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ABSTRACT 
Meconopsis torquata Prain 1906, a national second-class rare and endangered plant, is reported here 
for the first time for its complete chloroplast genome. The genome is 153,290 bp in length, comprising 
a large single-copy region (LSC, 83,918 bp), a small single-copy region (SSC, 17,740 bp), and two 
inverted repeat sequences (IRa and IRb, each 25,816 bp). The overall GC content is 38.7%, with the IR 
region having the highest content (43.1%). The genome is annotated with 112 unique genes, including 
4 rRNA genes, 29 tRNA genes, and 79 protein-coding genes. Analysis of codon usage bias reveals that 
codons ending in A/T account for 96.7% of those with a Relative Synonymous Codon Usage (RSCU) 
value above 1. This predominance of A/T-ending codons might be indicative of M. torquata adaptation 
to high-altitude environments. Phylogenetic analysis reveals a close kinship between M. torquata and 
M. pinnatifolia and M. paniculata, indicating that the ancestral groups of these species might have a 
complex evolutionary history. This study uncovers the genetic characteristics and adaptive evolution of 
M. torquata, offering a new perspective in understanding the phylogenetic relationships within the 
genus. The findings not only provide a solid theoretical foundation for the conservation and sustain-
able use of this rare and endangered species but also offer significant scientific support for the conser-
vation of biodiversity.
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Introduction

Meconopsis, belonging to the Papaveraceae family, comprises 
over 70 species, predominantly distributed in the Himalayas, 
the Tibetan Plateau, and the Hengduan Mountains (Xiao and 
Simpson 2017; Shi et al. 2022). These species have adapted 
to various ecological conditions ranging from 2000 to 5800 m 
in altitude, including temperate forests, alpine meadows, 
scree slopes, and snow zones (Xie et al. 2014). The Eastern 
Himalayan-Hengduan Mountains region, in particular, is a 
center of diversity for the Meconopsis, playing a pivotal role 
in maintaining local ecosystem balance and biodiversity 
(Duffy et al. 2017; Shi et al. 2022). Known for their diverse 
flower colors and elegant forms, Meconopsis species are not 
only valuable resources for horticultural cultivation but also 
widely used in traditional Tibetan medicine for their unique 
medicinal values. Classical texts, such as The Four Medical 
Tantras and Jing Zhu Materia Medica, document their utiliza-
tion in treating inflammation and pain. Modern pharmaco-
logical studies have confirmed that the isoquinoline alkaloids 
and flavonoid compounds present in these species exhibit a 
range of biological activities, including anti-tumor, 

hepatoprotective, analgesic, antibacterial, antioxidant, antitus-
sive, and anti-inflammatory effects (Guo et al. 2016). 
However, Meconopsis species are facing severe challenges 
due to habitat fragility and human disturbances, leading to 
several species, including Meconopsis torquata Prain, being 
listed as national second-class protected plants (Shi et al. 
2022). This situation underscores the urgent need for the 
conservation and sustainable use of their genetic resources 
and habitats. Despite this, chloroplast genome studies on 
M. torquata and other Meconopsis species remain insufficient. 
This study reports the complete chloroplast genome 
sequence of M. torquata, aiming to provide crucial molecular 
data for the formulation of its conservation strategies and 
understanding of its evolutionary history.

Materials and methods

Plant material, DNA extraction and sequencing

In this study, fresh leaf samples of M. torquata were collected 
from Lhasa, Tibet, China (91�306.8500, 29�42052.7600; altitude 
4739 m) (Figure 1). The collection and identification were 
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conducted by Jun-Wei Wang (email: jwyx12240315@126. 
com). The leaf samples were dried with silica gel and then 
stored at −20 �C for further use. The voucher specimens are 
preserved in the Key Laboratory of Biodiversity and 
Environment on the Qinghai-Tibetan Plateau, Ministry of 
Education, School of Ecology and Environment, Tibet 
University, Lhasa 850000, China, with the voucher number 
wang20180019. Total DNA was extracted using a modified 
CTAB method (Li et al. 2013). The extracted DNA samples 
were assessed for integrity and concentration, then used to 
construct a 150 bp paired-end sequencing library, sequenced 
on the Illumina NovaSeq X platform at Novogene Co., Ltd., 
Beijing, China. This produced 45,332,282 raw sequencing 
reads, and after quality filtering, 44,681,980 high-quality reads 
were obtained with a Q20 ratio of 97.37%.

