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A B S T R A C T

Asparagine-linked (N-linked) glycosylation is the most common protein modification in eukaryotes, affecting over
two-thirds of the proteome. Glycosylation is also critical to the pharmacokinetic activity and immunogenicity of
many therapeutic proteins currently produced in complex eukaryotic hosts. The discovery of a protein glyco-
sylation pathway in the pathogen Campylobacter jejuni and its subsequent transfer into laboratory strains of
Escherichia coli has spurred great interest in glycoprotein production in prokaryotes. However, prokaryotic
glycoprotein production has several drawbacks, including insufficient availability of non-native glycan precursors.
To address this limitation, we used a constraint-based model of E. coli metabolism in combination with heuristic
optimization to design gene knockout strains that overproduced glycan precursors. First, we incorporated re-
actions associated with C. jejuni glycan assembly into a genome-scale model of E. coli metabolism. We then
identified gene knockout strains that coupled optimal growth to glycan synthesis. Simulations suggested that
these growth-coupled glycan overproducing strains had metabolic imbalances that rerouted flux toward glycan
precursor synthesis. We then validated the model-identified knockout strains experimentally by measuring glycan
expression using a flow cytometric-based assay involving fluorescent labeling of cell surface-displayed glycans.
Overall, this study demonstrates the promising role that metabolic modeling can play in optimizing the perfor-
mance of a next-generation microbial glycosylation platform.
1. Introduction

Protein glycosylation is the attachment of glycans (mono-, oligo-, or
polysaccharide) to specific amino acid residues in proteins, most
commonly asparagine (N-linked) or serine and threonine (O-linked)
residues. Roughly three-quarters of eukaryotic proteins and more than
half of prokaryotic proteins are glycosylated (Dell et al., 2010). Glyco-
sylation is also vitally important to the development of many protein
biologics, and has been harnessed for enhancing therapeutic properties
such as half-life extension (Elliott et al., 2003; Flintegaard et al., 2010;
Ilyushin et al., 2013; Lindhout et al., 2011), antibody-mediated cyto-
toxicity (Li et al., 2017; Lin et al., 2015), and immunogenicity (Lipinski
et al., 2013; Sadoulet et al., 2007; Wacker et al., 2014).

Though once thought to occur only in eukaryotes, protein glycosyl-
ation has now been discovered in all three domains of life, including
bacteria (Nothaft and Szymanski, 2010). The best characterized bacterial
N-glycosylation system is that of the human pathogen Campylobacter
.
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jejuni (Szymanski et al., 1999). The C. jejuni glycan has the form of a
branched heptasaccharide Glc GalNAc5 Bac, where Glc is glucose, Gal-
NAc is N-acetylgalactosamine, and Bac is bacillosamine. This glycan is
assembled on the lipid carrier undecaprenyl pyrophosphate (Und-PP) on
the cytoplasmic face of the inner membrane by an enzymatic pathway
encoded by the pgl (protein glycosylation) locus (Fig. 1). The fully
assembled glycan is flipped across the membrane and transferred to
asparagine residues in acceptor proteins by the oligosaccharyltransferase
(OST) PglB. PglB attaches the heptasaccharide to
periplasmically-localized proteins containing the consensus sequence
D/E-X-N-Z-S/T, where X and Z are any residue except proline (Fisher
et al., 2011; Kowarik et al., 2006).

The functional transfer of this system into E. coli (Wacker et al., 2002)
has spurred interest in recombinant production of glycans and ultimately
therapeutic glycoproteins in this genetically tractable bacterial host
(Merritt et al., 2013; Baker et al., 2013). Along these lines,
glycosylation-competent E. coli cells have been used to produce a variety
2019
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Fig. 1. Glycosylation pathway in C. jejuni and E. coli. Glycan assembly, facilitated by pgl locus enzymes, takes place on a lipid carrier, undecaprenyl pyrophosphate
(Und-PP), from cytoplasmic pools of nucleotide-activated sugars N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), and glucose (Glc). The glycan is
then flipped onto the periplasmic side of the inner membrane, where it is transferred to an asparagine residue on a glycoprotein acceptor motif.
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of periplasmic and extracellular glycoproteins including antibodies
(Fisher et al., 2011) and conjugate vaccine candidates (Feldman et al.,
2005). The promiscuity of the PglB enzyme towards structurally diverse
lipid-linked glycan substrates has been exploited to further expand the
E. coli platform, enabling the creation of glycoproteins bearing different
bacterial O-polysaccharide antigens (Feldman et al., 2005; Ihssen et al.,
2010) and even the eukaryotic trimannosyl core N-glycan produced by a
synthetic pathway comprised of four yeast glycosyltransferases (Valder-
rama-Rincon et al., 2012). However, while PglB can efficiently glycosy-
late native C. jejuni acceptor proteins with cognate Glc GalNAc5 Bac
glycan in engineered E. coli, glycosylation of non-Campylobacter target
proteins is often much less efficient (Schwarz et al., 2010), especially in
combination with heterologous glycan structures (Valderrama-Rincon
et al., 2012).

