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Prediction and analysis 
of dominant factors influencing 
moisture content during vacuum 
screening based on machine 
learning
Ling Nie 1,2, Weiguo Ma 2* & Xiangdong Xie 3

The study of the dominant factors influencing moisture content is essential for investigating vacuum 
filtration mechanisms. In view of the present situation where there is insufficient experimental data 
and the dominant factors influencing the moisture content of a filter cake have not been identified, 
in this study a vacuum filtration apparatus was designed and constructed. Quartz sand particles were 
used as the filtration material. 300 datasets of moisture contents of a filter cake were obtained under 
different experimental conditions. Multiple Linear Regression, artificial neural network, decision 
tree, random forest, and extreme gradient boosting were used to establish a prediction model for 
moisture content during vacuum screening. By comprehensively analyzing the feature importance 
rankings and the effects of positive and negative correlations, the dominant factors influencing the 
moisture content of the filter cake during vacuum screening were the particle ratio, screen mesh, and 
airflow rate. This finding not only provides a scientific basis for the optimization of vacuum screening 
technology but also points the way for improving screening efficiency in practical applications. It is 
of significant importance for deepening the understanding of the vacuum screening mechanism and 
promoting its extensive application.
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The shale shaker is a crucial equipment of the solids control system in oil drilling, tasked with the removal of 
harmful solid particles from drilling fluid and the recovery of drilling fluid, which plays a significant role in con-
serving resources and protecting the environment. However, the current high moisture content of cuttings treated 
by traditional shakers, reaching up to 70%, not only squanders a substantial amount of drilling fluid resources 
but also exacerbates the environmental impact. In recent years, a novel vacuum screening system based on the 
principle of vacuum filtration has been  proposed1. This innovative system can effectively reduce the moisture 
content of cuttings, enhance separation efficiency, and ensure the full recovery of the liquid phase, thereby achiev-
ing a more environmentally friendly treatment process. Consequently, vacuum filtration technology is steadily 
attracting widespread attention and interest within the industry. Vacuum screening is a solid–liquid separation 
method based on the principle of filtration. It uses a screen mesh and filter cake as the filtration medium and 
uses the pressure difference generated by vacuum and air passing through the filtering layer to displace the water 
in the pores to achieve solid–liquid  separation2. It is widely used in industries, such as medicine, chemical, and 
environmental protection, and has a broad engineering application  background3–5. The moisture content of the 
filter cake is a critical indicator for evaluating the vacuum filtration performance. Therefore, identifying the 
dominant factors that influence the filter cake moisture content and establishing a precise prediction model for 
the moisture content are vital for revealing the vacuum filtration mechanism.

Scholars have investigated the factors influencing the moisture content in vacuum filtration based on the clas-
sical filtration theory. Brownell and Katz, Wakeman, Hosten, and  Sastry6–9 established a semiempirical mathemat-
ical model of filter cake moisture content based on experimental data and nondimensional capillary numbers. The 
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results showed that the microstructural parameters of the filter cake influenced the moisture content. Serajuddin 
et al.10 performed constant-pressure tests for vacuum filtration of finely ground uranium slurry and derived a 
power-law equation to predict the solid volume concentration of the filtrate based on experimental data. The 
results showed that parameters, such as the specific cake resistance and cake permeability, influenced the solid 
volume concentration in the filtrate. Condie et al.11 investigated the vacuum filtration process of fine coal slurry 
using the model proposed by Wakeman. The results showed that the filter cake moisture content was related 
to the vacuum level, the filter cake thickness and the porosity distribution index. Kerekes and  McDonald12–16 
proposed a decreasing permeability model (DPM) under wet-paper-pressing conditions, which showed that 
the pressure and paper properties influenced the moisture content of the paper. Sjostranda et al.17 investigated a 
paper–vacuum filtration process using the DPM numerical model proposed by McDonald and Kerekes. Experi-
mental data from the laboratory machine were fitted to obtain new parameters for the model. A predictive model 
for the moisture content of the paper during vacuum filtration was developed. The model showed that the paper 
moisture content was related to the vacuum level, vacuum residence time, and characteristic parameters of the 
paper (such as initial moisture content, equilibrium moisture content, permeability, and compression factor). 
However, the establishment of these models requires accurate measurements of the microstructural parameters 
of the filter cake. This places high requirements for the test instruments and special devices, limiting the practi-
cal applications of the results.

Researchers have also studied the factors influencing vacuum filtration using numerical simulation meth-
ods. Rezlk et al. established a numerical model of the vacuum filtration process using the level-set method and 
estimated the moisture content of a paper using the simulation  results18. The results showed that the moisture 
content was related to the fiber structure of the paper, the vacuum level, and the vacuum residence time.  Li19 used 
finite element software to establish a fluid simulation calculation model to simulate the movement of a drilling 
fluid in a negative-pressure vibrating screen. The study found that the rheological parameters of the drilling fluid 
and the dynamic parameters of the negative-pressure shale shaker influenced the liquid-phase handling capacity 
of the shale shaker.  Lei20 analyzed the factors influencing the processing capacity of negative-pressure vibrating 
screens and found that the processing capacity was related to the drilling fluid viscosity, density, screen mesh, 
and screen speed. Guo et al.21 conducted experiments on the filtration and dewatering of gasification slag using 
a ceramic membrane vacuum filtration system and numerically simulated the dewatering process. Their research 
results showed that the particle layer moisture content was related to the vacuum level, particle layer thickness, 
particle equivalent diameter, and the initial moisture content of the particle layer. Ma et al.22 analyzed the effects 
of different operating condition parameters on vacuum filtration using a vacuum filtration experiment and 
FLUENT numerical simulation. The results showed that the vacuum filtration speed was related to the vacuum 
level, air flow rate, particle size, and filter cake thickness. Numerical simulation methods can be used to analyze 
the influence of vacuum filtration parameters on the filtration effect; however, the calculation is complex and 
time-consuming, and the contribution of each parameter cannot be quantified.

