, 21 are tandemly duplicated (Supplementary Figures S1 and S2), this indicates that ongoing
tandem duplications in the rice genome [12,45] might be causing OsHyPRP gene family expansion in
rice. Results from the gene structure analysis of OsHyPRP genes showed that the majority of them (33
genes, 71%) are intron-less, while the remaining genes (13 genes, 28%) have introns that vary from 1 to
3 in number (Supplementary Figure S3).

Figure 2. Chromosomal mapping and clustering of 46 OsHyPRP gene models in rice chromosomes.
The boxes indicate the genes present within the region of 200 Kbp to form a gene cluster.

2.3. Phylogenetic Analysis of the OsHyPRP Family among Different Plant Species

To analyze the phylogenetic relationships of the rice OsHyPRPs with that of HyPRPs of other
plant species, a total of 144 HyPRP proteins; 46 of rice, 24 of Arabidopsis, 30 of maize, 34 of sorghum,
and 10 of Brachypodium distachyon were used to construct a maximum-likelihood phylogenetic tree
with 500 bootstrap replicates. The phylogenetic tree categorized all the 144 HyPRP proteins into
seven distinct clades (A to G; Figure 3). Notably, the majority of OsHyPRPs were found to cluster
together in separate sub-clades along with the HyPRPs of maize and sorghum in clade B and F (19
and 12 OsHyPRPs, respectively), while the Arabidopsis HyPRPs were mainly present in clade A and
C (Figure 3). The clustering of the HyPRPs of rice, maize, and sorghum together, and separation
from Arabidopsis HyPRPs may indicate their early divergence during monocotyledon lineage-specific
evolution. The random distributions of B. distachyon HyPRPs in several clades offers an exception
to this hypothesis, which may be due to high sequence diversity and low numbers of HyPRPs in
B. distachyon. The phylogenetic analysis also revealed that the majority of OsHyPRPs clustered together
into sub-clades are also tandemly duplicated and found to present as gene clusters on rice LGs
(Figures 2 and 3, and Supplementary Figure S2).
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Figure 3. Phylogenetic relationship of rice HyPRPs with that of Arabidopsis, maize, sorghum and
B. distachyon. The 8CM region of all the HyPRPs was used to construct the phylogenetic tree.
The multiple sequence alignment and phylogenetic tree construction were performed with MEGA6.06
using maximum likelihood method with 500 bootstrap replicates. The different shapes with color
code represent the HyPRPs of different plant species; red sphere for Arabidopsis, magenta square for
rice, cyan triangle for sorghum, lawn-green diamond for maize, and blue diamond for Brachypodium.
The one protein each from sorghum and Arabidopsis does not group with other HyPRPs and thus
considered as highly divergent outliers.

2.4. OsHyPRPs Expression Profile in Response to M. oryzae

Under natural environmental conditions, plants are vulnerable to various biotic and abiotic stresses
that severely affect their productivity. Sometimes, the exposure to abiotic stresses compromises the
plant’s resistance toward biotic stress through reorientation of plant-pest interaction [46,47]. Moreover,
the biotic agent directly uses the plant resources, which eventually leads to reduced plant vigor [48].
Therefore, it is of great significance to identify the key regulators that drive the defense response of
plants towards biotic and abiotic stresses. The rice blast disease is a major risk to sustainable rice
production since it causes 10–30% of global loss annually [49]. In one of the previous studies from
our group, we performed the RNA-Seq based transcriptome analysis for M. oryzae inoculated rice
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blast susceptible PB1 and blast-resistant PB1+Pi9 rice lines at 24 h post-infection (hpi) [43]. This
data is available at the Gene Expression Omnibus (GEO) dataset with accession number GSE81906
(www.ncbi.nlm.nih.gov/gds/?term=GSE81906[Accession]). Using this data, we analyzed the expression
of OsHyPRPs, where out of 46 OsHyPRPs genes 15 were found to exhibit expression in at least one of
the samples, while the rest of the 31 genes showed no expression. A higher number of OsHyPRP genes
were found to have up-regulated expression in PB1+Pi9 when compared to PB1, after 24 hpi with M.
oryzae (Figure 4A). Based on the transcriptome analysis, we selected six highly-expressed OsHyPRP
genes (OsHyPRP5, OsHyPRP14, OsHyPRP15, OsHyPRP16, OsHyPRP39, and OsHyPRP40) for their
qRT-PCR based expression profiling in response to biotic & abiotic stresses, and hormone treatment.
Out of the six selected OsHyPRP genes, we observed the qRT-PCR based expression of four OsHyPRP
(OsHyPRP5, OsHyPRP14, OsHyPRP16, and OsHyPRP40) genes.

