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Abstract

Background

The variable presentations and different phenotypes of sepsis suggest that risk of sepsis

comes from many genes each having a small effect. The cumulative effect can be used to

create individual risk profile. The purpose of this study was to create a polygenic risk score

and determine the genetic variants associated with sepsis.

Methods

We sequenced ~14 million single nucleotide polymorphisms with a minimac imputation qual-

ity R2>0.3 and minor allele frequency >10−6 in patients with Sepsis-2 or Sepsis-3. Genome-

wide association was performed using Firth bias-corrected logistic regression. Semi-parsi-

monious logistic regression was used to create polygenic risk scores and reduced regres-

sion to determine the genetic variants independently associated with sepsis.

Findings

2261 patients had sepsis and 13,068 control patients did not. The polygenic risk scores had

good discrimination: c-statistic = 0.752 ± 0.005 for Sepsis-2 and 0.752 ± 0.007 for Sepsis-3.

We found 772 genetic variants associated with Sepsis-2 and 442 with Sepsis-3, p<0.01.

After multivariate adjustment, 100 variants on 85 genes were associated with Sepsis-2 and

69 variants in 54 genes with Sepsis-3. Twenty-five variants were present in both the Sepsis-

2 and Sepsis-3 groups out of 32 genes that were present in both groups. The other 7 genes

had different variants present. Most variants had small effect sizes.

Conclusions

Sepsis-2 and Sepsis-3 have both separate and shared genetic variants. Most genetic vari-

ants have small effects sizes, but cumulatively, the polygenic risk scores have good

discrimination.
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Background

Studies show that sepsis is a leading cause of mortality, the incidence is increasing, and survi-

vors frequently have long-term physical, psychological, and cognitive impairments [1–4]. Sep-

sis is a syndrome, previously described by the presence of markers of systemic inflammation–

abnormal vital signs and leukocyte counts—associated with suspected infection. Recently, the

definition has changed to one that relies on organ system dysfunction [5–8]. Sepsis is treated

with antibiotics, intravenous fluids, vasopressors and supportive care. Attempts to decrease

mortality in sepsis via drugs that target specific enzymes, mediators, or proteins associated

with sepsis have invariably failed, likely because sepsis has multiple pathways involving many

enzymes, mediators, and proteins coded by a plethora of genes, making sepsis a polygenic dis-

ease, like hypertension [9, 10].

Sepsis and the immune response to infection have a genetic component–about 10% of

human genes codes for immune mediators [11]–and adult adoptees have nearly a five-fold

higher risk of infection-related mortality if a biologic parent died of infection [12]. This is a

higher heritability than cardiovascular disease or cancer [12]. Studies have implicated many

genes across a large spectrum of immune and coagulation proteins including interleukins,

receptors, and fibrinogen [13]. However, many of these studies were limited by relatively small

patient populations, which may limit the reproducibility of the findings. More recently,

genome-wide association studies (GWAS) have been performed on patients with pneumonia

or with severe sepsis [14, 15]. These studies found a few associated genes, in particular FER
(which regulates cell-cell adhesion and mediates signaling from the cell surface to the cytoskel-

eton via growth factor receptors), DRD1 (which is a G protein coupled receptor that stimulates

adenylate cyclase and helps mediate vascular tone), and IGF-1 (a potent activator of the AKT

signaling pathway and a potent inhibitor of apoptosis) [15–17].

Complex human diseases may be explored using genetic approaches to gain insight into the

complex functional pathways that characterize disease [18]. Given the polygenic nature of

many diseases, in particular, sepsis where ~10% of genes code for immune mediators [11], cre-

ating a polygenic risk score to summarize the estimated effects of an individual’s genetic vari-

ants on the sepsis phenotype might be clinically useful and furthermore identifying genetic

variants that are associated with sepsis may provide important biological insights. GWAS, by

analyzing a multitude of genetic variants in large patient populations, has the potential to

assess many candidate genes for sepsis, determine their relative contributions, and be used to

create polygenic risk scores. The primary purpose of this study is to create a polygenic risk

score for sepsis and to assess its discrimination. The secondary purpose it to identify those

genetic variants most associated with the polygenic risk score.

Methods

Study design and setting

This study was approved by the Institutional Review Board (HUM00168165). We used the

STREGA checklist when writing our report. All participants had given written informed con-

sent. The Michigan Genomics Initiative (MGI) is a biobank that collects blood samples on

adult perioperative patients for later genetic analysis. The MGI cohort and data have been pre-

viously described [19]. Briefly, subjects were recruited primarily during surgical encounters at

Michigan Medicine and provided consent for linking of their electronic health records and

genetic data for research purposes. Samples were genotyped on customized Illumina Human-

CoreExome v12.1 bead arrays (Illumina, Inc. San Diego, CA) and subsequently imputed to the

Haplotype Reference Consortium using the Michigan Imputation Server [20], providing ~14
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million DNA single nucleotide polymorphisms (SNP) with a minimac imputation quality

R2>0.3 and minor allele frequency >10−6. European ancestry was inferred using principal

component analysis with samples from the Human Genome Diversity Panel as known

references.

