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Using high-density electrocorticographic recordings – from awake-behaving monkeys – and dynamic causal
modelling, we characterised contrast dependent gain control in visual cortex, in terms of synaptic rate constants
and intrinsic connectivity. Specifically, we used neural field models to quantify the balance of excitatory and
inhibitory influences; both in terms of the strength and spatial dispersion of horizontal intrinsic connections.
Our results allow us to infer that increasing contrast increases the sensitivity or gain of superficial pyramidal
cells to inputs from spiny stellate populations. Furthermore, changes in the effective spatial extent of horizontal
coupling nuance the spatiotemporal filtering properties of cortical laminae in V1— effectively preserving higher
spatial frequencies. These results are consistent with recent non-invasive human studies of contrast dependent
changes in the gain of pyramidal cells elaborating forward connections— studies designed to test specific hypoth-
eses about precision and gain control based on predictive coding. Furthermore, they are consistent with
established results showing that the receptive fields of V1 units shrink with increasing visual contrast.

© 2014 The Authors. Published by Elsevier Inc.Open access under CC BY license.
Introduction

This papermodels high-density electrocorticographic (ECoG)multi-
electrode data with neural fields to characterise local cortical excitabil-
ity (the kinetics of postsynaptic potentials) and microstructure (the
spatial summation of receptive fields). It is well-known that the local
processing of information in the visual cortex is highly sensitive to the
contrast of the stimuli being processed; see e.g. Sceniak et al. (2001,
2006). Crucially, single unit studies have demonstrated interactions
between the contrast and spatial extent of stimuli that change the
form of classical and non-classical receptive fields. This suggests
that contrast manipulations induce changes in effective horizontal in-
teractions in the striate cortex (Nauhaus et al., 2008). These changes
speak to the nonlinear and locally distributed neuronal computations
underlying visually induced responses. The aim of this work was to
disambiguate three competing explanations for these contrast effects
in terms of changes in the postsynaptic gain of neuronal populations,
the strength of intrinsic (interlaminar) connectivity or changes in the
effects of horizontal connections.
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Our work exploits information in high density – spatially resolved –

electrophysiological data to characterise contrast dependent neuronal
mechanisms that underlie early visual processing. We used data from
an electrocorticographic (ECoG) multi-electrode array acquired whilst
a monkey fixated a central point and was stimulated with visual
gratings of varying contrast. Our focus was on the three way relation-
ship between gamma responses induced by stimuli of varying contrast,
the implicit spatial summation over V1 receptive fields (RFs) and the
underlying balance of inhibition and excitation in neuronal interactions.
To address this relationship, we used dynamic causal modelling
(DCM; Friston et al., 2003) to explain visually induced responses to
stimuli of different contrast levels.

DCM has recently been extended to neural fields (Pinotsis et al.,
2012). The advantage of neural fields (over neural masses or point
sources) is that they can accommodate the spatial or topographic prop-
erties of cortical sources. Neural fieldmodels includehorizontal intrinsic
connections within layers or laminae of the cortical sheet. Neural fields
have a long and illustrious history in mathematical neuroscience, see
Deco et al. (2008) and Nunez (1995) for a review. These models pre-
scribe the time evolution of cell activity – such as mean depolarisation
or (average) action potential density – and are often used to simulate
neural activity. Here, we follow a different route and use them to fit ob-
served data. This allows us to estimate synaptic parameters and answer
detailed questions about functional architectures.
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This paper introduces the following three technical and conceptual
advances, in relation to our previously published work on DCM for
neuralfields (Pinotsis et al., 2012): (i) A newobservationmodel suitable
for ECoG recordings. (ii) An extension of the classical Jansen and Rit
model (introduced in our earlierwork) to afield version of the canonical
microcircuit model (Bastos et al., 2012; Pinotsis et al., 2013a). (iii) A
treatment of multiple experimental conditions that allows for trial-
specific effects on parameter subsets — accounting for the effects of
various stimulus properties.

We have previously considered local field potential measurements,
where the sensor is close to the cortical source and the lead field resem-
bles a delta function; in other words, the activated cortical patch is large
in relation to the area seen by the sensor (Pinotsis et al., 2012).
Conversely, we have modelled MEG measurements, where the activat-
ed cortical patch is small in relation to the area seen by the sensor
(Pinotsis et al., 2013a). In this work, we consider ECoG multi-electrode
data, where each sensor sees a different (unknown) part of the cortical
patch activated by the visual stimulus. This means the lead fields are
functions of the sensor location – relative to the centre of the source –

and their spatial dispersion. This dispersion reflects the relative extent
of source activity picked up by the sensor (and is distinct from the spa-
tial dispersion of horizontal connections, which is also optimised). In
short, our generative (forward) model tries to explain responses from
multiple sensors and calls for a more detailed consideration of the
lead fields associated with each sensor — and the way that electrodes
sample local electromagnetic responses over space. This represents an
intriguing inverse problem that can, in principle, be solved by inverting
a neural field DCM. In this setting, both the parameters governing the
spatial aspects of cortical microcircuitry and the spatial characteristics
of the lead fields (i.e., sensitivity profiles) have to be estimated.

In this paper, we extend the neural field model of cortical
microrcircuitry to distinguish between superficial and deep pyramidal
cell populations. This was motivated by theoretical considerations
based on predictive coding and experimental observations of spectral
asymmetries across depth electrode measurements. The ensuing
model is similar to themodel described in Pinotsis et al. (2013a) and in-
cludes parameters that differentiate between the spatial extent of dif-
ferent horizontal connections. This model also allows for measured
signals to be a mixture of activity of different subpopulations in the
source space — as opposed to considering only pyramidal cell activity
(Pinotsis et al., 2012).

We have used the resulting model to explain condition-specific
changes inmodel parameters associatedwith differences in the contrast
of visual stimuli. Thiswas achieved by simultaneously fitting all the con-
trast conditionswith the samemodel, whilst allowing only changes in a
small subset of parameters to explain condition-specific effects. The ob-
jective of this modelling is to assess the evidence for differentmodels or
hypotheses of observed (contrast dependent) responses— and compare
the ability of different models to explain observed data using Bayesian
model comparison. This allows one to test different hypotheses about
the synapticmechanisms underlying contrast dependent effects. Specif-
ically, we asked whether cross spectral responses to parametrically
varying contrast can be explained by:

(i) Changes in the strength of recurrent (self) connections of neuro-
nal populations (superficial and deep pyramidal cells): this
explanation is the most parsimonious and assumes that the
apparent changes in receptive field size (with contrast) can be
explained by changes in the nonlinear response properties of
individual populations, without any changes in the intrinsic con-
nections between populations or lamina. In particular, following
recent dynamic causalmodelling of visually induced responses in
the visual hierarchy, we hypothesised that contrast would be
interpreted by the brain as an increase in the signal-to-noise
(precision) of sensory information that would be reflected in an
increase in the postsynaptic gain of superficial pyramidal cells
(Feldman and Friston, 2010).
(ii) Changes in strength of intrinsic (horizontal) connections be-

tween excitatory and inhibitory populations that constitute a ca-
nonical microcircuit: this explanation calls upon contrast
dependent changes in the sensitivity of different populations as
expressed in terms of changes in the strength of intrinsic connec-
tivity. Here, the explanation for the apparent change in receptive
field properties rests on the differential contribution of excitato-
ry and inhibitory connections that mediate spatial summation
where – crucially – the extent of horizontal interactions remains
the same.

(iii) Changes in the spatial dispersion (extent) of horizontal excitato-
ry and inhibitory connections: this explanation rests upon a con-
trast dependent effect that is expressed differently in long and
short range horizontal connections. In contrast to the first two,
this explanation entails a change in the effective spatial extent
of lateral interactions; as opposed to a change in their strength
under a fixed spatial form.

These hypotheses were cast as dynamic causal models that
entailed contrast dependent changes in the strength of recurrent
connections, the strength of horizontal connections or the extent of
horizontal connections (or combinations thereof). The ability of
each model (hypothesis) to explain induced responses was evaluat-
ed in terms of their Bayesian model evidence; thereby providing
evidence in favour of one mechanism over another. Having
established the best model or mechanism, we were then able to re-
late the parameters of that model quantitatively to predicted spec-
tral responses — in particular changes in the frequency of the peak
gamma response with stimulus contrast.