The qRT-PCR analysis of collected samples was performed only after the appearance of disease
lesions at seven days post-inoculation of M. oryzae in PB1 (Figure 4B). The expression of all the four
OsHyPRPs showed induction in response to M. oryzae in PB1+Pi9 (Figure 4C). However, the expression
of OsHyPRP5 was early inducible, a similar expression pattern was observed in both PB1+Pi9 and
PB1 upon M. oryzae inoculation (Figure 4C). In addition to OsHyPRP5, OsHyPRP14 and OsHyPRP16
also exhibited early induced expression (>three-fold up-regulation) at 12 hpi in response to M. oryzae
inoculation (Figure 4C). Comparatively, among the other genes, the expression of OsHyPRP16 was
strongly induced upon M. oryzae inoculation in PB1+Pi9. In the blast-susceptible PB1 rice line,
the expression of OsHyPRP14, OsHyPRP16, and OsHyPRP40 either remained at the basal level or
down-regulated in response to M. oryzae, except for 2.8-fold up-regulation of OsHyPRP14 at 12 hpi
(Figure 4C). This finding shows that the presence of Pi9 positively regulates the expression of OsHyPRPs,
and this induced expression may be involved in the enhanced defense response in rice blast resistant
PB1+Pi9 plants. Additionally, our qRT-PCR based expression patterns of OsHyPRPs are comparable
with that of the RNA-Seq transcriptome data of Jain et al. [43] (Figure 4A,C) and thus further corroborate
the up-regulation of OsHyPRP genes in PB1+Pi9 as compared to PB1, upon M. oryzae inoculation.

Similar to the present study, the early induced up-regulation of Arabidopsis AtDHyPRP1 has been
observed in response to P. syringae [28]. Likewise, the C. gloeosporioides infected walnut was found
to show early induced expression of the JsPRP1 gene [24]. In soybean, the expression of GmHyPRPs
and SbPRP was found to be up-regulated in response to Phakopsora pachyrhizi [27] and soybean mosaic
virus [26], respectively. Several studies have reported the role of HyPRPs to confer the disease resistance
towards different plant pathogens. Recently, Liu et al. [24] found that the overexpression of the walnut
HyPRP gene, JsPRP, in tobacco enhances the resistance against C. gloeosporioides in transgenic plants.
Additionally, using in vitro assay, the recombinant JsPRP protein was found to show antifungal activity
towards different fungal pathogens such as C. gloeosporioides, Gibberella moniliformis, Botryosphaeria
dothidea, and Fusarium solani [24]. The similar antifungal activity of Arabidopsis HyPRP protein,
EARLI1, against Saccharomyces cerevisiae has been reported by Li et al. [50]. Additionally, the exogenous
application of recombinant EARLI1 was found to inhibit the conidial germination and hyphae growth of
Botrytis cinerea and Fusarium oxysporum [50]. In a recent study, the CcHyPRP overexpressing transgenic
rice lines exhibit enhanced tolerance towards both biotic and abiotic stresses, where enhanced tolerance
towards biotic stresses was suggested to be plausibly contributed by the higher endochitinase activity
in transgenic rice plants [37]. Jung et al. [38] illustrated the role of EARLI-type HyPRP, AZI1, as a
component of plant systemic immunity, where AZI1 may act to regulate and/or directly translocate the
mobile signals during SAR in response to biotic stress. All these findings suggest that the HyPRPs
perform a diverse role in enhancing plant tolerance towards different biotic stresses.

www.ncbi.nlm.nih.gov/gds/?term=GSE81906[Accession]
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Figure 4. The expression of OsHyPPR genes in response to M. oryzae. (A) The heat map for the
expression profile of OsHyPRP genes as determined through RNA-Seq analysis of PB1 and PB1+Pi9
in response to M. oryzae after 24 hpi. The expression shown here is the log2 fold change value as
compared to mock-treated PB1 and PB1+Pi9. (B) The picture is showing disease lesions in PB1 after
seven days of M. oryzae inoculation, while no disease lesions were present in PB1+Pi9 (C) The qRT-PCR
based expression profile of four OsHyPRP genes showed up-regulated expression in RNA-Seq analysis.
The calculated expression level was relative to the untreated respective rice lines. The experiment was
performed with three technical replicates of three independent biological replicates. The error bars
represent the standard error of the means of three independent biological replicates. The rice elongation
factor-1A (OsEF-1a) gene was used to normalize the qRT-PCR expression data.

In addition, a few other studies have also reported negative effects of HyPRPs on plant’s resistance
against biotic stress. In one recent study, using a gain- and loss-of-function approach, Yang et al. [40]
suggested the role of GbHyPRP1 as a negative regulator of disease resistance in cotton against pathogenic
fungi Verticillium dahlia. Using a similar approach, Yoem et al., [39] characterized two HyPRP genes;
CaHyPRP1 from C. annuum (pepper) and NbHyPRP1 from Nicotiana benthamiana. The transient
overexpression of CaHyPRP1 in N. benthamiana enhances the disease susceptibility towards virulent
P. syringae pv. tabaci. In contrast, the silencing of CaHyPRP1 and NbHyPRP1 resulted in the enhanced
basal defense against virulent and avirulent plant pathogens through suppression of pathogen-induced
cell death [39]. Based on these results, Yoem et al. [39] suggested that CaHyPRP1 and NbHyPRP1
perform the dual function as a positive regulator of cell death and negative regulator of plant basal
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defense against pathogens. Together, in the light of previous findings, the early and strong induction of
OsHyPRPs, particularly OsHyPRP14 and OsHyPRP16 genes in PB1+Pi9 suggests that these genes may
contribute towards the enhanced tolerance against M. oryzae in the blast-resistance PB1+Pi9 rice line.