In engineered E. coli, protein glycosylation is affected by the avail-
ability of lipid carriers, and the availability of nucleotide-activated sugar
substrates serving as glycan precursors (Merritt et al., 2013; Jaff�e et al.,
2014). Hence, a plausible strategy for increasing glycosylation efficiency
is to optimize the levels of these key reaction intermediates and their
related biosynthetic pathways. Along these lines, Wright and coworkers
applied genome-scale metabolic engineering techniques to improve
glycosylation efficiency in E. coli. Using a high-throughput proteomic
screening and probabilistic metabolic network analysis, they showed that
upregulation of the glyoxylate cycle by overexpression of isocitrate lyase
(aceA/icl) increased glycosylation efficiency of a prototypic protein by
three-fold (Pandhal et al., 2011). Further, genome-wide screening of
gene overexpression identified targets that increased glycoprotein pro-
duction as well as glycosylation efficiency (Pandhal et al., 2013); genes in
pathways associated with glycan precursor synthesis (UDP-GlcNAc) as
well as lipid carrier production (isoprenoid synthesis) were identified as
bottlenecks. Improved glycosylation efficiency has also been achieved by
supplementing growth media with GlcNAc (K€ampf et al., 2015) or
increasing the expression of PglB via codon optimization (Pandhal et al.,
2012). These studies and others have demonstrated the complex inter-
play between recombinant protein production, glycan synthesis and as-
sembly, and glycosylation efficiency.

In this study, we addressed one of the challenges facing high-level
glycoprotein production in engineered E. coli, namely the availability
of glycan precursors, using constraint-based modeling. In particular, we
used a constraint-based model of E. colimetabolism, in combination with
heuristic optimization, to design gene knockout strains that over-
produced glycan precursors. First, we incorporated reactions associated
2

with C. jejuni glycan assembly into a genome-scale model of E. coli
metabolism. We then used a combination of constraint-based modeling
and simulated annealing to identify gene knockout strains that coupled
optimal growth to glycan synthesis. Simulations suggested that these
growth-coupled glycan overproducing strains had metabolic imbalances
that rerouted flux toward glycan precursor synthesis. We then experi-
mentally validated the model-identified metabolic designs using a flow
cytometric-based assay for quantifying cellular N-glycans in E. coli
(Valderrama-Rincon et al., 2012). Consistent with simulations, the best
model-predicted changes increased glycan production by nearly 3-fold
compared with the glycan production level in wild-type (wt) E. coli
cells. Taken together, our results reveal the significant impact that
metabolic modeling can have on designing chassis strains with enhanced
N-linked protein glycosyation capabilities.

2. Results

2.1. Construction of a constraint-based model of N-linked glycosylation in
E. coli

A constraint-based model of N-glycosylation in E. coli was used to
identify genetic knockouts that coupled glycan biosynthesis with optimal
growth. We augmented the existing genome-scale E. coli model iAF1260
from Palsson and coworkers (Feist et al., 2007) to include the reactions of
the C. jejuni glycosylation pathway (Table 1). The adapted network
consisted of 2395 reactions, 1271 open reading frames, and 1986 me-
tabolites segregated into cytoplasmic, periplasmic, and extracellular
compartments. Added reactions included the biochemical trans-
formations catalyzed by the glycosyltransferases (e.g., PglA, PglC) asso-
ciated with glycan biosynthesis, PglK flippase-mediated translocation of
the glycan into the periplasm, and PglB-mediated glycan conjugation to
an acceptor protein (Fig. 1). In addition, we incorporated the transcrip-
tional regulatory network of Covert et al., consisting of 101 transcription
factors, regulating the state of the metabolic genes (Covert et al., 2004).
This regulatory network imparts Boolean constraints on metabolic fluxes
based upon the nutrient environment. The model code is available for
download under an MIT software license from the Varnerlab website
(http://www.varnerlab.org/).
2.2. Identification of growth-coupled gene knockout strains

To identify genetic knockouts that coupled optimal growth to glycan



Table 1
Reactions added to the E. colimodel iAF1260 (Feist et al., 2007) for biosynthesis of C. jejuni glycan. Species localized to the periplasm are denoted by (p), all others are
cytoplasmic. Abbreviations: UDP-N-Acetyl-D-Glucosamine, UDP-GlcNAc; UDP-N-Acetyl-D-Galactosamine, UDP-GalNAc; UDP-2-acetamido-2,6-dideox-
y-α-D-xylo-4-hexulose, KetoBac; L-Glutamate, Glu; UDP-N-Acetylbacillosamine, AminoBac; α-ketoglutarate, αKG; Acetyl-CoA, ACCoA; UDP-N,N0-diacetylbacillosamine,
uBac; Coenzyme A, CoA; Undecaprenyl phosphate, Udcpp; C. jejuni glycan intermediates, UdcCjGlycan1, UdcCjGlycan6; Uridine monophosphate, UMP; Uridine
diphosphate, UDP; UDP-Glucose, UDP-Glc; Lipid-linked C. jejuni glycan, UdcCjGlycan; Acceptor protein, AcceptorProt; GlycoProt, Glycoprotein; Undecaprenyl
diphosphate, Udcpdp.