Genome assembly and annotation

Under the Linux operating system, the chloroplast genome 
of M. torquata was assembled using GetOrganelle v1.7.7 (Jin 
et al. 2020) with default parameters. Coverage of the assem-
bly results was calculated using a script provided by Ni et al. 
(2023) (Figure S1). The chloroplast genome annotation was 

initially performed using the online tools CPGAVAS2 
(Shi et al. 2019) and GeSeq (Tillich et al. 2017), followed by 
manual corrections in Geneious Prime (Kearse et al. 2012), 
including adjustments to intron and exon boundaries of pro-
tein-coding genes and the removal of annotations with low 
coverage. The genome map was drawn using CPGView (Liu 
et al. 2023). Additionally, codon usage bias analysis of the 
annotated protein-coding sequences was performed using 
CodonW1.4.4 (http://codonw.sourceforge.net/), with subse-
quent visualization conducted on the bioinformatics cloud 
platform (http://112.86.217.82:9919/#/home) (Figure S2). The 
complete annotated chloroplast genome sequence was con-
verted to GenBank format using GB2sequin (Lehwark and 
Greiner 2019) and submitted to the GenBank database.

Phylogenetic analysis

To clarify the phylogenetic position of M. torquata, this study 
employed both Maximum Likelihood (ML) and Bayesian 
Inference (BI) methods to construct the phylogenetic relation-
ship within the Meconopsis. All sequences, except for M. tor-
quata, were downloaded from the NCBI database. The 14 
sequences were aligned using MAFFT v7.453 (Katoh and 

Figure 1. The morphological characteristics of M. torquata. (A) Habit, (B) Inflorescence, (C) capsule fruit. The photograph was taken by junwei Wang, La Qiong, and 
Min Xu in Lhasa, Tibet, China. The most characteristic features of the specimen include: an annual herbaceous plant with basal, rosette-forming leaves; large, blue 
flowers that are densely arranged at the stem’s tip; the fruit is an inverted-ovate capsule.
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Standley 2013), and the alignment was manually corrected in 
Geneious Prime. Phylogenetic analysis was conducted in 
Phylosuite v1.2.2 (Zhang et al. 2020), employing Gblocks 
0.91b (Talavera and Castresana 2007) to select conserved 
regions, and the best nucleotide substitution model was cal-
culated using ModelFinder v.1.6.8 (Kalyaanamoorthy et al. 
2017) based on the Bayesian Information Criterion (BIC). 
Maximum Likelihood analysis was performed using IQTREE 
(Nguyen et al. 2015), with 1000 bootstrap replications for 
confidence assessment. Bayesian Inference analysis was con-
ducted in Mrbayes v3.2 (Ronquist et al. 2012), running for 
2,000,000 generations, sampling every 100 generations, with 
the first 25% of trees discarded as burn-in. The constructed 
tree file was viewed using FigTree 1.4.4 (http://tree.bio.ed.ac. 

uk/software/Figtree/), considering branches with Bootstrap 
Support (BS) >75 and Posterior Probability (PP) >95% as 
highly credible.

Results

The complete chloroplast genome of M. torquata is 
153,290 bp in length with an average sequencing depth of 
2405.66� (Figure S1). The chloroplast genome exhibited a 
typical quadripartite structure, consisting of a large single- 
copy region (LSC, 83,918 bp), a small single-copy region (SSC, 
17,740 bp), and two inverted repeat regions (IRa and IRb, 
each 25,816 bp) (Figure 2). The overall GC content of the gen-
ome is 38.7%, with significant heterogeneity across different 

Figure 2. Chloroplast genome map of M. torquata. From the center outward, the map is composed of six concentric rings. The first circle represents the forward 
and reverse repeats, connected with red and green arcs, respectively. The second circle marks the tandem repeats. The third circle displays the microsatellite 
sequences. The fourth circle indicates the sizes of feature regions, including a large single-copy (LSC), a small single-copy (SSC), and two inverted repeats (IRa and 
IRb). The fifth circle exhibits the GC content distribution. The sixth circle displays genes organized by function, with their associated codon usage bias indicated in 
parentheses following each gene name.
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regions; the GC contents of the IR, LSC, and SSC regions are 
43.1%, 37.2%, and 33.1%, respectively.