In summary, our analysis is based on a simple model of visual cortex
that conforms to established neuroanatomical rules. This model can
generate differences in gamma responses that depend upon stimulus
conditions that are thought to result from the interaction between
local excitation and inhibition, (Brunel and Wang, 2003; Kang et al.,
2010; Traub et al., 1997).Model predictionswere then used in combina-
tion with empirical data to estimate receptive field properties, such as
the range of spatial summation and connection strengthswithin and be-
tween excitatory and inhibitory pools of neurons. Our focus is on under-
standing the link between neuronal architecture of the sources and
phenotypic differences in spectral responses. These architectures are in-
formed by some key empirical findings, which we now review briefly:

Contrast modulates spatial summation of receptive fields and gamma
peak frequency

V1 receptive fields are composed of an excitatory centre and an in-
hibitory surround. For example, Sceniak et al. (1999) recorded single
units in V1 when monkeys fixated a point on the screen and were
shown patches of drifting gratings at various contrasts and sizes. Using
a difference of Gaussians model – to fit the spatial extent of contribu-
tions of the excitatory centre and inhibitory surround – they showed
that at higher contrasts, the excitatory centre of receptive fields in V1
had a smaller stimulus summation field. The authors found that – at
lower contrasts – V1 receptive fields were 2.3 times larger than at
higher contrasts. These results suggest that receptive fields are not in-
variant to stimulus properties. Similarly, Kapadia et al. (1999) recorded
from superficial cells in monkey V1 whilst they presented oriented bars
of varying lengths. They found that V1 receptive fields were on average
about 4 times larger at low contrast compared to high contrast, when
they were presented in isolation; and about twice as large when they
were presented in the context of a textured background. The authors
conclude that the excitatory–inhibitory balance between the classical
and non-classical receptive field is not static but can be modulated by
stimuli. At high contrast, neurons are strongly inhibited when a stimu-
lus falls outside the classical receptive field and encroaches on the
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non-classical receptive field. At lower contrast, V1 receptive fields have
enhanced spatial summation, indicating that inhibition relative to exci-
tation may be reduced.

Gamma band oscillations (30–100 Hz) in V1 are also sensitive to
stimulus properties like contrast (and stimulus size) (Ray and
Maunsell, 2010). With increasing contrast, gamma oscillations increase
in peak frequency (see also Roberts et al., 2013). In our data – at the low-
est contrastwith a detectable gammapeak (10%)– the gamma frequency
is about 47 Hz; whilst in the highest contrast condition (82%), the peak
frequency is at about 57 Hz. Gamma band oscillations have been found
to depend on neuronal interactions mediated by both gap junctions
and synaptic transmission (Traub et al., 2001). In ourmodel, these effects
are modelled collectively by intrinsic connectivity constants. In the con-
text of dynamic causal modelling, these quantities have been shown to
accurately reflect neurotransmitter density and synaptic efficacy
(Moran et al., 2008). Amore biologically realistic description of neuronal
interactions (that considered neuromodulatory and other conductance-
specific mechanisms — and even gap junctions) would entail the use of
more elaborate (e.g., conductance based) models at the cost of increased
computational demands — in relation to the convolution model used
here. Examples ofmore realistic dynamic causalmodelling in this context
can be found in Marreiros et al. (2010) and Pinotsis et al. (2013b). Gen-
erally speaking, the level of biological detail or complexity that can be
entertained rests upon the amount of information in the data. In this pro-
visional (proof of principle) study, we use relatively simple models of
canonical microcircuitry that we know can be inverted efficiently. How-
ever, one might anticipate subsequent modelling with more realistic
models and thereby more refined biophysical hypotheses.

In summary, several experimental studies show that gamma peak
frequency, stimulus contrast and the excitatory–inhibitory balance be-
tween the classical and non-classical receptive fields are all intercon-
nected. Below, we will address these relationships using Bayesian
model comparison of dynamic causal models that embody different hy-
potheses about contrast-specific changes in the connectivity architec-
tures that underlie receptive fields and induced responses.

Material and methods

Experimental protocol

All experimental procedures reported in this study were approved
by the ethics committee of the Radboud University, Nijmegen, NL. De-
tails of the task and the surgical procedures have been described else-
where (Bosman et al., 2012; Rubehn et al., 2009). In brief, stimuli
were presented on a CRT (cathode ray tube) screen refreshing at 120 Hz
Experiment

1°1°

Pre-stimulus Post-stim

Fig. 1. Experimental task. Themonkey released a lever when it detected a colour change at fixat
from 200 ms post-fixation onset to 3 s post-fixation onset. Whilst themonkey fixated, a stimulu
soidal grating; diameter: 1.2°; spatial frequency: 0.4-0.8 cycles/°; drift velocity: 0.6°/s drifting w
non-interlaced and positioned such that 32 pixels corresponded to
1 degree of visual angle (°). Stimulus presentation, fixation and reward
delivery were controlled by the cortex system. One adult male Rhesus
monkey was trained to bring its gaze onto a fixation point at the centre
of a computer monitor, and to keep its gaze within a window of 1° radi-
us around the fixation point (see Fig. 1). The monkey's task was to re-
lease a lever when it detected a colour change at fixation. The colour
change could occur at any moment in time from 200 ms post-fixation
onset until 3 s post-fixation onset. Whilst the monkey fixated, a stimu-
lus located at 4° of eccentricity was displayed (a physically isoluminant
sinusoidal grating; diameter: 1.2°; spatial frequency: 1.7 cycles/s; drift
velocity: 0.4°/s drifting within a circular aperture). Stimulus contrast
was varied over the following values: 0%, 5%, 10%, 16%, 23%, 32%, 44%,
60% and 82%. These contrast levels were chosen such that from the 5%
contrast condition onwards, each contrast condition approximately
doubled the light intensity. The stimulus activated several contacts in
V1. We chose contacts that showed strong gamma band activity
(Bosman et al., 2012). The data from 200 ms after stimulus onset until
fixation colour change were divided into non-overlapping 500 ms
epochs for further analysis. The stimuli used here were similar to
those of Chavane et al. (2011), who found that stimulus contrast does
not affect the orientation selective spread. The resolution of our ECoG
grid does not allow us to discriminate between different orientation
preference columns: drifts in orientation are not likely to affect our re-
sults, as the responses we model are thought to result from an average
across cortical patches with different orientation sensitivities. In other
words, the population averaged activitymeasured by electrocorticogra-
phy reports the average over orientation selective responses. This
speaks to the use of neural field models as mathematical microscopes
that allow one to extract information that is hidden in the data using
DCM. Although our data are insensitive to orientation selective re-
sponses, we will see below that the use of a biophysically informed
model allows us to infer that contrast dependent modulation of the ef-
fective spatial extent of neuronal connections contributes to the ob-
served gamma response (a result that accords with single cell studies).

Neurophysiological recordings, data analysis and ROIs

Neuronal signals were recorded from the monkey's left hemisphere
using subdural electrocorticographic (ECoG) grids comprising 252 elec-
trodes (1 mm diameter) spaced 2–3 mm apart (Rubehn et al., 2009).
The grid was implanted under aseptic conditionswith isoflurane anaes-
thesia supplemented with fentanyl. Intra-operative photographs were
acquired for coregistration with the anatomy. Signals were amplified,
low-pass filtered at 8 kHz and digitised at 32 kHz. Local field potentials
al Task

1.2°

ulus

1°

1.2°

Color change, 
response

ion. The colour change could occur at anymoment in time following fixation onset, starting
s located at 4° of eccentricity was displayed to themonkey (a physically isoluminant sinu-
ithin a circular aperture). Stimulus contrast varied between zero and an 82% contrast value.
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were obtained by low-pass filtering at 250 Hz and down sampling to
1 kHz.

We computed bipolar differences from neighbouring electrodes to
remove the common recording reference (Bosman et al., 2012). We
refer to the bipolar channels as ‘sites’. We chose those sites that showed
clear responses to the stimulus (a total of 4 sites), excluding immediate
neighbours that shared a common unipolar electrode.