Gene Enzyme Reaction Reference

gne UDP-GlcNAc epimerase UDP-GlcNAc → UDP-GalNAc Bernatchez et al. (2005)
pglF UDP-GlcNAc dehydratase UDP-GlcNAc → KetoBac þ H2O Schoenhofen et al. (2006)
pglE Aminotransferase KetoBac þ Glu ↔ AminoBac þ αKG Schoenhofen et al. (2006)
pglD Acetyltransferase AminoBac þ ACCoA → uBac þ CoA þ Hþ Olivier et al. (2006)
pglC Bacillosamine transferase Udcpp þ uBac → UdcCjGlycan1 þ UMP Glover et al. (2006)
pglAHJ GalNAc transferases UdcCjGlycan1 þ 5*UDP-GalNAc → UdcCjGlycan6 þ 5*UDP þ 5*Hþ Glover et al. (2005)
pglI Glucosyl transferase UdcCjGlycan6 þ UDP-Glc → UdcCjGlycan þ UDP þ Hþ Kelly et al. (2006)
pglK ATP-driven flippase UdcCjGlycan þ ATP þ H2O → UdcCjGlycan(p) þ ADP þ Hþ þ Pi Kelly et al. (2006)
pglB Oligosyltransferase UdcCjGlycan(p) þ AcceptorProt(p) → GlycoProt þ Udcpdp(p) Linton et al. (2005)
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biosynthesis, we used heuristic optimization and the constraint-based
model (see Materials and Methods). Coupling growth to glycan synthe-
sis was desirable for several reasons. Foremost amongst these, growth-
coupled strains create stoichiometric imbalances that reroute metabolic
flux toward the desired product as a consequence of growth (Burgard
et al., 2003; Feist et al., 2010). Therefore, faster growth requires
increased glycan formation. Thus, optimizing glycan production through
adaptive evolution is made trivial by selecting for growth through serial
passage (Feist et al., 2010; Ibarra et al., 2002). Several methods have
been developed to estimate genetic knockouts using constraint-based
models. In this study, we used simulated annealing to search over the
states of metabolic enzyme and transcription factor (TF) genes to identify
the desired phenotype (Fig. 2). The state of each gene was represented as
a binary array, where a one indicated normal activity, while a zero
Fig. 2. Heuristic optimization approach used to identify strains coupling growth to g
defining the state of metabolic enzyme expression and another defining the state of tr
by zeros. Nutrient conditions define the boundary constraints within the stoichiome
Gene repression and knockouts determine the constraints placed on fluxes in the stoic
and genes are mapped to the state of flux constraints using Boolean rules as defined in
growth rate under the constraints imposed by the mutant strain and transcriptional r
strain is accepted or rejected based on the change in fitness and a Boltzmann criterio
continues until a positive shadow price is achieved.

3

indicated a genetic knockout or regulatory repression. Boolean rules
informed by nutrient conditions controlled the TF genes, which in turn
controlled the state of the metabolic genes. Once defined, the genetic
state of the model modified the flux constraints placed on each reaction.
For example, the reaction governed by pyruvate dehydrogenase, a
multi-component enzyme, relied on the assembly of three enzymes:
AceE, AceF, and Lpd. This reaction was encoded as:

Pyruvateþ CoAþ NAD→aceE; aceF; lpdAcetyl� CoAþ CO2 þ NADH

Thus, if any of the genes aceE, aceF, or lpd was knocked out or tran-
scriptionally repressed, the flux through this reaction was bound to zero.
Gene-protein-reaction (GPR) associations from the iAF1260 network
were used in this study (Feist et al., 2007). The simulated annealing al-
gorithm performed a random search of genetic knockouts, iteratively
lycan production. The chromosome is defined as two separate binary arrays, one
anscriptional regulator activation. Gene repression and knockouts are designated
tric model which in turn affect the state of the metabolic enzyme chromosome.
hiometric model. Nutrients are mapped to the state of transcriptional regulators
(Feist et al., 2007; Covert et al., 2004). Flux balance analysis is used to maximize
egulation and the fitness objective is calculated. Here, we use shadow price; the
n. New mutant strains are randomly generated from accepted ones. The search



J.A. Wayman et al. Metabolic Engineering Communications 9 (2019) e00088
applying flux constraints based on the genetic state, then performing a
flux balance analysis simulation. To identify growth-coupled glycan
producing strains, we optimized the shadow price given by:

uglycan ¼ Δvgrowth
Δvglycan

(1)

where Δvgrowth denotes the change in growth rate for a forced change in
glycan flux Δvglycan, and vglycan denotes the flux representing the fully
assembled C. jejuni glycan flipped into the periplasm. The shadow price
uglycan was calculated for a particular knockout strain by first calculating
the optimal growth with the glycan flux constrained to zero. A second
simulation was then performed with a forced incremental change in the
glycan flux in order to obtain the difference in growth rate. The search
algorithm continued until uglycan > 0, indicating a growth-coupled
phenotype (Supplementary Fig. S1).