In recent years, researchers have investigated the moisture content in vacuum filtration using machine learn-
ing  algorithms23,24, such as the support vector machine , artificial neural networks (ANN)25–27, and multivariate 
regression. Machine-learning algorithms have advantages over mathematical models based on classical filtra-
tion theory and numerical simulation methods, as they can establish predictive models for vacuum filtration 
in a data-driven manner without relying on physical assumptions and prior knowledge. Guerreiro et al.28 used 
a multiple-regression algorithm to predict the moisture content of phosphate concentrate suspensions after 
filtration. Menezes et al. applied a multiple-regression algorithm to predict the moisture content of particle 
suspensions during vacuum  screening29. The results showed that vacuum level, screen inclination angle, and 
volumetric concentration of solids in the feed affected the moisture content. Huttunen et al.30 examined the 
vacuum filtration process of a fluosilicate solution and predicted the filter cake moisture content using standard 
machine learning algorithms, such as the regularized linear regression algorithms Lasso, Ridge, and ElasticNet, 
as well as random forest (RF) and gradient boosting. However, the prediction model had low accuracy, and the 
best-performing algorithm, gradient boosting, predicted the  R2 of the moisture content as approximately 0.8. 
In addition, the study did not analyze the dominant factors influencing the moisture content. The above studies 
based on machine-learning algorithms for predicting the moisture content of the filter cake only focused on the 
prediction performance of the model but paid less attention to the dominant factors influencing the moisture 
content and the interpretability of the model. In recent years, researchers have coupled machine-learning modules 
with interpretable Shapley additive explanations (SHAP) modules based on interpretable data-driven models to 
provide interfaces for reasonable model verification and the quantitative analysis of simulated  data31–34.

Although existing literature has made contributions to modeling the particle layer moisture content during 
vacuum screening, there are still several limitations. Firstly, traditional mathematical models rely heavily on 
precise measurements of the microstructure of filter cakes, which not only incurs high costs and strict require-
ments on experimental equipment, but also limits their practical application due to the scarcity of experimental 
data. Secondly, while numerical simulations can analyze the influence of vacuum screening parameters on 
screening efficiency, the computational process is complex and time-consuming, which is unfavorable for rapid 
prediction and real-time control. Additionally, it is difficult to quantify the specific contributions of each param-
eter. Furthermore, existing machine learning algorithms exhibit low accuracy in predicting filter cake moisture 
content and fail to identify the dominant factors influencing particle layer moisture content, while also lacking 
sufficient interpretability.

In order to address these issues, experiments were conducted using quartz sand particles as the filter material 
in this study. 300 experimental datasets of the moisture content of the filter cake were obtained under different 
experimental conditions providing a solid data foundation for establishing a more accurate prediction model. 
Five machine learning algorithms were employed to establish prediction models for the moisture content of 
particle layers, and the Grid Search Cross Validation (CV) technique was utilized for hyperparameter tuning, 
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significantly enhancing the prediction accuracy of the models. Furthermore, Shapley Additive ExPlanations 
(SHAP) was introduced to enhance the interpretability of the models, and the reasons for the dominant factors 
were analyzed based on the SHAP values of each feature. The dominant factors influencing the moisture content 
of the filter cake during vacuum screening were the particle ratio, screen mesh, and airflow rate. The research 
findings offer invaluable insights and guidance for comprehensively understanding the underlying mechanism 
of vacuum screening and for enhancing its efficiency and effectiveness.

The innovations and contributions of this study are summarized as follows:

(1) A vacuum screening experimental apparatus was constructed.300 datasets of moisture contents of a filter 
cake were obtained under different experimental conditions.

(2) To propose a generalized approach that can predict the moisture content during vacuum screening more 
accurately and efficiently.

(3) The dominant factors influencing the moisture content were identified by combining the feature importance 
of the ANN, RF, XGBoost, and SHAP models.

Experimental research
Experimental apparatus
In view of the lack of experimental data of moisture content in vacuum screening, the reliability of the conclusions 
drawn was poor. Therefore, this study aimed to design and construct a vacuum screening filtration experimental 
apparatus to collect a large amount of data.

The experimental apparatus was designed and constructed, as shown in Fig. 1. The apparatus comprised a 
vacuum system and a screening and filtering system. A vacuum pump, vacuum tank, and other connecting and 
auxiliary equipment were parts of the vacuum system, which provided and maintained a vacuum environment. 
The screening and filtering system, which filtered and stirred the material, included a material cartridge and a 
slurry mixing tank.

The tools and instruments used in the experiment included a vortex vacuum pump of the 3RB350-1 type 
with a maximum airflow rate of 315  m3/h and a DN600-300-type vacuum tank made of Q235B steel with a total 
volume of 300 L. Referencing the  literature35, screens with 100–200 meshes are commonly used specifications 
in engineering. Consequently, three types of API wire-woven screens with meshes of 100, 150, and 200 were 
selected, each with an effective filtration area of 0.03  m2. These screens were manufactured by the Xinghuo Metal 
Mesh Factory in Anping County, China, as shown in Fig. 2. One 304-stainless-steel standard sampling sieve, with 
meshes of 80, 100, 120 and 200 each, was used, as shown in Fig. 3. One CKLUGD-D50-TD-C vortex flowmeter 
with a range of 35–380  (m3/h) was used, that complied with the GB/T 2624-2006 specification, as shown in Fig. 4. 
The vortex flowmeter, utilizing high-precision sensors for high reliability and powered by a 3.6 V battery, was 
capable of operating within a temperature range of − 40 to 400 °C. It consisted of a pressure sensor for collecting 
medium pressure and a flow sensor for measuring the flow rate of the medium, with a gas measurement accuracy 
of 1.5%. In addition, one Kubei i-2000 digital electronic scale with a range of 0.01–500 g, several beakers, control 
valves, and measuring cups were used.