As noted above, we used data – in correctly executed trials – from
200 ms after the onset of the moving grating until the first change in
the fixation point colour. This period constitutes relatively stationary
visually induced activity. For each trial, this period was cut into non-
overlapping 500 ms epochs (500 ms provides about five cycles of
alpha activity, enabling reasonably efficient spectral estimators of
alpha power). Data within a recording session were normalised for
each site and subsequently pooled across all sessions. Power line
artefacts at 50, 100 and 150 Hz were estimated and subtracted from
the data. Epochs containing artefacts were removed with a semi-
automatic artefact rejection protocol, based on a variance threshold.
Sites were assigned to V1 based on their positions as ascertained
from surgical photographs, and using established anatomical criteria;
namely, that they were posterior to the lunate sulcus by at least
2 mm. We used the areal boundaries according to Saleem and
Logothetis (2012). For the analyses of this paper, we use those sites in
the primary visual cortex that showed high sensitivity to the stimuli.

Dynamic causal models for cross spectral densities
In this section, we describe our generative model of observed cross

spectral densities that forms the basis of a dynamic causal model
(DCM) with neural fields, used to model the above responses. This
model is based upon canonical cortical microcircuitry and is a refine-
ment of conventional (convolution-based) neuronal models. The ensu-
ing field model is identical to established neural mass models in DCM
that describe the sources of forward and backward connections in corti-
cal hierarchies— the superficial and deep pyramidal cell populations re-
spectively; however, it is equipped with horizontal connections that
have an explicit spatial extent.

A probabilistic model of cortical responses

The modelling of electrophysiological signals depends upon models
of how they are generated in source space and how the resulting (hid-
den) neuronal states are detected by sensors. Following Pinotsis et al.
(2012),we use a likelihoodmodel relating hidden neuronal states to ob-
served cross spectra gy over sensors that sample from the cortical sur-
face. This likelihood model assumes the measured signal is a mixture
of predicted spectra, channel and Gaussian observation noise

gy ωð Þ ¼ gw ω; θð Þ þ gn ω; θð Þ þ εy
gwlm ω; θð Þ ¼

X
k

Tl k;ωð Þgu k;ωð ÞTm k;ωð Þ�

gu ω; θð Þ ¼ αu þ
βu

ω

gn ω; θð Þ ¼ αn þ
βn

ω

Re εð Þ � N 0;Σ ω;λð Þð Þ

Im εð Þ � N 0;Σ ω;λð Þð Þ

ð1Þ

where the indices l and m denote different sensors and * denotes the
conjugate transpose matrix. The first equality expresses the data
features gy(ω) as a mixture of predictions and prediction errors εy
with covariance Σ(ω,λ). The predictions are a mixture of predicted
cross spectra g ω; μð Þ and channel noise gn(ω,μ). The predicted cross
spectra between two sites are a function of the power of under-
lying neuronal fluctuations gu(ω,θ) and transfer functions Tl(k,ω) that
depend upon model parameters θ encoding the neuronal architecture
mediating responses (see below). The spectra of the neuronal fluctua-
tions or inputs are modelled as a mixture of white and coloured
components.

Eq. (1) provides the basis for our generative model and entails
free parameters controlling the spectra of the inputs and channel
noise {αn,αu,βn,βu} ⊂ θ. Gaussian assumptions about the observation
error mean that we have a probabilistic mapping from the unknown
parameters to observed (spectral) data features. Inversion of this
model means estimating, probabilistically, the free parameters from
the data.

At the neuronal level, we consider a neural field model based on the
canonical microcircuit. This model differs slightly from the model
described previously (Pinotsis et al., 2012) in that the pyramidal cell
population is split into superficial and deep subpopulations. This sepa-
rates the sources of forward and backward connections in cortical hier-
archies and has proved useful when trying to explain several aspects of
distributed cortical computations in theoretical neurobiology (Bastos
et al., 2012; Buffalo et al., 2011). This model provides the particular
form of the predicted spectra. In other words, the predicted cross spec-
tral densities are specified by the transfer function associated with the
neural field model and the mapping from source to sensor space, called
the lead field. The transfer function depends on spatial and synaptic pa-
rameters that determine the spectral properties of observed activity
(like peak frequency and power). We now consider the predicted re-
sponses as functions of the model parameters:

The predicted time series at the l-th ECoG sensor is given by

yl t; θð Þ ¼
Z

Ll x;φð Þ Q � V x; tð Þð Þdx ð2Þ

Here, the lead field Ll(x,φ) is a continuous function over the cortical
patch (depending upon some parameters φ ⊂ θ) parameterising the
sensitivity of the sensor to source activity. V(x,t)is a (vector-valued)
function describing source activity in terms of the depolarisation or
firing rate of several populations or cortical layers and Q = [q1q2q3q4]
is a vector of coefficients that weights the relative contributions
of these neuronal populations to the observed signal. This equation al-
lows one to integrate out the dependence on the particular location
on a Euclidean manifold or patch and obtain a time series at a single
point — by summing up spatiotemporal activity over different spatial
scales. For steady-state or evoked responses, this activity corresponds
to planewaves of differentwavelengths (parameterised by awavenum-
ber k). Expanding the leadfield Ll(x,φ) in terms of the coefficients Ll(k,φ)
of a spatial Fourier basis set, we have

Ll x;φð Þ ¼
X
k

Ll k;φð Þeikx ð3Þ

Substituting this equality into Eq. (2), we obtain the temporal re-
sponse at the l-th sensor

Yl ω; θð Þ ¼
X
k

Ll k;φð Þ Q � V k;ωð Þð Þ

V k;ωð Þ ¼ T k;ωð ÞU k;ωð Þ
ð4Þ

Here,U(k,ω) is a spatiotemporal representation of fluctuations or in-
puts driving induced responses, whichwe assume to be spatially white.
The response of the neuronal populations to this input is determined by
the transfer function T(k,ω). Because we calculated local bipolar differ-
ences between LFPs from neighbouring electrodes to create sites, we
modelled the lead field associated with each site using a difference of
Gaussians — whose centres on the patch are given by the parameters
al and aj. These bipolar derivations are a special case of a generic
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montage operator M transforming responses from sensors to sites as
follows

y12
y23
⋮

24 35 ¼ M �
Y1
Y2
Y3
⋮

2664
3775; M ¼

−1 1 0 ⋯
0 −1 1 ⋯
0 0 −1 ⋯
⋮ ⋮ ⋮ ⋱

2664
3775 ð5Þ

Here, we use y to distinguish the time series associated with a site
from the corresponding series Y detected by a sensor. Assuming that
the cross spectrum of the inputs is given by gu(k,ω) = U(k,ω)U(k,ω)⁎,
the predicted cross spectral density measured at sites l and m is
given by

gwlm ω; θð Þ ¼ yl ω; θð Þy�m ω; θð Þ
¼

X
k;q;p

Tlq k;ωð Þgu k;ωð ÞTpm k;ωð Þ�

Tlq k;ωð Þ ¼ MlqLq k;φð ÞQ � T k;ωð Þ

ð6Þ

where Lq(k,φ) is the Fourier transform of the lead field of the sensor q.
In this setting, each electrode or sensor sees only part of the patch,
with its sensitivity reflecting its relative position with respect to the
highest source activity.

For each contrast condition,we analysed data from four sites at vary-
ingdistances from the focus of induced activity.We equipped our obser-
vationmodelwith sufficient degrees of freedom tomodel the sensitivity
of each site. The important thing here is that to explain differences in
observed responses, we need to concurrently optimise neuronal param-
eters and parameters encoding the (unknown) deployment and sensi-
tivity of sensors on the cortical surface. These parameters include the
centre of each source and the dispersion of its lead field (the actual sen-
sor positions on the cortex were of course fixed but the location of the
underlying neural field is not known).

Themodel predictions are given by Eq. (6), which holds for a general
montage operator. For the bipolar difference form in Eq. (5), the cross
spectral densities amongst measurement sites take the following form

gwlm ω; θð Þ ¼
X
k

eTl k;ωð Þgu k;ωð ÞeTm k;ωð Þ�

eTl k;ωð Þ ¼ e−ialkE ϕlð Þ−e−ial−1kE ϕl−1ð Þ
� �

Q � T k;ωð Þ

E ϕð Þ ¼ e−2π2ϕ2k2

ð7Þ

where ai,ai − 1,⊂θ are the centres of the two electrodes associated with
the i-th site and ϕi,ϕi − 1,⊂θ are the corresponding dispersions. These
parameters are optimised depending on the location of the correspond-
ing electrode and sensitivity profile.