Outcome measure and data collection

Adult (> 18 years) subjects who were participating in the MGI had their electronic medical

record searched for suspected sepsis. Using previously created and validated software [21], sep-

sis was separately defined using both the Sepsis-2 and Sepsis-3 definitions [5, 6]. Briefly,

patients had to have had body fluid (blood, sputum, urine, wound, other) cultures obtained

between Jan 28, 2008 and June 26, 2016, received antibiotics started within the 24 hours before

or the 72 hours after obtaining cultures, and had� 2 Systemic Inflammatory Response Syn-

drome (SIRS) or new Sequential Organ Failure Assessment (SOFA) points. Controls were

MGI participants who did not meet sepsis criteria and their medical records showed no body

fluid cultures with organism growth. Additionally, controls could not have International Clas-

sification of Diseases codes for sepsis, SIRS or infection (S1 Table, Fig 1) [22].

Data analysis

GWAS was performed using Firth bias-corrected logistic regression implemented in the epacts
software (https://genome.sph.umich.edu/wiki/EPACTS). Univariate logistic regressions were

run with each sepsis definition as the dependent variable and each SNP allele dosage as the

independent variable. SNPs were assessed for correlations, and for groups of SNPs with corre-

lations greater than 0.5, only one SNP was retained per group. Additionally, one SNP was

removed due to lack of variation in predicted genotype, with greater than 99.9% of patients

having the same predicted genotype. SNPs with p� 0.01 in the univariate regressions for a

sepsis outcome definition were included as independent variables in the respective multivari-

able logistic regression along with inferred sex, and principal components 1 through 4. Non-

parsimonious models were first created to produce the polygenic risk score and the discrimi-

nations of the models were assessed as the areas under the receiver operating characteristic

curve (c-statistics). Then, forward selections by Akaike Information Criteria, with inferred sex

and principal components 1–4 forced to remain in the models, were performed on each multi-

variable model to find a parsimonious model and the c-statistics were calculated. Genetic vari-

ants with final p<0.05 and 95% confidence intervals that excluded 1 were deemed significant

[23–25]. Post hoc, we conducted a similar regression analysis to determine the variants associ-

ated with 90-day mortality in patients with sepsis. Regression and correlation analyses were

run using RStudio version 1.4.1103.

Results

We had 2261 patients with sepsis: 2040 (90%) had Sepsis-2, 1295 (57%) had Sepsis-3 (1074

(47%) had both Sepsis-2 and Sepsis-3), (Fig 2), and 13,068 control patients without sepsis.

Q-Q plots confirmed that the analyses were well-controlled, without an elevated Type I

error (S1 and S2 Figs). The Manhattan plots (Figs 3 and 4) showed that we had no variants at

univariate p-values < 5 x 10−8. We did, however, find 772 genetic variants univariately associ-

ated with Sepsis-2 and 442 associated with Sepsis-3 at the p< 0.01 level. After removal of col-

linear genetic variants, we created a polygenic risk score from the remaining 320 variants

associated with Sepsis-2. This score had good discrimination (c-statistic = 0.752 ± 0.005) and

the 218 variants associated with Sepsis-3 had similar discrimination (c-statistic = 0.752 ± 0.007).

Both scores also had good calibration (Fig 5).
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After multivariate adjustment to create a parsimonious model, we found 95 variants on 72

genes were independently associated with Sepsis-2 sepsis (S2 Table). Most variates were associ-

ated with small increases in the odds ratio of developing sepsis, only five were associated with

a doubling or more and five others with at least a halving of the odds ratio compared to the ref-

erence gene. A variant in IL12RB1, 19:18184213:T:A, had the largest increase in odds ratio

(95% confidence interval) = 2.63 (1.57, 4.42), p = 0.0003 and a variant in TJP1, 15:30181207:C:

Fig 1. Patient flowchart.

https://doi.org/10.1371/journal.pone.0265052.g001

PLOS ONE Genetic variants associated with sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0265052 March 11, 2022 4 / 13

https://doi.org/10.1371/journal.pone.0265052.g001
https://doi.org/10.1371/journal.pone.0265052


Fig 2. Venn Diagram showing the number of patients with sepsis by Sepsis-2 (N = 2040) or Sepsis-3 (N = 1295) criteria or both (N = 1074) and the

numbers of genes and genetic variants associated with each sepsis phenotype.

https://doi.org/10.1371/journal.pone.0265052.g002

Fig 3. Manhattan plot showing the single nucleotide polymorphisms and their univariate p-values for Sepsis-2.

https://doi.org/10.1371/journal.pone.0265052.g003
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T, had the greatest decrease in odds ratio (95% confidence interval) = 0.29 (0.14, 0.56),

p = 0.0003.