2.5. OsHyPRPs Expression Profile under Abiotic Stress

Abiotic factors such as salt, drought, and temperature are the key environmental cues which
directly affect the plant’s geographical distribution, physiology, and productivity [47,48,51–56]. In the
present investigation, the expression profiling of OsHyPRP genes under salt, cold, and heat stress
revealed their differential expression. In PB1+Pi9, under salt stress, all the genes exhibit induced
expression, except for OsHyPRP5 that remains at the basal level at all the time points (Figure 5A).
Among the early induced OsHyPRPs, the OsHyPRP14 exhibit more than seven-fold up-regulation at
12 h of salt treatment, which reduced to the basal level at subsequent time points (Figure 5A). Although
the OsHyPRP16 shows no early induction, its expression was more than three-fold up-regulated at
24 h and 48 h of salt treatment in PB1+Pi9 (Figure 5A). In the case of PB1, only the OsHyPRP5 exhibit
increased expression in response to salt stress, while the other genes remain either at the basal level or
down-regulated as compared to untreated control (Figure 5A).

Figure 5. The qRT-PCR based expression of four selected OsHyPPR genes in PB1 and PB1+Pi9, in
response to stress such as NaCl (A), cold (B), and heat (C), and hormone treatments including ABA (D),
SA (E) and MeJA (F). The calculated expression level was relative to the untreated rice seedlings of
respective rice lines. The experiment was performed with three technical replicates of three independent
biological replicates. The error bars represent the standard error of the means of three independent
biological replicates. The rice elongation factor-1A (OsEF-1a) gene was used to normalize the qRT-PCR
expression data.
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Surprisingly, we found that all four OsHyPRP genes were down-regulated in PB1 under cold
stress. In contrast to PB1, the OsHyPRP5 and OsHyPRP16 exhibit early induced and consistently
up-regulated expression in PB1+Pi9 under cold stress, whereas OsHyPRP16 shows comparatively
strong up-regulation (>39-fold at 24 h and 48 h) (Figure 5B). Although the OsHyPRP14 and OsHyPRP40
were also found to be cold-inducible, their expression shows up-regulation only at 48 h (6.8-fold)
and 12 h (15.1-fold), respectively (Figure 5B). In contrast to cold stress, the majority of OsHyPRPs
exhibits up-regulation in PB1 under heat stress, except for OsHyPRP16, whose expression remains
constantly down-regulated (Figure 5C). In PB1, the expression of OsHyPRP5 showed a continuous
increase (four-fold at 12 h to 18-fold at 48 h) in response to heat stress, while in PB1+Pi9 it showed a
reciprocal pattern of expression (6.7-fold at 12 h to 0.7-fold at 48 h) (Figure 5C). Besides OsHyPRP5, the
OsHyPRP14 (>seven-fold at 12 h and 48 h) and OsHyPRP40 (21-fold at 12 h) also exhibit up-regulation
in PB1 under heat stress, while in contrast, their expression was remained either at the basal level or
down-regulated in PB1+Pi9 (Figure 5C). In PB1+Pi9, the OsHyPRP16 was the only gene that showed
differentially up-regulated expression (2.8-fold) at 12 h of heat stress, as compared to PB1 (Figure 5C).

In summary, the expression of OsHyPRP14, OsHyPRP16, and OsHyPRP40 showed differential
up-regulation in PB1+Pi9, as compared to PB1, during all the abiotic stresses (Figure 5A–C). Similar to
the present study, the expression of pigeonpea CcHyPRP showed strong induction in the leaf and root
tissues in response to different abiotic stresses such as drought, salt, heat, and cold [20,57]. In cotton, the
strongly up-regulated expression of GhHyPRP4 in cold stress, and GhHyPRP3 in several abiotic stresses
such as dehydration, cold and salt stress has been observed [21,22]. Likewise, the cold-inducible
expression of Arabidopsis HyPRPs, namely EARLI1 and AZI1, has been reported [58–60], where the
AZI1 was also observed to show salt stress-inducible expression [61]. Similarly, in response to cold and
salt stress, the P. trifoliata PtrPRP exhibits induced expression [36]. The expression of msa CIC (HyPRP
gene) in cold-tolerant M. sativa [16] and, MfHyPRP in M. falcata was found to be cold-inducible [23].
Furthermore, the MfHyPRP was found to show an inducible expression in response to drought stress
and, hydrogen peroxide and nitric oxide treatment; however, its expression remains low under salt
stress [23]. Similarly, the soybean SbHyPRP was found to show inducible expression only under low
salt conditions, while its expression remained low under high salt conditions [26].