The likelihoodmodel defined by Eqs. (1) and (7) can furnish predic-
tions for conventionalmeasures of linear systems; like coherence, phase
delay or cross correlation functions, as detailed in Friston et al. (2012).
One can then examine the influence of biophysical model parameters
like synaptic time constants and intrinsic conduction speed on these
classical measures. One can also exploit these characterisations to in-
form and constrain biophysical parameters, like conduction delays. In
brief, there is a mapping between model parameters (effective connec-
tivity) and spectral characterisations (functional connectivity) that pro-
vides a useful link between the generativemodelling of biophysical time
series and dynamical systems theory. One should however be careful in
interpreting estimates of phase delays as an expression of conduction
delays: although it is tempting to assume a direct correspondence be-
tween these two measures, their relationship is complicated because
phase delays can differ between frequencies, whilst conduction delays
are determined by axonal microarchitecture and do not change in fre-
quency (Friston et al., 2012).

The above discussion completes the description of the generative
model apart from the transfer functions. The transfer function T(k,ω)
depends on corticalmicrocircuitry, which is derived below by appealing
to canonical microcircuitry. We briefly review the properties of this
model and then turn to its mathematical formulation.
Spectral asymmetries and canonical cortical microcircuitry

Microelectrode recordings of spikes and local field potentials in
visual areas V1, V2 andV4 suggest that neurons in superficial layers syn-
chronise at gamma frequencies, whilst neurons in deep layers primarily
synchronise at alpha/beta frequencies (Buffalo et al., 2011). Since for-
ward connections originate predominately from superficial layers and
backward connections primarily originate in deep layers (Felleman
and van Essen, 1991), these spectral asymmetries suggest that forward
connections use higher (gamma) temporal frequencies, whilst back-
ward connections may employ lower (alpha or beta) frequencies.
Indeed, simultaneous recordings inmonkey areas V1 and V4 have dem-
onstrated that Granger causal influences in the gamma-frequency band
are primarily feedforward (Bosman et al., 2012). In vitro recordings pro-
vide some support for a predominance of beta-band influences in the
feedback direction (Roopun et al., 2010). These asymmetries suggest
something quite remarkable: each macrocolumn receives forward
input at gamma and backward input at beta. It then integrates both
and emits forward output at gamma and backward output at beta. In
other words, it integrates and segregates its inputs and outputs using
two distinct frequency channels. These cortical computations face (at
least) four challenges: First, afferent input to amacrocolumn is typically
weak compared to intrinsic activity. For example, in cortical area V1,
only 4% of all the synapses in the granular (main input) layer are from
the LGN — the remaining synapses are local intrinsic connections
(Binzegger et al., 2004). The cortex needs mechanisms to effectively se-
lect and sustain these sparse inputs. Second, as the cortex amplifies
these inputs, strict homeostatic circuit properties must be in place to
constrain excitation – relative to inhibition – to prevent runaway excita-
tion: as observed experimentally by Haider et al. (2006). Third, a given
cell in the cortical column must be able to effectively select relevant
synaptic inputs from amassive number of potentially irrelevant signals,
since a given pyramidal cell in the cortex receives about 10,000
synapses (Larkman, 2004). Fourth, in order to functionally segregate
top-down from bottom-up processing, a given column must be able to
separate higher-order inputs from lower-order inputs — although this
appears to be finessed by the laminar termination of synaptic inputs
(Felleman and Van Essen, 1991). Inputs to a cortical column from
cortical areas above it in the hierarchy could, through their larger sam-
pling of the perceptual field and theirmore elaborated response proper-
ties, convey messages that contextualise signals arising from earlier
areas. These computational challenges are faced by nearly all cortical
areas. If a solution to these issues arose during evolution, it seems likely
that it would be conserved and present, to some extent, in all cortical
circuits.

The canonical microcircuit model first proposed by Douglas and
Martin (2004) contains all the requisite properties to satisfy these com-
putational demands. In theirmodel,weak thalamic inputs project onto a
cortical column containing three cell populations: excitatory cells in the
superficial and deep cortical layers, and a common pool of inhibitory
interneurons. Through intrinsic interconnections amongst these popu-
lations, weak thalamic inputs are amplified. Reciprocal connections be-
tween the populations maintain a balance of inhibition and excitation.
Relatively strong connections between the inhibitory cells and deep
pyramidal cells segregate the superficial and deep cell responses, in
terms of their latency. Lastly, in their revised model, dense (lateral) in-
terconnections amongst the superficial pyramidal cells allow these
cells to sample their diverse inputs on the dendritic tree and implement
a version of a winner-take-all algorithm (Douglas and Martin, 2004).
The results of this computation are transferred to lower cortical areas
via the deep pyramidal cells or higher cortical areas via the superficial
cells.
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Models for canonical cortical circuitry have become increasingly
complex as researchers have characterised cortical circuits using
anatomical and functional methods to elucidate the precise patterns
of intrinsic connections. For example Thomson and Bannister (2003)
combined multiple whole-cell recordings with histology to identify
theprobability offinding interconnected cells between particular layers,
and their synaptic strengths. Their work underlines the importance of a
‘feedforward’ pathway for how information spreads in the cortex
through excitatory connections. Inputs enters mostly layer 4, where
a strong connection is sent to superficial cells in Layer 3 (L3). L3 is
strongly interconnected with other pyramidal cells. The main output
of L3 is onto the infragranular cells in L5. Thus, input to superficial,
and superficial to deep, along with strong intra-laminar connections,
appear to be canonical features of intrinsic connectivity. Whilst this
core circuit has been established mostly for primary visual cortex
(which is also our focus here), recent studies have also demonstrated
that other cortical areas such as primary somatosensory and primary
motor cortex share similar circuit properties (Lefort et al., 2009;
Weiler et al., 2008).

Haeusler and Maass used Hodgkin and Huxley neurons to build a
realistic microcircuit model and showed that a cortical column –

whose connectivity conforms to the canonical microcircuit – can per-
form various computations more efficiently, in relation to a column
with random connectivity (Haeusler and Maass, 2007). Bastos et al.
(2012) compared the canonical microcircuit model from the Haeusler
and Maass model to the theoretically-predicted circuit based on
Spiny stellate (1)

Superficial pyramidal (4) 

Inhibitory interneurons (2) 

Deep pyramidal (3)

Fig. 2.The canonicalmicrocircuit (CMC)model. Thismodel comprises four subpopulations
and its development wasmotivated by theoretical considerations about hierarchical mes-
sage passing and asymmetries of oscillation frequencies in the brain and its architecture is
based upon intracellular recordings in cat visual cortex. This canonical microcircuit incor-
porates the neuronal sources of forward and backward connections in cortical hierarchies.
These are the distinct superficial and deep pyramidal cell populations where superficial
populations generate gamma responses whilst deep populations generate slower (alpha
and beta) dynamics. The colours of the arrows correspond to excitatory (black) and inhib-
itory (red) connections respectively. The numbers in parentheses next to each cell-name
serve as indices of the corresponding populations and their connections.
predictive coding (Friston, 2008). By collapsing two pairs of populations
in the Bastos et al. (2012)model –whilst preserving the topology of the
connectivity – one obtains the circuit of Fig. 2, which comprises four
populations: excitatory spiny stellate input cells (1), inhibitory
interneurons (2), deep excitatory output pyramidal cells (3) and
superficial excitatory pyramidal cells (4). The arrangement in Fig. 2
can be regarded as a formal proposal for a canonical microcircuit. In
what follows, we describe a mathematical model of how the neuronal
states of these populations evolve over time on the cortical surface.