Experimental materials
The filter material for vacuum screening should be fine, uniform, and free of impurities, such as quartz sand, 
inorganic ceramsite, natural zeolite, sludge, soil, etc. Among them, quartz sand was a natural mineral that has 
low cost, wide availability, and excellent physical and chemical properties. Moreover, quartz sand did not interact 

(a) Diagram of the experimental apparatus  (b) Schematic of experimental apparatus

Figure 1.  Experimental apparatus for vacuum screening filtration.
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with the filtrate, provided a consistent filtering effect, and ensured the accuracy of the experimental results. 
Therefore, quartz sand particles were selected as the filter material. The packed density of the quartz sand used 
in this study was 1800 kg/m3. As reported in the  literature36, the primary task of traditional vibrating screens is 
to remove solid particles with diameters greater than 74 µm from drilling fluids. To mimic the different particle 
size distributions that may be encountered in real-world drilling fluids, the quartz sand particles utilized in this 
study were carefully selected to fall within a range of 75–180 µm. The particular distribution of particle sizes 
was meticulously crafted as a blend of various sizes, proportioned relative to the screen mesh opening. After 
screening using 304-stainless-steel sampling sieves, three types of quartz sand samples with different particle 
size ranges were selected, as shown in Fig. 5.

Experimental method
The  literature10,11,17–21 reported that various factors influenced the moisture content during vacuum screening, 
such as airflow rate, vacuum level, particle ratio, particle layer thickness, screen mesh ,and vacuum residence 
time. In order to investigate the effects of airflow rate, vacuum level, particle ratio, particle layer thickness, and 
screen mesh on the moisture content of the vacuum screening, this experiment was conducted under standard-
ized conditions, specifically at an ambient indoor temperature of 23 °C. Three types of quartz sand samples were 
mixed to different proportions to form a mixed sample, as listed in Table 1. Appropriate amounts of water were 

Figure 2.  Screen.

Figure 3.  Sampling sieves.
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then added to fully soak these samples, resulting in wet particle samples. Next, 200–600 g of wet particles of dif-
ferent masses were weighed and uniformly distributed across the screen, and the thickness of the particle layer 
was accurately calculated using Eq. (1), forming the experimental parameters listed in Table 2.

where ρ represents the bulk density of particles, s represents the surface area of the particle layer, and m represents 
the mass of the particle layer.

(1)L =
m

ρ · s

Figure 4.  (a) vortex flow meter; (b) vortex flow meter gauge.

Figure 5.  Quartz sand.

Table 1.  Particle size mix ratio.

Particle ratio

Particle diameter

75–120 µm (%) 120–150 µm (%) 150–180 µm (%)

Ratio 1 10 40 50

Ratio 2 20 30 50

Ratio 3 30 20 50
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The experiments focused on particle layers with varying masses and particle ratios. The control valve1 in 
Fig. 1b was used to adjust the vacuum level and airflow rate for each experiment. Each group of experiments 
employed a unique screen mesh. As the particle mass changed, so did the thickness of the layer. The moisture 
content of the filter cake was determined to be dependent on the specific experimental conditions used.

The moisture content of the filter cake was determined following the following procedure, as shown in Fig. 6.

(1) Weigh the empty volumetric flask: First, The mass of an empty 50 mL volumetric flask was weighed, denoted 
 m0.

(2) Add dry particles and Weigh: Next, 50 mL of dry particles (quartz sand) was added to an empty volumetric 
flask, and its mass was denoted  m1.

(3) Prepare wet particles for initial weighing:Subsequently, 50 mL of wet particles was randomly added to an 
empty volumetric flask before filtration, and its mass was denoted  m2.

(4) Distribute wet particles on screen: A specific mass of wet particles was distributed to the screen of the 
material cartridge, and the height of the wet particle layer was denoted L.

(5) Vacuum filtration setup: The vacuum pump was turned on, and the vacuum in the vacuum tank was 
adjusted until it reached the set value.

(6) Filtration and data collection: The timer was started, and data were recorded at regular intervals. When the 
design experiment time was reached, 50 mL of wet particles were randomly extracted after filtration; its 
mass was denoted  m3.The airflow rate and pressure gauge value of the vacuum tank were recorded after the 
vacuum level reached the set value and stabilized for 5 s. Subsequently, 50 mL of wet particles after filtra-
tion were randomly sampled and weighed. The data were recorded, and the average value was calculated 
for each group of experiments after repeating the experiment three times under the same conditions.

The experiments were conducted on samples with different particle size ratios using the same method. The 
initial and final moisture contents after filtration were obtained using Eqs. (2) and (3), respectively.

(2)C0 =
m2 −m1

m1 −m0

× 100%

Table 2.  Experimental parameters.

Particle mass (g) Particle layer thickness (mm) Particle ratio Screen mesh Residence time (s) Number of experiments

200 3.5 1, 2, 3 100, 150, 200 5, 10, 15 3

300 5.3 1, 2, 3 100, 150, 200 5, 10, 15 3

400 7.1 1, 2, 3 100, 150, 200 5, 10, 15 3

500 8.8 1, 2, 3 100, 150, 200 5, 10, 15 3

600 10.6 1, 2, 3 100, 150, 200 5, 10, 15 3

Figure 6.  Experimental procedure.
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Discussion of experimental results
Based on the experimental method described in Section "Experimental method", each experiment was repeated 
three times, and the average value was obtained, screening the data and discarding the anomalies, resulting in 
300 sets of experimental data. The initial moisture content of the particle layer for each experiment calculated 
using Eq. (1) was 37.14%, and the moisture content after filtration ranged between 3 and 17%. Analysis of the 
experimental data revealed that different experimental parameters had varying degrees of influence on the 
moisture content of the filter cake.