Several functional studies have been performed in the last two decades to characterize the role
of HyPRPs in response to abiotic stresses. The EARLI-type HyPRPs in Arabidopsis were found to
play a significant role in cold and salt stress tolerance [19,59,60]. The RNA interference (RNAi) based
suppression of EARLI resulted in the reduced freezing tolerance in EARLI suppressed Arabidopsis
lines [19]. Moreover, higher electrolyte leakage in the EARLI1 knockdown Arabidopsis, as compared
to EARLI1 overexpressing Arabidopsis, suggests that EARLI1 enhances the freezing tolerance through
reduction of freezing-induced cellular damage [35]. Additionally, the overexpression of EARLI1 in
Arabidopsis plants conferred enhanced tolerance towards salt stress [59]. Similar to EARLI1, its
homolog in Arabidopsis, AZI1, was also found to enhance the salt and freezing tolerance in AZI1
overexpressing Arabidopsis [60,61]. The AZI1 was found to act as a direct target of mitogen-activated
protein kinase MPK3, where the presence of MPK3 is essential for strong and robust tolerance towards
salt stress [61]. The overexpression of MfHyPRP in tobacco conferred enhanced tolerance towards
freezing and chilling stress, in addition to the methyl viologen induced oxidative stress [23]. Similarly,
the ectopic expression of CcHyPRP in yeast, Arabidopsis, and rice resulted in the enhanced tolerance
towards multiple abiotic stresses, including drought, salt, and heat stresses [20,37]. Moreover, under
abiotic stress conditions, the transgenic rice overexpressing CcHyPRP showed a higher survival rate
with more productivity when compared to wild type [37]. Using the RNAi approach, Peng et al. [36]
showed that the PtrPRP suppressed P. trifoliate plants were more susceptible to cold stress than wild
type plants, which indicates the role of PtrPRP as a positive regulator of cold tolerance. In contrast,
Li et al. [29] demonstrated the negative role of tomato SpHyPRP1 on abiotic stresses tolerance, where
SpHyPRP1 was found to be responsible for the reduced ROS-scavenging and thus compromised abiotic
stress tolerance, which is believed to be contributed by ROS-scavenging [62]. All the above previous
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findings suggest that HyPRPs are involved either as a positive regulator [20,37,59,60] or negative
regulator [29,39] of plants stress tolerance. In the present study, the strongly induced expression of
OsHyPRP16 and OsHyPRP40 was found to be more consistent at least during cold and salt stresses,
which indicates their possible role in defense response towards these abiotic stresses.

2.6. Expression Profiling of OsHyPRPs under Phytohormone Treatment

Phytohormones are small signaling molecules that perform diverse functions such as regulation
of cellular and developmental processes during the plant lifespan [63–65]. The accumulation of
phytohormones such as ABA, SA, and JA (Jasmonic acid), and their cross-talk accompanied the stress
tolerance in plants [66–70]. Since the hormones signaling pathways are crucial for biotic and abiotic
stress responses, we performed the expression profiling for selected OsHyPRP genes in response to
stress-related hormones namely, ABA, SA, and MeJA.

In ABA-treated PB1+Pi9, the OsHyPRP5 (four-fold) and OsHyPRP14 (>2.7-fold) exhibit early
induced up-regulated expression at 12 h (Figure 5D). The expression of OsHyPRP16 was found to show
up-regulation (2.4-fold) only at 24 h in PB1+Pi9. Notably the expression of OsHyPRP14 and OsHyPRP16
follow the similar temporal expression pattern in PB1+Pi9 under salt stress and ABA treatments
(Figure 5A,D). Unlike others, the expression of OsHyPRP40 constantly remained down-regulated
in PB1+Pi9 (Figure 5D). In the case of ABA-treated PB1, the expression of OsHyPRP5 constantly
remained down-regulated (Figure 5D). The OsHyPRP14 follows a similar decreasing expression pattern
in both PB1+Pi9 and PB1, with a comparatively abrupt decrease in the case of PB1+Pi9 (Figure 5D).
The expression of OsHyPRP16 and OsHyPRP40 was found to show up-regulation only at 12 h of
ABA treatment in PB1 (Figure 5D). In summary, the ABA treatment resulted in the differential and
induced expression of OsHyPRP5 and OsHyPRP16 in PB1+Pi9, as compared to PB1. Similar to our
study, the ABA treatment resulted in a strong and early induced expression of CcHyPRP1 in pigeonpea
roots, MfHyPRP in M. falcate, and PtrPRP in P. trifoliata [20,23,36]. In contrast, the BnPRP in B. napus,
GhHyPRP4 in cotton and SbPRP in soybean, and SpHyPRP1 in tomato were found to be down-regulated
upon ABA treatment [18,21,26,29]. Since the suppression of negative regulators or overexpression of
positive regulators of ABA response is known to confer drought tolerance [19,71], the down-regulation
of SpHyPRP1 in response to exogenous ABA, and the reduced growth along with enhanced salt
and drought sensitivity in SpHyPRP1 overexpressing transgenic tomato suggest the negative role
of SpHyPRP1 in ABA signaling [29]. In the present analysis, the OsHyPRP5 and OsHyPRP16 were
differentially induced in ABA-treated PB1+Pi9 as compared to PB1 (Figure 5D), which indicates the
positive effect of Pi9 on their expression. However, it is required to validate the role of OsHyPRP5 and
OsHyPRP16 in ABA-mediated salt and drought stress response.