We identified growth-coupled knockout strains with four or fewer
knockouts for growth on glucose as the sole source of carbon and energy
(Table 2). We performed optimization simulations using boundary con-
ditions representing minimal medium with a single 6-, 5-, and 3-carbon
substrate. A well-defined minimal media allowed for precise control
over nutrient conditions experimentally, and was accurately simulated,
particularly for the transcriptional regulatory network. For each sub-
strate, we performed ten independent optimization simulations to iden-
tify growth-coupled strains. We considered growth-coupled strains with
four or fewer knockouts (those most likely to be experimentally viable)
by restricting the formation of extracellular byproducts to acetate. For
example, for E. coli glycosylation mutant 2 (EcGM2; E. coli iAF1260 Δsdh
Δgnd Δpta ΔeutD), the strain with the highest simulated glycan yield, the
optimal growth rate occurs at a non-zero glycan flux (Supplementary
Fig. S1B). All growth-coupled strains contained a knockout of succinate
dehydrogenase (sdh) and truncated pentose phosphate pathway (PPP)
flux at either glucose 6-phosphate-1-dehydrogenase (zwf), 6-phosphoglu-
conolactonase (pgl), or 6-phosphogluconate dehydrogenase (gnd).
2.3. Flux analysis of N-glycan production in growth-coupled strains

Growth-coupled glycan producing strains had increased glycolytic
flux, and decreased amino acid biosynthesis compared to glycan pro-
duction in the wt strain background (Fig. 3). We compared the normal-
ized flux values for EcGM2 with the wt strain. Normalizing all fluxes to
glucose uptake rate, EcGM2 displayed greater flux through glycolysis by
cutting off the PPP via knockout of NADPH-producing gnd (Fig. 3A).
EcGM2 also had decreased synthesis of every amino acid except for
glutamine, indicating a source of stoichiometric imbalance that may be
relieved by synthesis of the glycan precursor UDP-GlcNAc. Further, the
PEP-pyruvate node acted as a switch point in central carbon metabolism
(Fig. 3B). Here, PEP and pyruvate, the products of glycolysis, enter the
TCA cycle through decarboxylation of pyruvate to acetyl-CoA (ACCoA)
and carboxylation of PEP to form oxaloacetate (OAA) (Sauer and Eik-
manns, 2005). The latter replenishes TCA cycle intermediates that exited
TCA for anabolic processes. EcGM2, with a diminished anabolic capacity
for cell growth, displayed lower flux through PEP carboxylase (ppc).
However, as the result of high glycolytic flux, EcGM2 had increased flux
Table 2
Growth-coupled strains producing C. jejuni glycan identified by flux balance analysis an
genes indicate that knockout of any one of those genes produces the same phenoty
glycosylating mutant, EcGM.

Strain Substrate Genotype

EcWT Glucose Wild type
EcGM1 Glucose Δsdh Δ(zwf/pgl/gnd)
EcGM2 Glucose Δsdh Δ(zwf/pgl/gnd) Δpta ΔeutD
EcGM3 Glucose Δsdh Δ(zwf/pgl/gnd) ΔpykAF Δmdh
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through pyruvate dehydrogenase (aceEF), sending carbon into the
oxidative branch of the TCA cycle. It is known that high glucose uptake
rates result in excess acetyl-CoA, surpassing the capacity of the TCA
cycle. Because of this excess flux, wt E. coli grown on glucose commonly
displays acetate fermentation, even under aerobic conditions (Gosset,
2005). We observed increased acetate secretion in EcGM1 simulations,
but through a route differing from wild-type cells. The knockouts Δpta
and ΔeutD prevented ATP-generating acetate secretion. Flux was instead
routed through the redox-neutral reactions initiated by acetaldehyde
dehydrogenase (mhpF). Excess acetyl-CoA was also utilized in the
pathway generating UDP-GlcNAc. Lastly, EcGM2 displayed a shift in
cofactor production (Fig. 3C). Higher flux through glycolysis naturally
led to NADH overproduction. On the other hand, the primary source of
NADPH shifted from PPP genes zwf and gnd to the membrane trans-
hydrogenase pnt, capable of direct transfer of electrons from NADH to
NADP. Sauer et al. identified pnt as a major source of NADPH in E. coli
(35–45% of total) (Sauer et al., 2004). Thus, pnt is capable of carrying
significant flux in vivo. Taken together, these results suggested the model
identified strains that promoted glycan precursor synthesis, primarily
UDP-GlcNAc, by creating a combination of metabolite and redox
imbalance.
2.4. Experimental validation of N-glycan-producing knockout strains