A canonical field model of cortical activity

In neural field models, populations comprising a cortical source are
assumed to occupy Euclidean manifolds (infinitely thin planes) that
are coupled by interlaminar or intrinsic connections. The canonical
microcircuitry described above prescribes connectivity rules between
planes or subpopulations comprising a macrocolumn that can be
described in terms of a connectivity matrix K(|x|)

K xj jð Þ ¼ 1
2

−α11e
−c11jxj −α12e

−c12jxj 0 −α14e
−c14jxj

α21e
−c21jxj −α22e

−c22jxj α23e
−c23 jxj 0

0 −α32e
−c32jxj −α33e

−c33 jxj 0
α41e

−c41jxj 0 0 −α44e
−c44jxj

26664
37775
ð8Þ

In this expression, αab N 0 are synaptic coupling strengths that de-
scribe the density of intrinsic connections and the population response
to presynaptic glutamate release by pyramidal and spiny stellate cells
andGABAby interneurons. Here, cab N 0 encode the spatial decay of syn-
aptic densities — assuming an exponential form. This is a ubiquitous
choice in the neural field literature, motivated by the sparse (heavy
tailed) distribution of horizontal connections in sensory cortices: for
more details, see (Baker and Cowan, 2009). Later, we will use the pa-
rameters cab to describe the spatial extent of the receptive fields of excit-
atory and inhibitory populations. Assuming that va(x,t) denotes the
expected depolarisation or firing rate of the a-th population or layer
(a = 1,…,4) at location x and time t, the time evolution of the vector
V = (v1,v2,v3,v4,)T – describing their depolarisation – has the following
form:

V€þ 2BV̇þ B2V
� �

x; tð Þ ¼ B
Z

K x−x′
� �

F∘V x′; t− x−x′
�� ��υ� �

dx′ þ G∘U

B ¼ diag κ1; κ2; κ3; κ4ð Þ
ð9Þ

where υ is the inverse speedwithwhich spikes propagate along connec-
tions, U(x,t) is input (neuronal fluctuations) and κa are (inverse) synap-
tic time constants mediating postsynaptic filtering. In other words, the
response of each population results from passive membrane properties
and dendrite dynamics. Also, G : R4→ R4 maps the inputs to themotion
of hidden neuronal states,G=(κ1, 0, 0, 0)T and F : R4→ R4 is a nonlinear
mapping from postsynaptic depolarisation to presynaptic firing rates,
which we take to be a sigmoid

F við Þ ¼ 1
1þ exp r η−vi

� �� � ð10Þ

Here, r and η are parameters that determine the shape of this sig-
moid. In particular, r is the synaptic gain and η is the postsynaptic poten-
tial that produces half of the maximum firing rate. Following Pinotsis
et al. (2012), we obtain the transfer function associated with the
above system of neural field equations

T k;ωð Þ ¼ −ω2I4−2iωBþ B2− J k;ωð Þ
� �−1

G ð11Þ



Table 1
Prior expectations of model parameters.
(The spatial parameters assume the cortical patch has a diameter of ℓ = 25 mm).

Parameter Physiological interpretation Prior mean

κ1, κ2, κ3, κ4 Postsynaptic rate constants 1/2, 1/35, 1/35, 1/2 (ms−1)
α11,α14,α12

α22,α21,α23,α33

α41,α32,α44

Amplitude of intrinsic
connectivity kernels
(×103)

108,45,1.8
9,162,18,45
36,18,9

cab Spatial decay of connectivity
kernels

0:6 a≠b
2 a ¼ b

�
(mm−1)

r,η Parameters of the postsynaptic
firing rate function

0.54, 0

s Conduction speed .3 m/s
ϕ
q1,q2,q3,q4

Dispersion of the lead field
Neuronal contribution weights
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Fig. 3. Data features of interest. Themiddle subpanel shows the gamma peak frequency as
a function of the different contrast levels which were presented. Note that a gamma peak
was not detected in the 0% contrast condition (no visual stimulation to the receptive field)
nor reliably in the 0.05% contrast condition, and these are therefore omitted. The upper
panel shows a U relationship between gamma peak frequency and power in the gamma
band (30–80 Hz). The middle subpanel shows the relationship between contrast and
gamma band power, for all nine experimental conditions.
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where I4 is the identity matrix and J(k,ω) is a 4 × 4matrix incorporating
spatial and synaptic parameters, connectivity densities and synaptic
gain matrix:

J k;ωð Þ ¼ BD k;ωð Þγ

γab ¼ ∂F va ¼ 0ð Þ
∂vb

¼
( rerη

1þ erηð Þ2 a ¼ b

0 a≠b

Dab k;ωð Þ ¼ aab cab−iυωð Þ
c2ab−υ2

abω
2−2iυcabω þ k2

ð12Þ

Substituting Eqs. (11) and (12) in Eq. (7), we obtain the following
expression for the transfer function of each population

Ta k;ωð Þ ¼ κ1W
−1 k;ωð ÞZa k;ωð Þ ð13Þ

This expresses the relative contribution of each population to the
predictions at the sensor level and depends upon the particular form
of the connections amongst source populations, where W(k,ω) and
Za(k,ω) are given by

W k;ωð Þ ¼ −R14 k;ωð Þ −R23 k;ωð Þ þ P3 k;ωð ÞP2 k;ωð Þð Þ
þP4 k;ωð Þ −R23 k;ωð ÞP1 k;ωð Þ þ P3 k;ωð Þ −R12 k;ωð Þ þ P2 k;ωð ÞP1 k;ωð Þð Þ½ �

Z1 k;ωð Þ ¼ −P4 k;ωð Þ −R23 k;ωð Þ þ P3 k;ωð ÞP2 k;ωð Þð Þ
Z2 k;ωð Þ ¼ D21 k;ωð Þγκ2P4 k;ωð ÞP3 k;ωð Þ
Z3 k;ωð Þ ¼ −D21 k;ωð ÞD32 k;ωð Þγ2κ2κ3P4 k;ωð Þ
Z4 k;ωð Þ ¼ D41 k;ωð Þγκ4 −R23 k;ωð Þ þ P3 k;ωð ÞP2 k;ωð Þð Þ

ð14Þ

and the functions Pa(k,ω) and Rab(k,ω) are given in terms of the Fourier
transform Dab(k,ω) as follows:

Pa k;ωð Þ ¼ 2iκaω þω2−κa
2 þ γDaa k;ωð Þκa

Rab k;ωð Þ ¼ γ2κaκbDab k;ωð ÞDba k;ωð Þ
ð15Þ

This completes the mathematical specification of the likelihood
model that maps from neuronal fluctuations driving cortical layers to
cross spectral densities in an array of sensors. To complete the specifica-
tion of the dynamic causal model we now need to consider the con-
straints or priors on its underlying parameters.

The generative model and its inversion

Substituting the expression for predicted responses in the frequency
domain in Eq. (7), into Eq. (1), furnishes a likelihoodmodel formeasured
spectral responses. In the following, we use this model to analyse com-
plex cross spectra in V1, as measured with ECoG arrays. We assume
that the visual cortex is tiled with macrocolumns and that the response
of each local source or patch can be described in terms of a receptive
fieldwith rotational symmetry. This receptive field depends upon the to-
pography of the neuronal connections and its orientation axis coincides
with the coordinates of the field model. Below, we use parameters
encoding the range of inhibitory and excitatory source components to
characterise spatial summation of receptive fields based on (mean
field) gamma activity. Furthermore, wewill examine estimates of neuro-
nal parameters to characterise the excitatory and inhibitory postsynaptic
potentials (EPSPs, IPSPs) elicited by horizontal connections under



2 Not to be confused with the neuronal weights Q= q1,q2,q3,q4.
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Fig. 4.Model predictions and data for all conditions simultaneously. Empirical responses andmodel fits are shown in dashed and solid lines. The real and imaginary parts ofmodel fits and
observed spectral responses are shown in the left and right panels respectively. In the left panel, the two sets of curves correspond to auto- and cross spectral densities. Subsequentmodel
comparisons rely on model evidence in data from all conditions.
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different levels of visual contrast. The underlying assumption here is that
the cortex acts as a dynamic filter of visual stimuli — that shows rapid
nonlinear adaptation and where the local centre–surround interactions
determine the frequency of gamma oscillations (Kapadia et al., 1999).
Technically speaking,we assume that spectral responses result fromper-
turbations around a zero fixed point. This means that a change in the pa-
rameters only changes the system's flow (and implicitly the Jacobian and
associated transfer functions) but not the expansion point. This is a valid
assumption for the convolution based neural field model used in this
paper; however, things get more complicated with conductance based
models, where the expansion point itself can change with the parame-
ters. We consider contrast-specific effects and simultaneously optimise
responses obtained from all conditions across sites that show stimulus
induced responses. As noted above, the exact locations of each site on
the cortical patch are also optimised during model inversion or fitting
of the cross spectral data. These data inform the spatial sensitivity of
the recording sites by allowing for conduction delays and other spatial
effects including the relative location of the sensors. We distinguish be-
tween parameters describing the extent of excitatory and inhibitory
populations and assume a conduction velocity of 0.3 m/s (Nauhaus
et al., 2008).