In response to SA treatment, the OsHyPRP5 and OsHyPRP16 exhibit up-regulated expression in
PB1+Pi9, while their expression remains either at the basal level or down-regulated in PB1, except for
the 2.4-fold up-regulation of OsHyPRP5 at 24 h (Figure 5E). Although the OsHyPRP40 also exhibit
up-regulated expression in response to SA, it shows a similar expression pattern in both PB1+Pi9
and PB1, with comparatively strong up-regulation in the latter (Figure 5E). Unlike other genes, the
expression of OHyPRP14 was only up-regulated in PB1 upon SA treatment, while it remained either at
the basal level or down-regulated in PB1+Pi9 (Figure 5E). Similar to ABA treatment, the expression of
OsHyPRP5 and OsHyPRP16 was also induced in SA-treated PB1+Pi9 (Figure 5D,E). In MeJA-treated
PB1+Pi9, only the OsHyPRP16 exhibit early and strong induction (2.5-fold at 12 h) with peak expression
at 24 h (4.2-fold) (Figure 5F). However, the expression of OsHyPRP14 also showed up-regulation
(2.7-fold at 48 h) in the later stages of MeJA treatment in PB1+Pi9 (Figure 5F). Meanwhile, in PB1,
the expression of OsHyPRP14 and OsHyPRP16 remains either at the basal level or down-regulated in
response to MeJA (Figure 5F). Unlike other hormone treatments, the expression of OsHyPRP5 and
OsHyPRP40 remains low in both MeJA-treated rice lines (Figure 5F). Altogether, in response to each
ABA, SA, and MeJA treatment in PB1+Pi9, the OsHyPRP16 is the only gene that showed up-regulated
expression, at least in one of the time points of hormone treatment.
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Only a few previous studies are available that have analyzed the expression profile of HyPRPs in
response to SA and MeJA/JA treatments. In soybean, the expression of SbPRP was found to show rapid
induction upon SA treatment, while in contrast, its expression shows down-regulation in response to
MeJA treatment [26]. In the present investigation, the OsHyPRP5 and OsHyPRP40 showed a similar
expression behavior in response to SA and MeJA treatment in PB1+Pi9 (Figure 5E, F). Li et al., [28]
reported the induced expression of AtDHyPRP1 in response to MeJA and SA treatment as well as in
response to P. syringae. We also observed the induced expression of OsHyPRP16 under biotic stress and
hormone treatments, including ABA, SA, and MeJA (Figure 5D–F). In a recent study, the expression of
cotton GbHyPRP was strongly down-regulated in response to SA treatment, while it was significantly
up-regulated in each ABA, JA, and ethylene treatment [40]. Based on the similarity in the expression
profile of GbHyPRP in response to SA and V. dahlia inoculation, Yang et al. [40] proposed a negative
role of GbHyPRP towards V. dahlia resistance in cotton via a SA-mediated signaling pathway [40].
Intriguingly, in the present study, the up-regulation of OsHyPRP16 also follows a similar expression
pattern in SA-treated and M. oryzae inoculated PB1+Pi9 (Figures 4 and 5E) [41,42]. Based on this
expression similarity, we also suspect that OsHyPRP16 and SA-mediated signaling might be involved
to confer blast-resistance in PB1+Pi9, where Pi9 is supposed to have a central role in activating the
basal defense pathway.

2.7. Analysis of Cis-Regulatory Elements in Four OsHyPRP Promoter Sequences

The cis-elements act as molecular switches that participate in the transcriptional regulation of
genes during different environmental cues [72]. The 1.5 kb upstream DNA sequences of the four
selected OsHyPRP genes were retrieved and analyzed using the PLACE database. The list of various
putative cis-regulatory elements present in the upstream sequences is given in Supplementary Table S1.
The promoter sequences were found to contain sequence motifs that are responsive to biotic stresses
(pathogen, elicitor, and disease resistance responsive elements), abiotic stress (cold, heat, salt, drought,
and wounding responsive elements) and hormones (ABA, SA, JA, and GA responsive elements)
(Figure 6 and Supplementary Table S1). The detailed analysis of sequence motifs revealed that
the promoter sequence of OsHyPRP16 and OsHyPRP40 contains the highest number of sequence
motifs that are responsive to biotic and abiotic stresses and, hormones treatment. However, the
expression of OsHyPRP40 under different experimental conditions did not show correlation with the
number of cis-regulatory elements in its promoter sequence, except for M. oryzae inoculation and
SA treatment (Figures 4C and 5E and Supplementary Table S1). Similarly, in one of the previous
studies, besides the absence of cold-responsive elements, the GhHyPRP4 promoter was found to be
cold-inducible as shown by the high activity of GhHyPRP4 promoter-driven β-glucuronidase (GUS) gene
in transgenic Arabidopsis under cold stress [21]. In contrast to OsHyPRP40, the OsHyPRP16 exhibits a
good correlation between its inducible expression in response to M. oryzae, salt, cold, ABA, SA, and
MeJA, and the occurrence of different stresses-and hormone-responsive cis-regulatory elements in
the promoter sequence (Figures 4C and 5 and Supplementary Table S1). In particular, the promoter
sequence of OsHyPRP16 contains the highest number of cis-regulatory elements (28 in number) that
are involved in pathogen-, elicitors-, and disease resistance-response. The early and strong inducible
expression of OsHyPRP16 in PB1+Pi9, after M. oryzae inoculation (Figure 4C) and abiotic stresses
(Figure 5A–C), and hormone treatment (Figure 5D–F) indicates that this gene may be actively involved
in the defense-related pathways.
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Figure 6. In silico analysis of the promoter region of four OsHyPRPs shows the presence of different
cis-regulatory elements. The 1500 bp region up-stream of ATG start codon was analyzed using the
PLACE database webserver. The base immediate upstream of ATG is considered as−1 and the positions
of various cis-regulatory elements are relative to −1 position. Arrows at the cis-regulatory elements
indicate the position of elements on either + strand (forward direction) or − strand (reverse direction).