A total of 112 unique genes were identified, including 4 
rRNA genes, 29 tRNA genes, and 79 protein-coding genes 
(Figure 2). Most genes exist in a single-copy form, while 20 
genes are duplicated in the IR regions, including 8 protein- 
coding genes, 8 tRNA genes, and 4 rRNA genes. Furthermore, 
18 genes containing introns were discovered, with clpP, 
rps12, and ycf3 each containing two introns, and other genes 
like atpF, ndhA, ndhB each containing one intron. 
Additionally, the chloroplast genome contains 11 cis-spliced 
genes and one trans-spliced gene (rps12) (Figure S3). As 
shown in Figure S2, 30 codons with RSCU > 1 exhibit a 
higher usage frequency compared to other synonymous 
codons. Notably, 29 of these codons terminate in an A/T 
base, representing 96.7% of the total.

The phylogenetic tree constructed in this study shows 
high consistency between the results of the Maximum 
Likelihood (ML) and Bayesian Inference (BI) methods, with 
the bootstrap support values (BS) of the ML tree and poster-
ior probabilities (PP) of the BI tree marked on the respective 
branches (Figure 3). The phylogenetic analysis indicates that 
the relationships among most species within the Meconopsis 
are clearly resolved, with M. torquata being most closely 
related to M. pinnatifolia and M. paniculata. These species are 

predominantly distributed in the southeastern region of 
Tibet.

Discussion and conclusion

The chloroplast genome structure of M. torquata is similar to 
that of most angiosperms, exhibiting a typical quadripartite 
structure (Jansen et al. 2005). This finding aligns with the 
general range of terrestrial plant chloroplast genomes in 
angiosperms (120–160 kb, encoding about 110–130 unique 
genes) (Dobrogojski et al. 2020), indicating a distinct conser-
vatism in genome size and gene content in M. torquata. 
Codon usage bias is a universal phenomenon in nature, 
formed over the course of evolution, and influenced by fac-
tors such as mutation, natural selection, gene length, and 
function (Parvathy et al. 2022). In M. torquata, an exception-
ally high 96.7% of codons with an RSCU value greater than 1 
end in A/T, far exceeding other species. This characteristic 
may be closely related to its evolutionary adaptation to high- 
altitude environments, reflecting the impact of specific envi-
ronments on genomic adaptive changes (Chen et al. 2022).

The use of chloroplast genome data in plant phylogenetic 
analyses has become increasingly widespread (Parks et al. 
2009). Based on the existing chloroplast genome sequences 
of the Meconopsis, this study analyzed their phylogenetic 

Figure 3. Phylogenetic tree of the complete chloroplast genomes in the genus meconopsis. The ML bootstrap (BS) values and BI posterior probabilities (PP) support-
ing each node are indicated beneath the branches. The sequences used were: M. bella NC_080898 (unpublished), M. betonicifolia OK349678 (unpublished), M. henrici 
NC_050877 (Zhu and Zhang 2020), M. horridula NC_056967 (Dan et al. 2021), M. integrifolia NC_061607 (Li et al. 2020), M. paniculata OR521090 (unpublished), 
M. pinnatifolia OR521089 (unpublished), M. pseudohorridula ON756033 (unpublished), M. punicea NC_050878 (Zhu and Zhang 2020), M. quintuplinervia NC_056996 
(Xu et al. 2019), M. racemosa NC_039625 (Zeng et al. 2018), M. simplicifolia NC_070211 (Yang et al. 2023), and papaver rhoeas NC_037831 (Zhou et al. 2018) as the 
outgroup.

MITOCHONDRIAL DNA PART B: RESOURCES 805

https://doi.org/10.1080/23802359.2024.2368208
https://doi.org/10.1080/23802359.2024.2368208


relationships. The results reveal a close kinship between M. 
torquata, M. pinnatifolia, and M. paniculata. These species are 
distributed in the southeastern region of Tibet, suggesting 
that their ancestral groups may have had a broad distribution 
in this area and could have evolved diversely due to geo-
graphical isolation.

The in-depth analysis of the M. torquata chloroplast gen-
ome in this study not only reveals its unique genetic charac-
teristics and adaptive evolution but also provides a new 
perspective in understanding the phylogenetic relationships 
within the Meconopsis. These findings are significant for 
understanding the impact of high-altitude environments on 
plant genome evolution and provide foundational data for 
biodiversity and ecological research of Meconopsis species in 
the southeastern region of Tibet. Furthermore, the compre-
hensive analysis of chloroplast genome structure, codon 
usage bias, and phylogenetic relationships lays an important 
foundation for future research in the fields of botany, genet-
ics, and ecology.
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