Clearly, there are a large number of parameters in these models.
However, many of these parameters are subject to physiologically
plausible constraints — such that they do not over fit the data.
Parameter estimation and evaluation of the evidence for competing
models rests upon Bayesian model inversion that calls for a formal
specification of prior constraints of the parameters. Table 1 describes
the priors over synaptic parameters (as used in the classical Jansen
and Rit model), as well as parameters pertaining to the spatial orga-
nisation of cortical sources. These priors are based on the modelling
literature, whilst others come from the experimental literature. The
priors of the lead field model assume the sensors are located close
to the middle of the patch and at distance ℓ/8 apart. During model
optimisation, these prior means are multiplied by scale factors with
lognormal priors.

The likelihood p(gy|θ,m) in Eq. (1) and the priors p(θ|m) specify a
dynamic causal model that can be inverted using standard variational
procedures (Friston et al., 2007). For any DCM, say model m, model
inversion appeals to Bayes rule

p θjgy;m
� �

¼
p gyjθ;m
� �

p θjmð Þ
p gyjm
� � ð16Þ

where p(gy|m)is the model evidence. Model inversion rests upon a
fixed-form Laplace assumptionq θð Þ ¼ N μ;Cð Þ for the posterior density2
over unknown parameters. This Variational Laplace scheme approxi-
mates model evidence with a variational free energy. The (approxi-
mate) posterior density and (approximate) log evidence are used for
inference on parameters and models respectively. In other words, one
can compare different models (e.g., neural field and mass models)
using their log evidence and also make inferences on parameters,
under the model selected. A full description of these schemes can be
found in Friston et al. (2007).

Results

In what follows, we report the results of Bayesian model
comparison — using the variational free energy approximation to
model evidence. First, we assess the evidence for spatially organised
source activity by comparing neuronal mass and field models. We
then proceed to address our questions about the nature of cortical
gain control by examining different models of contrast dependent
changes in intrinsic and horizontal connectivity.

Before turning tomodel optimisation, we first characterised some of
the key data features we were hoping to explain. Specifically, we quan-
tified the relationship between visual contrast, gamma power and the
peak frequency of induced responses: we found a U relationship be-
tween observed peak frequency and gamma power and between
power and contrast (see Fig. 3). Crucially, peak frequency increases as
a monotonic function of contrast (Fig. 3, top panel). Fig. 4 shows an ex-
ample of a DCM fit to cross spectral responses obtained followingmodel
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Fig. 5. Relative log evidence for mass and field models. For the two conditions of lowest
contrast there is no clear evidence in favour of one of the two models, whilst for the
remaining conditions Bayesian model comparison favours neural fields.
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inversion. These show the real (left panel) and imaginary (right panel)
spectra and cross spectra, from all conditions and over all pairs of sites.
The agreement between themodel predictions (full lines) and empirical
spectra (dotted lines) is self-evident.

Evidence for neural fields

The advantage of neural field models is that they can accommodate
spatially extended activity on cortical manifold or patches that endows
the predicted responses with a complicated frequency dependency (for
a further discussion, see Pinotsis et al., 2012). This allows one to
Model G Mod

Fig. 6. Candidate models. We consider three putative mechanisms of gain control that lead to
neuronal populations, (L:) horizontal connections between distinct neuronal subpopulations a
distinguish between spatial effects and other factors (such as intrinsic
cell properties) on the basis of observed (empirical) responses. In
brief, our Bayesian model comparison suggested that neuronal field
models provide better explanations for ECoG data than the equivalent
neural mass models:

We computed the relative log evidence for the neural field and
mass variants of the canonical microcircuitry depicted in Fig. 2. The
neural mass variant is identical to the neural field model but uses
fixed priors on axonal conduction velocity that effectively shrink
the cortical patch to a point. Fig. 5, presents the relative log evidence
for neural mass and field models for various contrast conditions. We
found very strong evidence in favour of the field model across high
contrast conditions: a log evidence difference of three or more can
be taken as very strong evidence and corresponds to a likelihood
ratio of about 20:1. Our data suggest that there was no induced
gamma peak for the two lowest contrasts and the corresponding
spectra were rather featureless: but see also (Maris et al., 2013). In
these two conditions, there was no clear evidence in favour of one
of the two alternative models — with and without spatial dynamics.
However, the remaining conditions were characterised by a distinct
frequency peak and Bayesian model comparison strongly supported
spatiotemporal (field) dynamics.

This result is in stark contrast with the analysis of (Pinotsis et al.,
2013a). In this earlier work, we usedMEG data from 16 human subjects
exhibiting visually induced gamma oscillations. These data failed to es-
tablish a greater evidence for neural field models, which can be
attributed to the lead fields inherent in non-invasive electromagnetic
recordings — that are necessarily broader and therefore suppress tem-
poral dynamics that are expressed in high spatial frequencies. In con-
trast, the spatiotemporally resolved information afforded by ECoG
data (combining the temporal sensitivity of EEG with wide brain cover-
age and high spatial resolution) discloses a broad spectrum of spatio-
temporal dynamics and provides strong evidence for induced activity
over neural fields.
el L Model E

models or hypotheses about trial-specific modulations of (G:) recurrent connections of
nd (E:) spatial dispersion of horizontal connections.
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Fig. 7. Bayesian model comparison. The model involving modulations of all parameters
(model 7) has the highest evidence with a relative log evidence of 17 with respect to
the model that allows for modulations in all but the extent parameters (model 6).
The first three models correspond to hypotheses (i), (ii) and (iii) whilst models 4 and 5
to combinations (i)+ (ii) and (ii) + (iii). In the bottom panel we includemodel posterior
probabilities. These results suggest that we can be almost certain that all three synaptic
mechanisms contribute to the formation of cross spectral features.
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Bayesian model selection

Model comparison uses the evidence formodels in data from all con-
ditions simultaneously. Themodels we compared allowed only a subset
of parameters to vary with contrast level, where each model corre-
sponds to a hypothesis about contrast-specific effects on cortical re-
sponses. Specifically, (the log of) contrast dependent parameters were
allowed to change linearly with the contrast level, such that the effect
of contrast was parameterised by the sensitivity of contrast dependent
parameters to contrast level. The first set ofmodels allowed contrast de-
pendent gain of pyramidal cells (a33 and a44). Previous dynamic causal
modelling has shown contrast dependent increases in the gain of super-
ficial pyramidal cells in cortical hierarchies (Brown and Friston, 2012).
This finding fits comfortably with recent neurobiological theories of at-
tention and the hypothesis that contrast manipulation leads to changes
in the precision of sensory inputs. These changes have been interpreted
– in the context of predictive coding – as changes in the gain of superfi-
cial pyramidal cells reporting prediction error (Feldman and Friston,
2010).

The second set of models allowed for contrast dependent effects on
the strengths of intrinsic connections between pyramidal cells, inter-
neurons and spiny stellate cells (a14, a12, a21, a23, a41 and a32). This
speaks to variations in the balance of cortical excitation and inhibition
that ismediated by the relative sensitivity of different populations to in-
terlaminar exchanges. The final set ofmodels allowed for changes in the
spatial extent of intrinsic (horizontal) excitatory and inhibitory connec-
tions (cab) — that corresponds to a change in the effective connectivity
mediating spatial summation of the receptive field. These connections
serve stimulus integration and can be differentially engaged depending
on stimulus properties.