2.8. Protein Structure Prediction and Docking Analysis

The proline-rich N-terminal domain of HyPRPs suggests their role as cell-wall structural proteins;
however, the expression of HyPRPs in different plant tissues implies their significant roles in growth and
development [9]. In HyPRPs, the presence of atypical N-terminal proline-rich domain and typical 8CM
protein C-terminal domain indicate their novel functions that may be more related to 8CM proteins.
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The 8CM containing proteins, in particular, nsLTPs are known to bind hydrophobic ligands
(sterols and lipids) to perform their biological functions [13–15,73]. Owing to the potential role of
OsHyPRP16 in the majority of stresses, it was worthwhile to analyze the binding of OsHyPRP16 protein
with different putative ligands. Previously, Yoem et al. [39] illustrated with the help of domain deletion
analysis that the 8CM is essential for the cell death-inducing activity of CcHyPRP1. Therefore, in the
present investigation, we performed in silico docking to analyze the binding of mature OsHyPRP16
(without signal peptide), and fragment deleted OsHyPRP16 (only 8CM) with that of various lipids,
lipid-derivatives, fungal cell-wall components, and SA. The deduced three-dimensional (3D) structures
of mature and fragment deleted OsHyPRP16 are illustrated in Figure 7. The Ramachandran plot
analysis for both the predicted protein structures showed more than 90% of amino acid residues within
the energetically allowed region.

Figure 7. The predicted three-dimensional (3D)-structure of OsHyPRP16 protein. (A) Mature
OsHyPRP16 (without signal peptide). (B) Proline-rich region fragment deleted OsHyPRP16.

The docking results for the mature OsHyPRP16 showed strong binding with all the putative
ligands, while the fragment deleted OsHyPRP16 was found to exhibit either weak or no binding with
the putative ligands (Table 2). These results indicate that the presence of the proline-rich region is
essential for the strong binding of mature OsHyPRP16 with the putative ligands. The strong putative
binding of mature OsHyPRP16 with fungisterol, ergosterol, N-Acetyl glucosamine (NAG), and N-acetyl
muramic acid (NAM) may be involved in the PTI (Table 2), where fungal specific sterols may act as
PAMPs to trigger the immune response upon fungal attack. Intriguingly, both the mature as well
as fragment deleted OsHyPRP16 were found to show strong binding with JA (Table 2). Previously,
the tobacco LTP1, an 8CM containing protein, was found to show binding with JA to form LTP1-JA
complex, where the exogenous application of LTP-JA complex confers resistance against Phytophthora
parasitica in tobacco plants [73]. In the present study, the predicted binding of OsHyPRP16 with JA and
SA, and the induced expression of OsHyPRP16 during SA and methyl-ester of JA (MeJA) treatment
(Table 2 and Figure 5E,F) suggests a plausible role of OsHyPRP16 to enhance the resistance against M.
oryzae in rice through SA- and JA-mediated signaling.
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Table 2. The predicted molecular docking energy level and other features for the interaction of various ligands with mature and fragment deleted OsHyPRP16.

Ligand
Estimated Free

Energy of Binding
(kcal/mol)

vdW + Hbond +
Desolvation

Energy (kcal/mol)

Electrostatic Energy
(kcal/mol)

Total
Intermolecular

Energy (kcal/mol)
Frequency (%) Interaction

Surface

Mature OsHyPRP16

Sterols

Lanosterol −5.65 −7.37 −0.01 −7.38 75 869.90
Desmosterol −8.88 −10.61 −0.04 −10.65 67 809.07
Cholesterol −9.02 −10.68 −0.01 −10.69 57 817.93
Fungisterol −7.28 −9.42 −0.08 −9.5 23 819.20
Ergosterol −8.08 −9.52 −0.01 −9.53 64 832.67

Lipids and plant
hormones

Linolenic acid −6.36 −9.15 −0.32 −9.48 12 677.53
JA −6.09 −6.41 −0.9 −7.31 90 526.62
MeJA −5.56 −6.91 −0.01 −6.92 33 540.28
SA −5.54 −5.66 −0.11 −5.77 21 484.46

Pathogen cell wall
components

NAG −5.5 −5.64 −0.11 −5.75 21 484.33
NAM −6.31 −6.33 −0.44 −6.77 48 609.37

Fragment Deleted OsHyPRP16

Sterols

Lanosterol 0.7 −0.96 −0.01 −0.97 50 867.84
Desmosterol 4.86 1.84 −0.05 −4.89 30 616.49
Cholesterol 8.4 −3.13 −0.02 −315% 40 722.06
Fungisterol 2.7 −4.84 −0.05 −4.89 30 716.49
Ergosterol 4.08 1.26 0.06 1.32 40 743.26

Lipids and plant
hormones

Linolenic acid 2.2 −0.95 −0.46 −1.42 1 600.68
JA −5.35 −6.31 −0.64 −6.95 70 538.91
MeJA −2.63 −4.28 −0.04 −4.32 24 447.63
SA −2.3 −2.78 −0.13 −2.91 19 339.79

Pathogen cell wall
components

NAG −2.38 −2.72 −0.05 −2.76 15 381.84
NAM −2.21 −3.1 −0.22 −3.32 4 422.58
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3. Materials and Methods