Effect of airflow rate on moisture content
Figure 7 shows the relationship between the moisture content of filter cake and the airflow rate. The experimental 
parameters were set as follows: 150-screen mesh, particle ratio of 1, and particle layer thickness values of 3.5 and 
5.3 mm. With an increase in the vacuum residence time, the moisture content of the filter cake showed a rapid 
decrease initially, followed by a slow decline (Fig. 7). In addition, as the airflow rate increased, the moisture con-
tent decreased. The moisture content curve corresponding to a particle layer with a thickness of 3.5 mm is shown 
in Fig. 7a. When the vacuum residence time reached 5 s, the moisture content rapidly decreased from 37.14 to 
approximately 10%. However, during the vacuum residence time of 5–15 s, the moisture content decreased by 
approximately 2%. This is because, under the action of vacuum airflow at a residence time of 5 s, most of the 
liquid in the pores of the filter cake was transported by the airflow. As the airflow rate increased, the flow rate 
of the liquid in the pore spaces of the filter cake also increased, resulting in a decrease in the moisture content 
of the filter cake. Under the same experimental conditions, increasing the airflow rate decreases the moisture 
content, indicating that the airflow rate influences the moisture content.

Effect of screen mesh on moisture content
Figure 8 shows the relationship between the moisture content of the filter cake and the screen mesh. The experi-
mental parameters were set as particle ratios of 1 and 2, a particle layer thickness of 5.3 mm, and a vacuum level 
of 20 kPa. With increasing vacuum residence time, the moisture content initially decreased rapidly and then 
decreased gradually. As the screen mesh size increased, the moisture content correspondingly increased. For 
example, when the experimental parameters were set with a particle ratio of 1 and particle layer thickness of 
5.3 mm, the corresponding moisture content curve was as shown in Fig. 8a. When the residence time was 15 s, 
and the screen mesh size was 100, the moisture content was 4.09%. However, when the screen mesh size was 
increased to 200, the moisture content reached 8.52%. This is because an increase in the screen mesh size leads 
to an increased resistance of the liquid passing through the screen, thereby decreasing the flow rate of the liquid 
and increasing the final moisture content of the filter cake. This indicates that under the same experimental 
conditions, reducing the screen mesh decreases the moisture content, demonstrating that the screen mesh influ-
ences the moisture content.

Effect of particle ratio on moisture content
Figure 9 shows the relationship between the moisture content and particle ratio. The experimental parameters 
were set as follows: particle layer thickness of 5.3 mm, vacuum level of 15 kPa, and screen mesh sizes of 100 
and 150. As the residence time increased, the moisture content initially decreased rapidly and then gradually 

(3)C =
m3 −m1

m1 −m0

× 100%

(a) 150-screen mesh, particle ratio 1, 3.5 mm (b) 150-screen mesh, particle ratio 1, 5.3 mm

Figure 7.  Effect of airflow rate on moisture content.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18272  | https://doi.org/10.1038/s41598-024-69046-7

www.nature.com/scientificreports/

decreased at a slower rate (Fig. 9). With an increase in the particle ratio, the moisture content increased. For 
example, when the experimental parameter was set with a screen mesh of 100, the corresponding moisture con-
tent curve was as shown in Fig. 9a. At a residence time of 15 s, particle ratios of 1, 2, and 3 resulted in moisture 
contents of 5.37%, 10.59%, and 14.29%, respectively. The particle layer with a ratio of 1 had approximately 9% 
lower moisture content than that with a ratio of 3. This is because, as the particle ratio increased, the resistance 
of the liquid passing through the pores in the particle layer increased, leading to a decrease in the liquid flow 
rate and an increase in the final moisture content. This indicates that under the same experimental conditions, 
decreasing the particle ratio decreases the moisture content of the filter cake, and the particle ratio significantly 
influences the moisture content.

Effect of particle layer thickness on moisture content
Figure 10 shows the relationship between the moisture content and particle layer thickness. The experimental 
parameters were set as follows: vacuum level of 20 kPa, screen mesh of 100, and particle ratios of 1 and 2. As 
the residence time increased, the moisture content initially decreased rapidly and then gradually decreased at a 
slower rate. In addition, the moisture content increased correspondingly with increasing particle layer thickness. 
For example, when the residence time was 15 s, the moisture content with a thickness of 3.5 mm was approxi-
mately 4% lower than that with a thickness of 10.6 mm (Fig. 10b). This is because, as the particle layer thickness 
increases, the resistance of the liquid passing through the pores in the particle layer also increased, leading to a 
decrease in the liquid flow rate and an increase in the final moisture content. This indicates that under the same 

(a) 5.3 mm, 20 kPa, particle ratio 1 (b)5.3 mm, 20 kPa, particle ratio 2

Figure 8.  Effect of screen mesh.

(a) 100 screen mesh, 5.3 mm, 15 kPa (b) 150 screen mesh, 5.3 mm, 15 kpa

Figure 9.  Effect of particle ratio.
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experimental conditions, decreasing the particle layer thickness decreases the moisture content, highlighting 
the effect of the particle layer thickness on the moisture content.

The experimental results revealed that the filter cake moisture content during vacuum screening was influ-
enced by various factors, such as the airflow rate, screen mesh, particle ratio, particle layer thickness, and resi-
dence time. However, the specific effects of these factors on moisture content, their interplay, and how they 
jointly determine the final moisture content during vacuum screening may be difficult to fully and accurately 
quantify in experimental analysis.