These three putative mechanisms of gain control speak to models
with and without contrast dependent effects on: (i) recurrent connec-
tions of neuronal populations, (ii) horizontal connections between ex-
citatory and inhibitory pools of neurons and (iii) spatial dispersion of
horizontal connections. These three model factors lead to 8 candidate
models (or seven models excluding a model with no contrast depen-
dent effects).

Fig. 6, shows three of the models that we considered. The seven
(non-null) candidate models include the models depicted in Fig. 6 and
their combinations. Our analysis amounts to a fixed effects analysis
that rests on multiplying model evidences over conditions to give the
total evidence for each model. The relative log evidences for all models
are shown in Fig. 7: The model with contrast dependent effects on all
parameters (model 7) had the highest evidence with a relative log evi-
dence difference of 17 with respect to the model that allows for modu-
lations of all but the extent parameters (model 6). In these plots, the
first three models correspond to hypotheses (i), (ii) and (iii) whilst
models 4 and 5 to combinations (i) and (iii) and (ii) and (iii). In the
bottom panel, we see the corresponding model posterior probabilities
(assuming uniform priors over all models considered). This suggests
that we can be almost certain that all three synaptic mechanisms con-
tribute to the formation of cross spectral density features observed
under different levels of visual contrast (given the models evaluated).

Having established the best model, we then examined its parameter
estimates: the maximum a posteriori estimates are shown in Fig. 8
(top), whilst estimates of their contrast sensitivity are shown in the
lower panel. These results suggest that the largest contrast modulations
are observed in (log scale parameter) estimates of connections to and
from the superficial pyramidal cells (a14, a41 and a44). In particular, the
largest variation over contrast is observed for the parameter a44 that
corresponds to the gain associated with superficial pyramidal cells.
Here, an increase in contrast reduces the inhibitory self connection lead-
ing to a disinhibitory increase in gain. This result is in accord with the
predictive coding formulation above (see Brown and Friston, 2012),
where the gain of superficial pyramidal cells is thought to encode the
precision of prediction errors. As contrast increases, confidence in
(precision of) sensory information rises. In predictive coding this is
thought to be accompanied by an increase in the weighting of sensory
prediction errors that are generally thought to be reported by superficial
pyramidal cells.

The contrast dependent changes in the extent of horizontal connectiv-
ity suggest an effective shrinking of excitatory horizontal influences and
an increase in inhibitory effects. This is precisely whatwould be expected
on the basis of contrast dependent changes in receptive field size. As con-
trast increases, receptive field sizes shrink — effectively passing higher
frequency information to higher levels. In other words, the neural field
has a more compact spatial summation that depends upon gain control
and the balance of horizontal excitatory and inhibitory connections.

To quantify this contrast dependent change in spatial summation,
we evaluated the spatiotemporal transfer function associated with the
superficial pyramidal cell population T4(k,ω) for the parameter esti-
mates shown in Fig. 8. We repeated this for the highest and lowest
levels of contrast used and displayed the result as the absolute value
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mates of contrast dependent parameters. The largest contrast modulations are observed in estimates of connections to and from the superficial pyramidal cells (encircled).

153D.A. Pinotsis et al. / NeuroImage 92 (2014) 143–155
squared over spatial and temporal frequencies (Fig. 9). This characteri-
sation of the response properties of visual cortex regards the cortical
layers as a spatiotemporal filter and allows one to quantify the spatial
frequencies that are preferentially preserved as a function of the tempo-
ral frequencies.
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response). In this instance, the inputs are the spiny stellate cell popula-
tion and the (feedforward) output corresponds to the response of the
superficial pyramidal cells. These results suggest that faster temporal
(gamma band) frequencies observed empirically reflect the fact that
superficial pyramidal cells pass less gamma power with increasing con-
trast (see Fig. 3) but are driven by relatively higher spatial frequencies:
note the selective suppression of power at spatial frequencies less than
4 in the upper quadrant of the high contrast (left panel) transfer func-
tion. Note that one cannot divorce spatial and temporal filtering when
neuronal infrastructure has spatial extent and this empirically informed
spatiotemporal characterisation can only be quantified with a suitably
formulatedmodel of neuronal transformations— as provided by neural
field models.

Conclusion

In conclusion, we have used finely sampled electrophysiological
responses from awake-behaving monkeys to quantify the micro-
architecture of visual cortex, in terms of synaptic rate constants and
intrinsic connectivity. Specifically, we have used an experimental ma-
nipulation (the contrast of visual stimuli) to look at changes in the
gain andbalanceof excitatory and inhibitory influences. Our results sug-
gest that increasing contrast effectively increases the sensitivity or gain
of superficial pyramidal cells to inputs from spiny stellate populations.
Furthermore, changes in the effective spatial extent or reach of horizon-
tal coupling change the spatiotemporal filtering properties of cortical
lamina in V1 to – effectively – preserve higher spatial frequencies.

Many readers will note that the particularmodel of canonical micro-
circuitry used in this paper is somewhat simpler than the canonical mi-
crocircuits considered by Haeusler and Maass — or reviewed from the
perspective of predictive coding in Bastos (2013). These simplifications
rest upon pooling various subpopulations to simplify the intrinsic con-
nectivity— to ensure dynamical stability and more robust model inver-
sion. The motivation for these simplifications – and the elaboration of
the corresponding CMC model – will be considered in detail in a forth-
coming publication (see also Bastos: Ph.D. thesis). The extent to which
these simplifications, or indeed any alternative formulations of canoni-
cal microcircuitry, affect our conclusions is essentially an empirical
question that can be addressed through Bayesian model comparison.
In other words, the evidence for contrast dependent effects on horizon-
tal (intra and interlaminar) connections may or may not depend upon
the details of their deployment or model complexity. The use of more
refined models is not limited to neuronal architectures. For example,
in this paper we assumed spatially white or uncorrelated inputs to the
neural field. Clearly, this is a simplifying assumption that – in principle
– can be relaxed by parameterising the spatial spectra or auto covari-
ance functions of the input. This is an important aspect of neural mass
modelling of complex cross spectra in the time domain (see Friston
et al 2012).We hope to explore this in future studies to see howdetailed
themodels canbe, before they become too complex for the data in hand.

The results presented in this paper are consistent with recent non-
invasive human studies of contrast dependent changes in the gain of py-
ramidal cells elaborating forward connections — studies using dynamic
causal modelling to test specific hypotheses about precision and gain
control based on predictive coding. Furthermore, they are consistent
with intriguing results showing that the receptive fields of V1 units
shrinks with increasing visual contrast. Methodologically, this work
speaks to the potential usefulness of biologically informed generative
models of empirical electrophysiological data; especially in answering
questions about the functional architectures that underlie neuronal
computations.

Acknowledgments

Dimitris Pinotsis and Karl Friston were funded by the Wellcome
Trust. Andre Bastos was supported by the National Science Foundation
Graduate Student Fellowship Program. Pascal Fries was funded by a
European Young Investigator Award from the European Science Foun-
dation, by European Union grant HEALTH-F2-2008-200728, and by
the LOEWE program of the state of Hessen, Germany.

References

Baker, T.I., Cowan, J.D., 2009. Spontaneous pattern formation and pinning in the primary
visual cortex. J. Physiol. Paris 103, 52–68.

Bastos, A.M., PhD Thesis, University of California Davis (2013)
Bastos, A.M., Usrey,W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012. Canonical

microcircuits for predictive coding. Neuron 76, 695–711.
Binzegger, T., Douglas, R.J., Martin, K.A., 2004. A quantitative map of the circuit of cat

primary visual cortex. J. Neurosci. 24, 8441–8453.
Bosman, C.A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A.M., Womelsdorf, T.,

Rubehn, B., Stieglitz, T., De Weerd, P., Fries, P., 2012. Attentional stimulus selection
through selective synchronization between monkey visual areas. Neuron 75,
875–888.

Brown, H.R., Friston, K.J., 2012 Oct 15. Dynamic causal modelling of precision and synaptic
gain in visual perception — an EEG study. Neuroimage 63 (1), 223–231.

Brunel, N., Wang, X.-J., 2003. What determines the frequency of fast network oscillations
with irregular neural discharges? I. Synaptic dynamics and excitation–inhibition
balance. J. Neurophysiol. 90, 415–430.

Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., Desimone, R., 2011. Laminar differences in
gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. 108, 11262.

Chavane, F., Sharon, D., Jancke, D., Marre, O., Frégnac, Y., Grinvald, A., 2011. Lateral spread
of orientation selectivity in V1 is controlled by intracortical cooperativity. Front. Syst.
Neurosci. 5.

Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K., 2008. The dynamic brain:
from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4.

Douglas, R.J., Martin, K.A., 2004. Neuronal circuits of the neocortex. Annu. Rev. Neurosci.
27, 419–451.

Feldman, H., Friston, K.J., 2010. Attention, uncertainty, and free-energy. Front. Hum.
Neurosci. 4.

Felleman, D.J., Van Essen, D.C., 1991. Distributed hierarchical processing in the primate
cerebral cortex. Cereb. Cortex 1, 1–47.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19,
1273–1302.

Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W., 2007. Variational free
energy and the Laplace approximation. Neuroimage 34, 220–234.

Friston, K., 2008. Hierarchical Models in the Brain. PLoS Comput Biol 4 (11), e1000211.
Friston, K.J., Bastos, A., Litvak, V., Stephan, K.E., Fries, P., Moran, R.J., 2012 Jan 2. DCM for

complex-valued data: cross-spectra, coherence and phase-delays. Neuroimage 59
(1), 439–455.

Haeusler, S., Maass,W., 2007. A statistical analysis of information-processing properties of
lamina-specific cortical microcircuit models. Cereb. Cortex 17, 149.

Haider, B., Duque, A., Hasenstaub, A.R., McCormick, D.A., 2006. Neocortical network activ-
ity in vivo is generated through a dynamic balance of excitation and inhibition.
J. Neurosci. 26, 4535–4545.

Kang, K., Shelley, M., Henrie, J.A., Shapley, R., 2010. LFP spectral peaks in V1 cortex:
network resonance and cortico-cortical feedback. J. Comput. Neurosci. 29, 495–507.

Kapadia, M.K., Westheimer, G., Gilbert, C.D., 1999. Dynamics of spatial summation in
primary visual cortex of alert monkeys. Proc. Natl. Acad. Sci. 96, 12073–12078.

Larkman, A.U., 2004. Dendritic morphology of pyramidal neurones of the visual cortex of
the rat: III. Spine distributions. J. Comp. Neurol. 306, 332–343.

Lefort, S., Tomm, C., Floyd Sarria, J.C., Petersen, C.C., 2009. The excitatory neuronal net-
work of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61,
301–316.

Maris, E., Womelsdorf, T., Desimone, R., Fries, P., 2013 Jul 1. Rhythmic neuronal synchro-
nization in visual cortex entails spatial phase relation diversity that is modulated by
stimulation and attention. Neuroimage. 74, 99–116.

Marreiros, A.C., Kiebel, S.J., Friston, K.J., 2010. A dynamic causal model study of neuronal
population dynamics. Neuroimage 51, 91–101.

Moran, R.J., Stephan, K.E., Kiebel, S.J., Rombach, N., O'Connor, W.T., Murphy, K.J., Reilly,
R.B., Friston, K.J., 2008. Bayesian estimation of synaptic physiology from the spectral
responses of neural masses. Neuroimage 42, 272–284.

Nauhaus, I., Busse, L., Carandini, M., Ringach, D.L., 2008. Stimulus contrastmodulates func-
tional connectivity in visual cortex. Nat. Neurosci. 12, 70–76.

Nunez, P.L., 1995. Neocortical dYnamics and Human EEG Rhythms. Oxford University
Press, USA.

Pinotsis, D.A., Moran, R.J., Friston, K.J., 2012. Dynamic causal modeling with neural fields.
Neuroimage 59, 1261–1274.

Pinotsis, D.A., Schwarzkopf, S., Litvak, V., Rees, G., Barnes, G., Friston, K.J., 2013a. Dynamic
causal modelling of lateral interactions in the visual cortex. Neuroimage 66, 563–576.

Pinotsis, D., Leite, M., Friston, K., 2013b. On conductance-based neural field models. Front.
Comput. Neurosci. 7, 158.

Ray, S., Maunsell, J.H., 2010. Differences in gamma frequencies across visual cortex restrict
their possible use in computation. Neuron 67, 885.

Roberts, M., Lowet, E., Brunet, N., Ter Wal, M., Tiesinga, P., Fries, P., et al., 2013. Robust
gamma coherence between macaque V1 and V2 by dynamic frequency matching.
Neuron 78, 523–536.

Roopun, A.K., LeBeau, F.E., Rammell, J., Cunningham, M.O., Traub, R.D., Whittington, M.A.,
2010. Cholinergic neuromodulation controls directed temporal communication in
neocortex in vitro. Front. Neural Circuits 4.

http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0005
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0005
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0010
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0010
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0015
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0015
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0020
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0020
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0020
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf2000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf2000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0025
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0025
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0025
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0030
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0030
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0035
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0035
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0035
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0185
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0185
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0040
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0040
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0045
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0045
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0050
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0050
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0055
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0055
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0060
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0060
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf5000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf3000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf3000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf3000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0065
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0065
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0070
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0070
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0070
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0075
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0075
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0080
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0080
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0085
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0085
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0090
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0090
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0090
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf6000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf6000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf6000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0095
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0095
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0100
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0100
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0105
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0105
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0115
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0115
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0120
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0120
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0125
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0125
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0130
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0130
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0135
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0135
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf7000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf7000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf7000
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0140
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0140


155D.A. Pinotsis et al. / NeuroImage 92 (2014) 143–155
Rubehn, B., Bosman, C., Oostenveld, R., Fries, P., Stieglitz, T., 2009. A MEMS-based flexible
multichannel ECoG-electrode array. J. Neural Eng. 6, 036003.

Saleem, K.S., Logothetis, N.K., 2012. A combined MRI and histology atlas of the rhesus
monkey brain in stereotaxic coordinates. Academic Press.

Sceniak, M.P., Ringach, D.L., Hawken, M.J., Shapley, R., 1999. Contrast's effect on spatial
summation by macaque V1 neurons. Nat. Neurosci. 2, 733–739.

Sceniak, M.P., Hawken, M.J., Shapley, R., 2001. Visual spatial characterization of macaque
V1 neurons. J. Neurophysiol. 85, 1873–1887.

Sceniak, M.P., Chatterjee, S., Callaway, E.M., 2006. Visual spatial summation in macaque
geniculocortical afferents. J. Neurophysiol. 96, 3474–3484.
Thomson, A.M., Bannister, A.P., 2003. Interlaminar connections in the neocortex. Cereb.
Cortex 13, 5–14.

Traub, R.D., Jefferys, J.G., Whittington, M.A., 1997. Simulation of gamma rhythms in
networks of interneurons and pyramidal cells. J. Comput. Neurosci. 4, 141–150.

Traub, R.D., Kopell, N., Bibbig, A., Buhl, E.H., LeBeau, F.E., Whittington, M.A., 2001. Gap
junctions between interneuron dendrites can enhance synchrony of gamma oscilla-
tions in distributed networks. J. Neurosci. 21, 9478–9486.

Weiler, N., Wood, L., Yu, J., Solla, S.A., Shepherd, G.M., 2008. Top-down laminar organiza-
tion of the excitatory network in motor cortex. Nat. Neurosci. 11, 360–366.

http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0145
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0145
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0190
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0190
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0160
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0160
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0155
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0155
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0150
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0150
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0165
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0165
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0170
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0170
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0175
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0175
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0175
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0180
http://refhub.elsevier.com/S1053-8119(14)00077-9/rf0180

	Contrast gain control and horizontal interactions in V1: A DCM study
	Introduction
	Contrast modulates spatial summation of receptive fields and gamma peak frequency

	Material and methods
	Experimental protocol
	Neurophysiological recordings, data analysis and ROIs
	Dynamic causal models for cross spectral densities

	A probabilistic model of cortical responses
	Spectral asymmetries and canonical cortical microcircuitry
	A canonical field model of cortical activity
	The generative model and its inversion

	Results
	Evidence for neural fields
	Bayesian model selection

	Conclusion
	Acknowledgments
	References