Glycan production was measured in the mutant strains to validate the
model predictions (Fig. 4). Gene knockout strains were constructed using
the Keio collection of single gene knockouts E. coli BW25113 (Baba et al.,
2006) as donor strains for P1vir phage transduction. Mutants were con-
structed containing single, double, and triple knockouts that appeared in
growth-coupled strains identified by the constraint-based model. We also
performed simulations of each single gene knockout to determine genes
that prevented glycan synthesis; galU, a key enzyme in the synthesis of
glycan precursor UDP-glucose, was the only non-lethal knockout that
prevented glycan synthesis. Knockout strains were transformed with a
plasmid constitutively expressing the C. jejuni pgl locus. To quantify
glycan production, we took advantage of crosstalk between the glyco-
sylation pathway and native lipopolysaccharide (LPS) synthesis in E. coli
(Hug and Feldman, 2011). Specifically, after the glycan is flipped into the
periplasm, it can be transferred to lipid A-core by the WaaL O-antigen
ligase and shuttled to the outer membrane by LPS pathway enzymes,
where it is displayed on the cell surface (Merritt et al., 2013). Labeling of
these surface-displayed N-glycans with fluorescently-tagged lectins can
then be used to quantify the amount of glycan displayed on the cell
surface as a measure of glycan production (Valderrama-Rincon et al.,
2012). Here, we labeled C. jejuni glycans for detection by flow cytometry
with fluorophore-conjugated soybean agglutinin (SBA), a lectin specific
to terminal galactose and GalNAc residues. Prior to labeling, knockout
strains were grown in glucose minimal media and harvested during the
exponential growth phase, to most closely satisfy the pseudo-steady-state
assumption of model predictions.

A common feature of the predicted mutant strains was the deletion of
pentose phosphate pathway genes zwf/pgl/gnd in combination withΔsdh.
Analysis of the metabolic flux distribution in these mutants suggested the
reducing state of the cell as well as the carbon flux was reprogrammed to
d heuristic optimization using single carbon substrate. Knockouts listing multiple
pe in the model. Abbreviations: D-Glucose, Glc; E. coli Wild type, EcWT; E. coli

Growth rate Glycan flux Yield

(/hr) (mmol/gDW/hr) (mmol/gDW)

0.78 0 0
0.65 0.012 0.018
0.53 0.098 0.185
0.64 0.016 0.025



Fig. 3. Comparison of fluxes between the wild-type case and glycan-producing strain of type EcGM3 as calculated by flux balance analysis. (A) Fluxes through key
nodes of metabolism. Top fluxes correspond to the wild-type case, bottom fluxes are for strain EcGM3. Fluxes are normalized by the glucose uptake rate. (B) Total flux
into each amino acid, normalized to glucose uptake rate. Inset shows fluxes associated with glutamate and glutamine synthesis along with the pathway to glycan
precursor UDP-GlcNAc. The dotted arrow represents a lumped pathway of multiple enzymes leading to the glycan precursor. (C) Total flux into selected cofactors,
normalized to glucose uptake rate. Inset shows the primary modes of NADPH production in each strain. Abbreviations: Pentose phosphate pathway, PPP; Extracellular
glucose, Glcxt; Glucose-6-phosphate, G6P; Fructose 6-phosphate, F6P; 6-phospho D-glucono-1,5-lactone, 6PGL; Glucose 1-phosphate, G1P; Glycerate 2-phosphate,
2 PG; Phosphoenolpyruvate, PEP; Pyruvate, PYR; Oxaloacetate, OAA; Acetyl-CoA, ACCoA; 2-Oxoglutarate, αKG; Glucosamine 6-phosphate, GAMP6P; UDP-N-
acetyl-D-glucosamine, UDP-GlcNAc.
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support enhanced glycan biosynthesis. While hypothetical knockouts
such as Δsdh Δ(zwf/pgl/gnd) Δpta ΔeutD were predicted to have higher
glycan yield, in this study we experimentally evaluated only the simplest
growth-coupled double knockout family, namely EcGM1. The EcGM1
family had the largest predicted growth rate, was more experimentally
tractable than the triple and quad knockouts, and was an unambiguous
test of the reducing power hypothesis without the complication of the
additional deletions. Thus, while the EcGM2 and EcGM3 families could
5

potentially give higher glycan flux, the EcGM1 family gave the clearest
evaluation of the influence of the pentose phosphate pathway deletions.
As predicted, single pentose phosphate knockouts Δzwf, Δpgl, and Δgnd
displayed greater fluorescence than wt cells, with Δgnd being the most
significant. However, when these deletions were combined with Δsdh
only the ΔsdhC Δgnd combination led to increased glycan biosynthesis
compared to wt cells. The single Δgnd mutant increased glycan produc-
tion by nearly 3-fold compared to the wt strain background, while the