During the process of vacuum screening, the relationships between various factors and moisture content are 
often complex and non-linear. Traditional statistical methods may find it difficult to accurately capture these 
non-linear relationships, while machine learning models have powerful data processing and pattern recogni-
tion capabilities. By training machine learning models, complex nonlinear relationships can be automatically 
extracted from experimental data to reveal hidden patterns and regularities, thereby improving the accuracy of 
moisture content prediction. This is of great significance for real-time monitoring and rapid adjustment during 
the vacuum screening process, which helps to improve product quality and production efficiency.

Additionally, the feature importance method in machine learning can quantify the contribution of each fac-
tor to the moisture content. This quantitative analysis not only helps to understand the intrinsic mechanism of 
the vacuum screening process more deeply, but also provides a more scientific basis for the optimization of the 
vacuum screening process. Therefore, machine learning methods would be used to predict the moisture content 
during vacuum screening, and the feature importance of the machine learning model would be used to analyze 
the dominant factors influencing the particle layer moisture content during vacuum screening.

Prediction of moisture content for vacuum screening
In the present study, five different machine learning algorithms, namely: multiple linear regression(MLR), 
decision tree (DT), artificial Neural Network (ANN)37, random forest (RF)38, and eXtreme Gradient Boosting 
(XGBoost)39 were built and compared against each other in terms of predicting moisture content during vacuum 
screening.

The experimentally determined particle ratios, particle layer thickness, screen mesh, airflow rate,vacuum 
level, and residence time were used as inputs to accurately predict the moisture content of the filter cake dur-
ing vacuum screening, and the moisture content was used as the output. The evaluation metrics for the model 
performance included the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of 
determination  (R2). The objective was to determine an optimal model that resolves the dynamic prediction 
of moisture content in vacuum screening. An machine-learning experiment was conducted on the Anaconda 
platform using the Python 3.8 programming language, and NumPy, Pandas, and Scikit-learn packages were 
called to implement machine-learning algorithm  modeling40. The experimental data were randomly divided 
into training and testing sets in a ratio of 8:2.

Machine learning algorithms
Five machine learning algorithms were utilized to predict the moisture content during vacuum screening, namely: 
multiple linear regression(MLR), decision tree (DT), artificial Neural Networks (ANN), random forest (RF), and 
eXtreme Gradient Boosting (XGBoost). Thus, the theoretical interpretation of these algorithms was illustrated 
in the following subsections.

(a) 100 screen mesh, particle ratio 1, 20 kpa (b) 100 screen mesh, particle ratio 2, 20 kPa

Figure 10.  Effect of particle layer thickness.
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Multiple linear regression
Multiple Linear Regression (MLR) is a commonly used statistical method for analyzing the linear relationship 
between two or more independent variables and a dependent variable. The MLR model is simple and easy 
to understand, with high computational efficiency, making it suitable for modeling linear relationships. As a 
benchmark model, MLR can help us initially understand the linear relationships within the data and provide a 
reference for other more complex models.

Decision tree
Decision Tree (DT) is a machine learning algorithm that mimics the human decision-making process. It recur-
sively partition the data into smaller subsets based on a series of feature-based binary questions, continuing until 
it reaches leaf nodes that can make predictions. Its advantages lie in the strong interpretability of the model, 
which can intuitively demonstrate the relationship between data features and target variables. In addition, deci-
sion trees can handle data with nonlinear relationships among features and also show good adaptability to small 
sample sizes.

Artificial neural networks
Artificial neural networks (ANN) are algorithms designed to mimic the way the human brain receives and 
processes information. ANN do not require a predetermined mathematical equation defining the mapping 
relationship between inputs and outputs. The advantage of ANN lies in their ability to capture complex nonlinear 
relationships, with strong learning capabilities and adaptability, which are widely applied to complex pattern rec-
ognition and predictive  problems41. Since the moisture content during vacuum screening was influenced by mul-
tiple factors, which might be nonlinear relationships between these factors. Therefore, this study employed ANN 
to capture these complex nonlinear relationships. Artificial neural networks were used to establish a prediction 
model for moisture content during vacuum screening. The specific structure of the model was shown in Fig. 11.

Random forest
Random Forest is an ensemble learning algorithm that uses decision trees as base learners. Following the RF 
bagging method reduces the chances of results being affected by outliers. In this algorithm, each decision tree 
is trained based on a randomly selected subset of samples and features. Then, the prediction results of multiple 
decision trees are integrated through voting or averaging to obtain the final prediction result. Its advantage lies 
in the integration of multiple decision trees, which endows it with strong generalization ability and resistance to 
overfitting. Compared to some other ’black box’ machine learning models, the Random Forest algorithm offers 
better model interpretability, enabling it to identify the features that have the greatest impact on the prediction 
results, thereby helping us understand the dominant factors that influence the moisture content during vacuum 
screening.

XGBoost
XGBoost, standing for Extreme Gradient Boosting, is an optimized implementation of Gradient Boosting 
designed as as a regularized, faster, and more accurate version to handle the overfitting problem. XGBoost utilizes 
parallel computing to optimize the training process. Contrary to Random Forest, where trees are grown simul-
taneously, XGBoost constructs trees in a sequential manner, with each tree being built consecutively following 

Figure 11.  Three-layer ANN neural network model.
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the previous one. This approach ensures that the overall training process is more efficient and effective. XGBoost 
is known for its high predictive accuracy and robustness, capable of handling complex nonlinear relationships. 
It demonstrates remarkable performance when handling large-scale datasets and complex  features40, thereby 
making it an ideal choice for fulfilling the high-precision predictive requirements of this study.