3.1. Identification and Sequence Analysis of OsHyPRPs

The complete set of rice protein sequences were retrieved from the Rice Genome Annotation
Project (RGAP) database available at http://rice.plantbiology.msu.edu. All the retrieved rice protein
sequences were searched for the HMM profile of Hydrophobic_seed (PF14547), Tryp_alpha_amyl
(PF00234), and LTP_2 (PF14368) using “hmmsearch” program of HMMER v 3.1 (http://hmmer.org),
with e value 1e−4. The proteins containing any of the HMM profiles were further scanned using
PfamScan program (www.ebi.ac.uk/Tools/pfa/pfamscan/), with parameter; -e_seq 1e-04 -e_dom 1e-04
-clan_overlap, to confirm the presence of domains identified through “hmmsearch” program. All the
identified putative rice candidate genes were then aligned and manually analyzed for the presence
of 8CMs; C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C, where C stands for cysteine residue and X stands for
any other amino acid residue, while n represents the number of amino acid residues. The proteins
lacking the essential 8CM and N-terminal signal peptide (predicted through SignalP-5.0; www.cbs.
dtu.dk/services/SignalP/, and TargetP1.1; www.cbs.dtu.dk/services/TargetP/) were identified and then
excluded from the further analysis. Furthermore, the proteins containing glycosylphosphatidylinositol
(GPI) anchored signals (predicted by big-Pi plant server; mendel.imp.ac.at/gpi/plant_server.html) were
also excluded from the analysis. The remaining proteins were then manually inspected for the presence
of proline-rich regions, as characterized by presence of tandem repeats of (XP)n and/or (XPY)n at least
for twice [74]. Finally, the shortlisted proteins containing proline-rich regions in between the N-terminal
signal peptide and C-terminal 8CM were named as OsHyPRPs. The pI and molecular weight of
identified OsHyPRPs was predicted through the Compute pI/Mw tool (web.expasy.org/compute_pi/).

3.2. Chromosomal Mapping and Gene Duplication Analysis of OsHyPRP Genes

The genomic coordinates of the OsHyPRP genes were extracted from the general feature format
(gff) file (retrieved from https://rapdb.dna.affrc.go.jp/) and were used to schematically represent
the intron-exon structure of OsHyPRP genes using Gene Structure Display Server (GSDS; gsds.cbi.
pku.edu.cn/). The extracted genomic coordinates were also used to map the location of OsHyPRP
genes on all the 12 rice chromosomes using the MapInspect program (www.plantbreeding.wur.nl/uk/

software_mapinspect.html). All the putative genes encoding OsHyPRP proteins were localized on rice
chromosomes from 5′ to 3′ based on their genomic coordinates and numbered accordingly from top
to bottom on chromosomes 1 to 12 along with prefix OsHyPRP. To analyze the duplication events in
OsHyPRP gene family, all-versus-all BLASTP was performed for 66,338 rice protein sequences with
parameter: -evalue 1e-10, -outfmt 6, -num_threads 10 and -max_target_seqs 5. The BLASTP results
were then used as input for MCScanX [75] to identify the collinear gene pairs of OsHyPRP gene family
members in rice with default parameters.

3.3. Sequence Alignment and Phylogenetic Analysis

The multiple sequence alignment of full length OsHyPRPs were performed using CLC Genomic
Workbench 12.0 (www.qiagenbioinformatics.com/). The 8CM containing C-terminal region of HyPRP
proteins of five different plants including rice, Arabidopsis, maize, sorghum, and B. distachyon was
extracted and used to find the evolutionary relationship among HyPRP proteins of different plant
species. The multiple sequence alignment of deduced sequences was generated using MUSCLE [76],
with default parameters, and then used for constructing the phylogenetic tree by employing MEGA
software version 6.06 using maximum likelihood method based on the JTT model with 500 bootstrap
replicates [77].

3.4. Biotic and Abiotic Stress and Hormone Treatment

The rice blast contrasting rice lines, namely, PB1 (blast-susceptible) and PB1+Pi9 (blast-resistant),
were used to analyze the expression profile of OsHyPRP genes under different stresses and treatments.

http://rice.plantbiology.msu.edu
http://hmmer.org
www.ebi.ac.uk/Tools/pfa/pfamscan/
www.cbs.dtu.dk/services/SignalP/
www.cbs.dtu.dk/services/SignalP/
www.cbs.dtu.dk/services/TargetP/
mendel.imp.ac.at/gpi/plant_server.html
web.expasy.org/compute_pi/
https://rapdb.dna.affrc.go.jp/
gsds.cbi.pku.edu.cn/
gsds.cbi.pku.edu.cn/
www.plantbreeding.wur.nl/uk/software_mapinspect.html
www.plantbreeding.wur.nl/uk/software_mapinspect.html
www.qiagenbioinformatics.com/
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The seeds of both the rice lines were surface sterilized and germinated on moist filter paper for 4–5 days
at 28 ◦C. The germinated seeds were transferred to the hydroponic system containing half-strength
Murashige and Skoog (MS) medium. For abiotic stress and hormone treatment, two-week-old rice
seedlings were treated, separately with salt (100 µM, NaCl), ABA (100 µM), MeJA (100 µM), and SA
(100 µM) by replacing the hydroponic medium with fresh medium containing respective chemicals.
Heat and cold stress were given by incubating the two-week-old rice seedlings at 37 ◦C and 4 ◦C,
respectively. The leaf samples of treated seedlings were harvested at 0 h, 12 h, 24 h and 48 h intervals
after treatment. For biotic stress treatment, we used the method as followed by Jain et al. [43]. Briefly,
the 22 days old rice plants were sprayed with M. oryzae (Mo-nwi-53) spore suspension (105 spores/mL)
containing 0.25% gelatin. Leaf tissues of infected rice plants were collected at 12 hpi, 24 hpi, and 48hpi.
Some M. oryzae infected plants of each rice line were kept under observation and recorded for disease
progression after seven days post-inoculation, using 0–5 disease rating scale [78]. All the treatments
were performed in three biological replicates, and the collected tissue samples were immediately frozen
in liquid nitrogen and stored at −80 ◦C till further use.