Fig. 4. Geometric mean fluorescence, normalized to the wild-type value, from gene knockout strains appearing in growth-coupled strains identified by the constraint-
based model. y indicates a strain predicted to eliminate glycan flux. Stars indicate statistically significant increases in fluorescences according to a t-test (p < 0:05).
Error bars indicate the standard deviation of at least three replicates.
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ΔsdhC Δgnd combination led to a nearly 2.5-fold increase over the wt
strain. Lastly, we tested the non-lethal deletions that were predicted to
remove glycan biosynthesis; the ΔgalU mutant showed no glycan pro-
duction, thereby validating the model simulations. Taken together,
constraint-based simulations predicted pentose phosphate pathway de-
letions in combination Δsdh (and potentially other genes) could improve
glycan production by altering the redox state of the cell. We tested this
hypothesis in the simplest possible experimental model, Δsdh Δ(zwf/pgl/
gnd). Of the model predicted changes, only Δgnd alone and ΔsdhC Δgnd
significantly increased glycan biosynthesis beyond the wt strain back-
ground. This suggested the model identified a potential axis for the
improvement of glycan production, but results from the experimental
system suggested this axis was likely more complicated as only the Δgnd
and ΔsdhC Δgnd mutants gave a positive response.

3. Discussion

In this study we adapted a genome-scale model of E. coli metabolism
for the simulation of heterologous synthesis of N-glycans. We applied
heuristic optimization in combination with flux balance analysis to
identify genetic knockouts that coupled C. jejuni glycan synthesis to
growth. Simulations identified growth-coupled strains for minimal media
growth on glucose as the sole source of carbon and energy. Flux analysis
of these strains revealed two modes of flux redistribution that promoted
glycan synthesis. For growth on glucose, simulations showed that
maintaining high glycolytic flux and producing excess glutamine for the
amination of glycan precursor sugars led to a growth-coupled phenotype.
Simulations also identified the PPP as a primary target, suggesting the
manipulation of the NADH/NADPH ratio influenced glycan synthesis. We
validated model predictions by measuring cell surface-displayed N-gly-
cans in E. coli mutants. In all growth conditions, the Δgnd mutant out-
performed the wt strain in glycan synthesis. Overall, our model-guided
strategy showed promise toward rationally designing a microbial
glycosylation platform.

We used simulated annealing and flux balance analysis to search for
metabolic and regulatory gene knockouts that produced a growth
coupled phenotype. Several constraint-based methods have been
6

developed previously to identify gene knockouts that coupled production
to growth e.g., (Burgard et al., 2003; Patil et al., 2005; Nair et al., 2017).
Most of these methods rely on an OptKnock-like approach, whereby a
bi-level mixed integer optimization problem is solved to identify the
optimal set of gene knockouts. This class of method guarantees identi-
fication of the global optimum; however, it suffers from a few limitations.
First, search time for OptKnock-like algorithms scales exponentially with
system size and number of gene knockouts, making them unable to
handle very large metabolic networks. Second, only linear engineering
objectives (e.g., target production flux) can be searched over. In contrast,
heuristic optimization is an effective approach for searching large net-
works while simultaneously considering non-linear objective functions.
Though identification of the global optimum is not guaranteed with these
methods, desirable sub-optimal solutions can be found quickly (Patil
et al., 2005; Rocha et al., 2008). Also, heuristic optimization can search
efficiently for gene knockouts rather than reaction knockouts. This is an
important distinction because the mapping of genes to reactions is not
necessarily one to one. Thus, experimentally, many reactions may be
difficult to knock out because they may be catalyzed by the products of
many genes. Here, we used simulated annealing in combination with flux
balance analysis to maximize the shadow price of growth with respect to
glycan flux using a genome scale metabolic reconstruction. The approach
identified PPP knockouts that altered the NADH/NADPH balance, and
increased glycolytic flux leading to enhanced glycan production. Sur-
prisingly, these knockouts were not in the same section of the metabolism
compared with previous literature studies. However, this may be ex-
pected, as we searched for growth coupled solutions and did not simply
increase glycan formation. These solutions, while more difficult to
obtain, offer a significant future advantage; namely, optimization of
glycan production could be improved by selecting for increased growth
through serial passage.