Model parameter tuning
The hyperparameters were optimized using the fivefold cross-validation method to improve the performance 
of the machine-learning models. In addition, the performance of the models was evaluated to select the optimal 
hyperparameters. The range of hyperparameters for various machine learning models and their optimal values 
after grid search cross-validation were presented in Table 3. Figure 12 displayed the validation curves for the 
adjustment of the critical hyperparameters of the four models.

As for ANN, the number of hidden layer nodes is a crucial  hyperparameter42,43, as it directly influences the 
network’s capacity and ability to learn complex patterns. Determining the appropriate number of hidden layer 
nodes is essential for balancing the network’s generalization ability and avoiding overfitting, while also affecting 
training efficiency and the final performance of the model.As clearly demonstrated in Fig. 12a, upon setting the 
number of hidden layer nodes to 9, the coefficient of determination  (R2) for both the training and validation 
sets attains a peak and subsequently plateaus, conclusively suggesting that 9 represents the optimal number of 
hidden layer nodes.

As for the Decision Tree, Random Forest, and XGBoost models, “max_depth” is a critically important hyper-
parameter, which controls the maximum depth of the  trees40,44. It plays a pivotal role in curbing overfitting, 
thereby ensuring that the model maintains a balance between complexity and generalizability. Additionally, 
“max_depth” significantly influences the model’s training velocity and its ultimate predictive precision.

Model prediction and comparative analysis
The performances of five machine learning models with optimized hyperparameters were compared and ana-
lyzed to select the best moisture-content prediction model using the RMSE, MAE, and  R2. Table 4 presents a 
comparison of the results of the different models for each indicator. The data showed that the XGBoost model 
achieved  R2, RMSE, and MAE values of 0.9605, 0.0058, and 0.0041, respectively, for the test set (Table 4). Com-
pared to the MLR prediction model, the  R2 value increased by 34.56%, the RMSE decreased by 56.72%, and the 
MAE decreased by 69.17%. The XGBoost model also outperformed the RF model, which is another ensemble 
tree type, by 3.67%  (R2), 26.58% (RMSE), and 36.92% (MAE).

The prediction results of the three models on the training and test datasets can be observed intuitively in 
Fig. 13. Except for a considerable deviation shown by the MLR model in Fig. 13a on both the training and test-
ing datasets, the other four models exhibit a close match between their predicted and experimental values. In 
particular, the XGBoost model achieved an  R2 value of 99.36% on the training set and 96.05% on the testing 
set. The XGBoost model outperformed ANN and RF in terms of prediction and generalization ability. Overall, 
the XGBoost model demonstrated a significant advantage over the MLR, ANN, DT and RF models in terms of 
performance.

Table 3.  The search range of model hyperparameters and the final values of selected hyperparameters.

Model Hyperparameter Selected range Optimal value

ANN

Input variables 6 6

Number of hidden layer [1–5] 1

Hidden layers nodes [3–12] 9

learning_rate [0.001, 0.002, 0.003, 0.004] 0.001

Epoch [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] 200

Activation funcon tanh, ReLU, trainlm tanh

Decision Tree

min_samples_leaf [5–10] 10

max_depth [1–10] 5

Max _features [2–6] 4

Random Forest

n_estimators [100, 120, 140, 160, 180] 140

max_depth [1–10] 4

Max _features [2–6] 3

XGBoost

n_estimators [100, 200, 300, 400, 500] 300

max_depth [1–10] 5

learning_rate [0.1, 0.2, 0.3, 0.4, 0.5] 0.3

Gamma [0, 1, 2, 3, 4, 5] 0

Minimum child weight [1–5] 2

reg_lambda [0.001, 0.0011, 0.0012, 0.0013] 0.0012
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Model generalization
The XGBoost model produced the best performances by far when compared to the other investigated models. In 
order to evaluate whether the XGBoost model demonstrated overfitting or underfitting, two evaluation metrics, 
namely RMSE and  R2, were used to evaluate the generalization of the proposed model in conjunction with cross-
validation. The detailed results were shown in Fig. 14. Figure 14 illustrated the variations in RMSE and  R2 for 
XGBoost on both the training and validation sets. The RMSE reduced and  R2 increased in a fluctuating fashion 

a ANN                                  b DT

c RF                          d XGBoost

Figure 12.  Validation curves using the critical hyperparameter.

Table 4.  Comparison of predictive performance of machine-learning models.

Model

Training set Test set

R2 RMSE MAE R2 RMSE MAE

MLR 0.7489 0.0152 0.0113 0.7138 0.0134 0.0133

Decision tree 0.8965 0.0095 0.0068 0.8387 0.0117 0.0097

ANN 0.9108 0.0088 0.0055 0.9165 0.0086 0.0060

Random forest 0.9316 0.0078 0.0053 0.9265 0.0079 0.0065

XGBoost 0.9936 0.0024 0.0013 0.9605 0.0058 0.0041
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as the number of iterations increases. At the end of the experiment, both metrics tended to be constant, and the 
fitting performance on the validation set was close to that on the training set. This indicates that the XGBoost 
model did not suffer from overfitting or underfitting, demonstrating its good generalization.

To further demonstrate the robustness of the proposed model, predictive analyses were conducted on the 80 
experimental datasets from  reference30 using Artificial Neural Networks (ANN), Random Forest, and XGBoost 
models. The prediction results were shown in Fig. 15 and Table 5. As indicated in Table 5, the XGBoost model 
proposed in this study demonstrated good performance in predicting the new dataset, achieving an  R2 of 0.9679, 

(a) MLR  (b) DT  

(c) ANN (d) RF

(e) XGBoost

Figure 13.  Fitting results of machine learning.
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an RMSE of 0.0023, and an MAE of 0.0014. These favorable indicators demonstrated that the proposed XGBoost 
model exhibited high accuracy in predicting unknown data, and also indicated that the model possessed good 
generalization performance.