3.5. RNA Extraction and Real-Time Quantitative Reverse Transcription PCR

Total RNA from harvested samples were isolated using Sigma’s Spectrum Plant Total RNA
Kit (Sigma-Aldrich, St. Louis, MO, USA), as per the instruction manual. For first-strand cDNA
synthesis, 1 µg of total RNA was converted to cDNA using iScript cDNA Synthesis Kit following
the manufacturer’s instructions (Bio-Rad Laboratories, USA). The primer sequences used for the
qRT-PCR analysis of OsHyPRP genes are listed in Supplementary Table S2. The qRT-PCR reactions
were performed in 20 µL reaction mixture using 2x iQ SYBR Green Supermix (Bio-Rad, California,
USA) with universal cycling conditions (95 ◦C; 5 min, 40 cycles of 95 ◦C for 10 s and 60 ◦C for 60 s) and
melt curve analysis on a CFX96 Touch Real-Time PCR detection system (Bio-Rad). Each reaction was
performed with three technical replicates of each independent biological replicates.

3.6. Promoter Sequence Analysis of Cis-Regulatory Elements

The 1.5 kb region 5′ upstream of the start codon of selected OsHyPRP genes was retrieved from
RAP-DB (rapdb.dna.affrc.go.jp/) and analyzed using the PLACE web server (www.hsls.pitt.edu/obrc/

index.php?page=URL1100876009) to find the potential cis-acting regulatory elements.

3.7. Protein Structure Prediction and Docking Analysis

The 3D Structures of the candidate protein was predicted through I-Tasser software and further
refined by ModRefiner [79,80]. The Ramachandran plot for predicted protein structure was analyzed
using Rampage software (mordred.bioc.cam.ac.uk/~{}rapper/rampage.php). After validation of protein
structure by SAVES server (https://services.mbi.ucla.edu/SAVES/), docking analysis was performed
by using molecular modeling simulation software, AutoDock 4, available at Docking Server, as 100
iterations with default parameters [81,82]. For protein-ligand docking analysis, the structure of lipid,
sterols and cell wall components was retrieved from PubChem (pubchem.ncbi.nlm.nih.gov) and
converted to Docking Server compatible pdb format using babel tool [83].

4. Conclusions

In the current study, we systematically identified 45 OsHyPRP genes and characterized them
for their chromosomal distribution, gene structure, phylogenetic relationship, duplication analysis,
and expression profiling under different experimental conditions. The OsHyPRP genes are mostly
intron-less with biased chromosomal distribution and are categorized into seven clades based on their
phylogenetic relationship. We also identified some new candidate OsHyPRP genes that were not
identified previously. Furthermore, the qRT-PCR based expression profiling revealed the early induced
up-regulated expression of OsHyPRP16 under stress conditions and hormone treatment. Additionally,
the mature OsHyPRP16 protein was predicted to exhibit a strong binding with various lipids, lipid

rapdb.dna.affrc.go.jp/
www.hsls.pitt.edu/obrc/index.php?page=URL1100876009
www.hsls.pitt.edu/obrc/index.php?page=URL1100876009
mordred.bioc.cam.ac.uk/~{}rapper/rampage.php
https://services.mbi.ucla.edu/SAVES/
pubchem.ncbi.nlm.nih.gov
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derivatives, fungal cell-wall components, and phytohormones based on the in silico modeling. All these
results enable us to put forward the OsHyPRP16 as a promising candidate for future functional analysis
that could help to devise strategies for the development of a rice cultivar tolerant to multiple stresses.
However, owing to the rapid sequence diversification through ongoing gene duplication in due course
of evolution, the functional diversification or possible neofunctionalization of HyPRPs in rice can never
be overruled.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/9/343/s1,
Figure S1: Collinear genes pairs of OsHyPRP genes on all 12 rice chromosomes. Red lines indicate segmental
duplication of OsHyPRP genes on all 12 rice chromosomes and gray lines represent the collinear segments other
than of OsHyPRP genes; Figure S2: Tandem and collinear pairs of duplicated OsHyPRP genes in rice genome as
predicted through MCScanX; Figure S3: The intron-exon structure of OsHyPRP genes. The genomic coordinates of
OsHyPRPs were used to draw the gene structure. The majority of genes were found to be intron-less; Table S1:
List of cis-regulatory elements, their sequence, functions and number of elements identified in the 1.5 kb promoter
region of four OsHyPRP genes; Table S2: The sequence of the primers used for qRT-PCR based expression analysis.
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