Often times, due to the simplifying assumptions of the model, the
predicted mutant strains end up being difficult or impossible to construct
in the lab. Also, it is not known a priori which combinations of knockouts
will result in unviable strains. This does not make higher order knockout
solutions unhelpful in achieving a metabolic engineering objective. More
detailed flux analysis, like that in Fig. 3, of experimentally intractable
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strains, might guide exploration of alternative genetic perturbations,
such as knock-down and overexpression, that achieve a similar flux
profile and resulting phenotype. Our approach, which allows for an un-
biased random search of many potential knockout combinations at once,
is able to identify suboptimal and/or higher order knockout strains that
may be of great interest to experimentalists. Incorporation of alternative
genomics datasets, such 13C-based fluxomics measurements, would
highlight metabolic pathways in least agreement with model predictions,
thereby identifying potential alternative target perturbations. The
interpretation and application of metabolic flux models by leveraging
other information sources to overcome model deficiencies continues to
be an exciting area of research.

Many aspects of glycoprotein production in E. coli are amenable to
investigation and engineering by metabolic modeling. This study focused
on increasing the availability of glycan precursor metabolites through
model-guided metabolic network manipulations. Other approaches in
bacteria have focused on optimizing expression of glycosylation pathway
enzymes and identification of metabolic reaction targets through proteo-
mic and genome engineering (Pandhal et al., 2011, 2012, 2013). Despite
these efforts, improving glycosylation efficiency in E. coli remains a sig-
nificant challenge. To address this challenge, a more comprehensive
mathematical description of the cell, one that couples metabolism with
gene expression and metabolic demand, may be required to precisely
model glycosylation in E. coli. Our approach does not explicitly consider
the metabolic burden associated with heterologous expression of glyco-
sylation pathway enzymes nor the expression of the acceptor glycoprotein.
Also, flux balance analysis lacks a description of enzyme kinetics and
metabolite concentrations. Predicting phenotypic changes to genetic per-
turbations is a primary challenge in model-guided metabolic engineering
(Link et al., 2014). It has been shown that single knockouts in the central
metabolism of E. coli do little to change the relative flux distribution in the
organism (Sauer et al., 1999). E. coli robustly controls metabolic flux using
allosteric, transcriptional and post-transcriptional regulatory, and
post-translational modification systems (Kremling et al., 2008; Link et al.,
2013). Thus, glycoprotein production in E. coli is a unique challenge in that
it requires optimization of two opposing cellular processes. Recombinant
protein production of a desired glycoprotein along with glycosylation
pathway enzymes requires energy from catabolic processes. On the other
hand, glycan precursor synthesis requires conservation of available sugars
and anabolic processes. The addition of regulatory systems and an explicit
description of gene expression to a stoichiometric model may be an
effective strategy for optimizing these opposing processes. Other strategies
that may be helpful for optimization of this system include the enhance-
ment of glycan precursor pathways, such as hexosamine synthesis, as well
as the removal of competing pathways.

4. Materials and Methods

4.1. Flux balance analysis and heuristic optimization

Reactions encoding C. jejuni glycan formation (Table 1) were added to
the genome-scale metabolic model of E. coli iAF1260 (Feist et al., 2007).
The combined model was then used to determine growth coupled gene
knockouts that improved glycan production flux. Metabolic fluxes were
estimated using flux balance analysis. Flux balance analysis requires two
assumptions. First, the cell was assumed to operate at a
pseudo-steady-state, where the rate of production of every intracellular
metabolite was equal to its consumption. Second, the cell has evolved to
operate optimally to achieve a cellular objective. Though many objec-
tives have been proposed, we use the most common, namely growth rate
(i.e., biomass formation) maximization (Schuetz et al., 2007). The
determination of a flux distribution satisfying these assumptions was
formulated as a linear optimization problem:

max
v

�
vgrowth ¼ cTv

�
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Subject to : S v ¼ 0

αi � vi � βi

where v is the steady-state flux vector and αi and βi are the lower and
upper limits for the individual flux values, respectively. The quantity,
vgrowth, denotes the specific growth rate where c is a vector containing the
stoichiometric contribution of each metabolic species to biomass. The
stoichiometric matrix S encodes all biochemical reaction connectivity
considered in themodel. Each row of S describes a metabolite, while each
column describes a particular reaction. The ði; jÞ element of S, denoted by
σij, describes how species i participates in reaction j. If σij > 0, species i is
produced by reaction j. Conversely, if σij < 0, then species i is consumed
by reaction j. Lastly, if σij ¼ 0, then species i is not involved in reaction j.
The maximum substrate and oxygen uptake rates were set at 10 mmol/
gDW/hr. Boundary conditions were set to allow for the unrestricted
formation of acetate. All genes found to be essential for growth on Luria-
Bertani (LB) medium were excluded from the search (Baba et al., 2006).