Dominant factor analysis of moisture content during vacuum screening
Correlation analysis of factors influencing moisture content
Before conducting the dominant factor analysis, it was necessary to analyze the correlation among six factors: 
the airflow rate, vacuum level, particle ratio, screen mesh, particle layer thickness, and residence time, as they all 
had varying degrees of influence on the moisture content of the filter cake. Correlation analysis helps with feature 
selection and managing multicollinearity, enhancing model performance and interpretability. This analytical step 
aids a deeper understanding of the data and provides a strong foundation for building more effective machine 

(a) Loss function curve                                                        (b) Accuracy curve

 

Figure 14.  Overfitting analysis.

Figure 15.  Predictions on the new dataset.

Table 5.  Comparison of machine learning model performance in predicting new data.

Model Dateset R2 RMSE MAE

ANN Huttunen  M29 0.9178 0.0035 0.0022

Random forest Huttunen  M29 0.9025 0.0038 0.0025

XGBoost Huttunen  M29 0.9936 0.0024 0.0013
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learning models. The most widely used method of data correlation analysis is the Pearson correlation coefficient 
method. It quantifies the strength of the linear relationship between two continuous variables by calculating the 
ratio of their covariance to the product of their standard deviations, yielding a linear correlation measure that 
ranges from − 1 to 1. The Pearson’s correlation coefficient, when its absolute value is close to 1, suggests that 
there is a stronger linear relationship between the two variables. Conversely, when the absolute value is close 
to 0, it indicates a weak or negligible linear association. A heat map of Pearson’s correlation coefficients of the 
input factors is shown in Fig. 16.

Values of |ρ| > 0.4 were observed for the airflow rate, particle ratio, and vacuum level (Fig. 16). This indicates 
that the airflow rate, vacuum level, and particle layer thickness exhibit a moderate level of linear correlation. 
Figure 17a is a scatter plot of the airflow rate and vacuum level; as the airflow rate increases, the vacuum level 
increases. Figure 17b is a scatter plot of the vacuum level and particle layer thickness; as the particle layer thick-
ness increases, the vacuum level increases. The correlation coefficients ( |ρ| ) between the other three factors, that 
is, the particle ratio, screen mesh, and residence time, are lower than 0.2, indicating a weak linear correlation 
among these three factors. Overall, no strong linear correlation exists among the six factors. Therefore, when 
determining the dominant factors for moisture content during vacuum screening, all six factors can be simul-
taneously analyzed as input features.

Figure 16.  Correlation coefficient heat map of input factors.

(a) Vacuum level: Airflow rate                                              (b)Vacuum level: particle layer thickness

Figure 17.  Variable scatter plot.
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Identification of dominant factors for moisture content
The importance of machine-learning features can reflect the influence and contribution of the features to the 
target variable. Therefore, the dominant factors were evaluated using machine-learning feature importance. Three 
widely used methods for evaluating feature importance are tree-based feature importance, permutation feature 
importance, and  SHAP45. Tree-based feature importance refers to the assessment of the significance of features 
within tree models, such as decision trees, random forests, and gradient-boosted trees, by quantifying the impact 
of each feature on the model’s predictive outcomes. Permutation feature importance is a versatile approach that 
applies to any model, gauging the significance of features by inducing variability in their values and monitoring 
the subsequent effects on the model’s predictive accuracy. SHAP is a game theory-based feature importance 
assessment method that decomposes the prediction results into the impact of each feature and assigns a SHAP 
value to each feature to represent its contribution to the prediction results. In this study, these methods were 
employed to analyze the dominant factors influencing the moisture content of the filter cake.

Figure 18 shows the feature importance rankings of the three prediction models. Figure 18a shows the ANN 
feature importance calculated using the permutation feature importance. The feature importance values of each 
factor ranged from 0.07 to 0.6. The top three features, in descending order of importance, were the airflow rate, 
particle ratio, and screen mesh. The contribution of these three features to the moisture content was higher than 
20%, and the contribution of the remaining features was approximately 5%. Figure 18b and c depict the feature 
importance of RF and XGBoost, respectively, calculated using the tree-based feature importance method. The 
top three features had the same order as the ANN model (Fig. 18b), which are the airflow rate, particle ratio, 
and screen mesh. However, their contributions to moisture content differed from those of the ANN model, 
with contributions of 34.88%, 21.73%, and 18.16%, respectively. The last three features were the vacuum level, 
particle layer thickness, and residence time, with contributions of approximately 8%. The top three features were 
the particle ratio, airflow rate, and screen mesh (Fig. 18c). Their contributions to the moisture content ranged 
between 22 and 30%. The last three features were the vacuum level, particle layer thickness, and residence time, 
with contributions ranging between 5 and 13%.

Overall, the feature importance rankings of the models differed. However, the three models were consistent 
in terms of the three most critical features, namely the airflow rate, particle ratio, and screen mesh, which had 
an average cumulative contribution of approximately 80% to the moisture content. The last three important fea-
tures were the vacuum level, particle layer thickness, and residence time. These results indicate that the airflow 
rate, particle ratio, and screen mesh are the dominant factors influencing the moisture content during vacuum 
screening filtration, whereas the other three factors have less significant effects.