We used the FastPros algorithm developed by Ohno et al., in com-
bination with a shadow price objective, to estimate genetic knockouts
(Ohno et al., 2014). Simulated annealing identified growth-coupled ge-
netic knockouts with improved glycan production (Kirkpatrick et al.,
1983). Prior to optimization, we removed all genes associated with dead
end reactions, since knocking those out would have no effect on the
network. Also, we removed duplicate genes, i.e., those that produced
identical effects when knocked out. Finally, we removed genes whose
knockout resulted in zero growth. We searched over both metabolic and
regulatory genes; metabolic and transcriptional regulatory genes were
represented by a binary array where 1 indicated the gene was expressed,
and 0 zero indicated it was removed from the network (or transcrip-
tionally repressed). A random initial gene knockout array was generated.
We allowed for a maximum of 20 knockouts during the search. At each
iteration, a new knockout array was generated through mutation oper-
ations that randomly introduced new knockouts and rearranged existing
knockouts similar to (Patil et al., 2005). Briefly, new knockouts were
introduced for each gene with probability P ðmutateÞ ¼ 10�4. If neces-
sary, knockouts were randomly removed to limit their total number to
20. Then, a random number of knockouts were rearranged (i.e., removed
from one gene and assigned to another). At each iteration, the fitness
(shadow price) of an individual was computed using flux balance anal-
ysis. When an individual with a higher fitness was encountered (greater
shadow price), that individual was accepted. However, when an indi-
vidual with a lower fitness was encountered, we accepted this individual
with a probability given by a Boltzmann factor:

P ðacceptÞ ¼ e�Δuglycan=T (2)

where Δuglycan denotes the change in shadow price between the current
and previous solution, and the temperature T denotes the computational
annealing temperature which decreased with the search iteration. The
annealing temperature T decreased exponentially such that Tkþ1 ¼ αTk,
where k denotes the iteration index and α denotes the cooling rate
defined as (Rocha et al., 2008):

α ¼ exp
�
log Tf � log To

Nmax=Nα

�
(3)

The term Nmax denotes the maximum allowable number of objective
function evaluations (Nmax ¼ 10;000), and Nα denotes the number of
objective function evaluations performed at each distinct temperature

value (Nα ¼ 1). The initial temperature To was defined as To ¼ � Δuglycan;o
log 0:5 ,

while the final temperature Tf was given by Tf ¼ � Δuglycan;f
log 0:5 . Lastly,

Δuglycan;o denotes the difference in shadow price corresponding to an
acceptance probability of worse solutions of 50% at the beginning of the
search, and Δuglycan;f is the shadow price difference giving a 50%
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probability of accepting a worse solution by the end of the search. These
values were approximated using the typical shadow price values of
random knockout arrays: Δuglycan;o ¼ 0:005, Δuglycan;f ¼ 0:0005.

Though we sought to maximize glycan flux, we also wanted to
identify experimentally viable strains. Thus, during an optimization
search, we set a lower bound on the biomass reaction flux equal to 10% of
the wild-type simulated growth rate. Strains that could not meet this
constraint were ignored. The knockout search was terminated once a
positive shadow price was found. After the optimization, we processed
growth-coupled knockout strains by iteratively knocking in each
knockout gene to estimate knockouts that did not affect the phenotype. In
this way we identified the smallest number of gene knockouts that pro-
duced enhanced glycan flux at optimal growth. Each optimization run
required approximately 6 h on a single CPU Apple workstation (Apple,
Cupertino, CA, USA; OS X v10.10). All model and optimization code is
available in the MATLAB (The Mathworks, Natick MA) programming
language, and free to download under an MIT software license from
Varnerlab.org (http://www.varnerlab.org/).
4.2. Bacterial strains and media

For surface-labeled glycan fluorescence measurements, we used the
E. coli strain BW25113 as our wild-type case (Baba et al., 2006).
BW25113 was used as the parent strain to construct all gene knockout
strains. Plasmid pCP20 was used to excise KmR cassette (Cherepanov and
Wackernagel, 1995). Minimal media consisted of 33.9 g/L Na2HPO4,
15.0 g/L KH2PO4, 5.0 g/L NH4Cl, and 2.5 g/L NaCl. Media was supple-
mented with 0.4% glucose. Growth medium was supplemented by
appropriate antibiotic at: 100 μg/mL ampicillin (Amp), 25 μg/mL chlor-
amphenicol, and 50 μg/mL kanamycin (Kan). Growth was monitored by
measuring optical density at 600 nm (OD600).
4.3. Flow cytometry

BW25113-based knockout strains were transformed with plasmid
pACYCpgl, constitutively expressed by the C. jejuni pgl locus. Cultures
were inoculated from frozen stock in LB and grew for 3–6 h. Cells were
subcultured 1:100 in minimal media overnight and then transferred to
fresh minimal media to an OD600 of 0.1. 300 μL cells were harvested
during exponential growth phase (OD600 � 0.6). Cells were washed with
PBS then incubated in the dark for 15min at 37 �C. Cells were resus-
pended in 5 μg/mL SBA-Alexa Fluor 488 (Invitrogen) and 500 μL PBS and
analyzed using a FACSCalibur (Becton Dickinson). Geometric mean
fluorescence was determined from 100;000 events.
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