(a) Feature importance rankings by ANN (b)Feature importance rankings by RF

(c)Feature importance rankings by XGBoost

Figure 18.  Comparison of importance rankings of each model feature.
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Interpretability analysis of dominant factors for moisture content
Based on the analysis presented in Section "Identification of dominant factors for moisture content", the dominant 
factors influencing the moisture content during vacuum screening were the airflow rate, particle ratio, and screen 
mesh. However, how these dominant factors influence the moisture content prediction results need to be clarified. 
In 2017, Lundberg and Lee developed a method for improving the interpretability of classification and regression 
models, namely, the SHAP model. The model combines the concept of the Shapley value in the cooperative game 
theory with the local interpretation method and constructs an interpretation framework for model prediction 
based on the feature contributions. The SHAP model not only reflects the degree of influence of each feature in 
each sample on the prediction results but also illustrates the positive and negative correlations of the influence.

A variant of SHAP (TreeSHAP) was used to interpret the model to determine the direction and magnitude of 
the relationship between the predictor and response variables. Figure 19 presents a summary plot of the feature 
importance rankings and the positive and negative impacts of the XGBoost model on the prediction of the filter 
cake moisture content and its outcomes in the SHAP framework. In this plot, the features are ordered from top 
to bottom based on their importance. Each point represents the SHAP value of a feature for prediction. All pre-
dictions were arranged along the horizontal axis based on the SHAP values and stacked along the vertical axis 
when the same value occurred to show the data distribution. The SHAP values reflect the positive and negative 
relationships between the features and prediction, and the color of the data points indicates the magnitude of 
the input feature values. As shown in Fig. 19, the features are ranked by their importance from high to low as fol-
lows: particle ratio, screen mesh, airflow rate, vacuum residence time, vacuum level, and particle layer thickness.

Interpretablility analysis of the effect of particle ratio
The most important feature was the particle ratio, which had a positive SHAP value and a positive correlation 
with the moisture content of the filter cake for samples with high values. A higher particle ratio indicates a higher 
proportion of fine particles in the mixture, which improves viscous and inertial resistance. This increased the 
resistance of the filtrate passing through the screen and filter cake, increasing the moisture content after vacuum-
screening filtration.

Interpretablility analysis of the effect of screen mesh
The screen mesh was the second most important feature. The higher the feature value, the higher the moisture 
content of the filter cake, indicating a positive correlation between the moisture content and this feature. The 
particle ratio and screen mesh reflected the structure of the filter bed. Variations in the particle ratio and screen 
mesh indicated variations in the porosity of the filter bed. When the particle ratio increased, the proportion of 
fine particles in the mixed particles also increased, leading to an increase in the porosity of the filter bed. Similarly, 
increasing the screen mesh increased the porosity of the filter bed. As the porosity of the filter bed increased, the 
viscous and inertial resistances of the mixture also increased, increasing the resistance of the filtrate to passing 
through the particle layer during vacuum screening. This increased moisture content after filtration.

Interpretablility analysis of the effect of airflow rate
The airflow rate, which was the third most important feature, had higher SHAP values corresponding to samples 
with higher feature values, indicating a negative correlation with the moisture content after filtration. As the 
airflow rate increased, its effectiveness in transporting the pore water from the filter bed increased, decreasing 
the moisture content. This can be observed from the decreasing SHAP values with increasing feature values for 
the airflow rate.

These findings were consistent with the experimental results, further verifying that the particle ratio, screen 
mesh, and airflow rate were the dominant factors influencing the moisture content of the filter cake. Among 
the three dominant factors, the particle ratio and screen mesh reflected the filter bed structure during vacuum 
screening. Therefore, the optimization and application of vacuum filtration technology should pay more atten-
tion to the variation of airflow rate.

Figure 19.  SHAP summary plot of input features.
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Conclusions
In this study, a vacuum-screening apparatus was constructed, and experiments were conducted to predict the 
moisture content of the filter cake during vacuum screening. Three machine-learning methods were employed 
to establish the prediction model. The dominant factors influencing the moisture content were identified, and 
the following main conclusions were drawn.

(1) A vacuum screening experimental apparatus was constructed, and through the analysis of experimental 
data, it was found that the moisture content during the vacuum screening initially decreases rapidly and 
then more slowly, especially after the vacuum was sustained for 5 s, where the change tends to level off. 
This finding provided a direct basis for determining the optimal screening time, which was of significant 
importance for improving screening efficiency and reducing energy consumption.

(2) Five models, namely MLR, ANN, DT, RF, and XGBoost, were employed to establish moisture content 
prediction models for vacuum screening. The results demonstrated that the XGBoost model exhibited the 
highest prediction accuracy and stability, with a prediction accuracy of up to 96%,and the generalization 
of the model is verified by new unknown data. This provided a novel predictive tool for real-time monitor-
ing and parameter tuning of the screening process, facilitating process optimization and efficiency. It was 
recommended that the XGBoost model and other machine learning techniques be applied to other types 
of screening processes to validate their generalisability and predictive capabilities.

(3) Through the SHAP value analysis and the comprehensive evaluation of five machine learning models, the 
particle ratio, screen mesh, and airflow rate were identified as the dominant factors influencing the mois-
ture content during vacuum screening. This finding not only improves our understanding of the vacuum 
screening mechanism, but also provides a scientific basis for precise control of process parameters. It is 
suggested to focus on adjusting the particle ratio, screen mesh, and airflow rate to achieve better screening 
outcomes during the vacuum screening process.

Future research directions

(1) The effect of filtrate viscosity on moisture content during vacuum screening was overlooked in this study. 
The integration of filtrate viscosity as an important  parameter46 will be essential for a comprehensive evalu-
ation of system performance in future.

(2) The sampling frequency of experimental moisture content should be enhanced to provide more robust data 
support in future work, which is essential for process optimization and control.

(3) Integrating machine learning and deep learning methods to predict the moisture content during vacuum 
screening may lead to more promising  methods47.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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