In Sepsis-3 patients, after adjustment and reduction, we found 68 variants in 54 genes to be

associated with sepsis (S3 Table). Six variants were associated with a more than doubling and

four with at least a halving of the odds ratio of sepsis. PPARA, 22:46579337:A:T, was associated

with the largest increase in odds ratio (95% confidence interval) = 2.30 (1.50, 3.52), p = 0.0001

while CHRNA7, 15:32413847:G:A had the greatest decrease in odds ratio (95% confidence

interval) = 0.12 (0.02, 0.56), p = 0.008. There were 25 variants that were identically present in

both the Sepsis-2 and Sepsis-3 groups out of 32 genes that were present in both groups.

In the mortality analysis, 116 (5%) patients died by 90 days. After adjustment, we found 11

variants on 10 genes to be associated with mortality (S4 Table). The 7:105901555:C:T variant

of NAMPT was associated with a 10-fold higher risk of death—odds ratio (95% confidence

interval) = 10.61 (2.47, 45.64), p = 0.002.

Fig 4. Manhattan plot showing the single nucleotide polymorphisms and their univariate p-values for Sepsis-3.

https://doi.org/10.1371/journal.pone.0265052.g004

Fig 5. Calibration plot showing the fraction of patients with sepsis for each decile of risk calculated from the polygenic risk score. Sepsis-2 (left), Sepsis-3

(right).

https://doi.org/10.1371/journal.pone.0265052.g005
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Discussion

We found that the polygenic risk score identifies patients with sepsis with good discrimination.

We also found a collection of genetic variants associated with sepsis, either Sepsis-2 or Sepsis-3

and 25 genetic variants associated with both. While Sepsis-2 and Sepsis-3 have distinct defini-

tions, in practice, some patients have both and mortality is higher in patients with both pheno-

types than with either one or the other alone [21].

As genotyping becomes increasingly common, the automatic calculation of polygenic risk

scores for various diseases by identifying patients at high risk for sepsis, particularly as a com-

plication to other treatment such as chemotherapy, immunotherapy, or surgery, might help

physicians better protect these patients or to institute anti-sepsis therapy sooner. For example,

a patient at high risk of sepsis undergoing surgery might receive a longer perioperative course

of prophylactic antibiotics. Or, a patient receiving immunotherapy for an autoimmune disor-

der would have a personalized risk of sepsis determined to help understand the risks (infec-

tions and sepsis) and benefits of immunotherapy (resolution or amelioration of the disease).

This would need to be tested in prospective studies.

We found genes involved in a variety of functions including immune, metabolic, vascular,

and signaling. Immune related genetic variants may contribute to the success or lack thereof of

clearing the infection, while non-immune genetic variants may contribute to organ damage in

sepsis. As many genes have pleomorphic effects, some of these genes are better known for

other diseases and have available therapy for them. For example, we found that a PCKS9 vari-

ant was associated with a near doubling of the odds of developing either Sepsis-2 or Sepsis-3.

PCSK9 inhibitors lower LDL cholesterol and decrease incidence of strokes and myocardial

infarction [26]. Two approved inhibitors, alirocumab and evolocumab, are in trials to reduce

sepsis-related mortality (NCT03634293 and NCT03869073), respectively. Activation of

PPARA, a variant we found to be associated with Sepsis-3, inhibits the production of proin-

flammatory molecules by interfering with macrophages [27]. In a murine model of sepsis,

fibrates preserved neutrophil chemotaxis by blocking the effects of lipopolysaccharide [28].

PPARA can be stimulated by fibrates, such as gemfibrozil and fenofibrate, to metabolize lipids.

Fibrates lose their ability to inhibit inflammation when PPARA gene is knocked out in mice

[29]. We found ANGPT2, a potent disrupter of microvascular integrity and contributor to vas-

cular leakage, to be associated with both Sepsis-2 and -3. Levels are higher in septic patients

and progressively rise in non-survivors. Monoclonal antibodies to ANGPT2 restore vascular

integrity in mice [30].

Previous prospective trials of inhibitors or antibodies to gene products linked to sepsis,

such as IL1RN, CD14, and tissue factor, failed to have benefit, suggesting that these genes are

only a small part of a polygenic disease; blocking only this small part would have little overall

effect [31–33]. While we didn’t find any variants of IL1RN or CD14 to be associated with sep-

sis, we found two variants of tissue factor pathway inhibitor (TFPI), an anticoagulant protein,

to be associated with Sepsis-2, but not Sepsis-3.

We also found genes associated with immune function or energy regulation to be associated

with mortality. Intracellular NAMPT converts nicotinamide to nicotinamide mononucleotide

and is responsible for most of the NAD+ formation in mammals. Administration of NAD

+ prevents murine septic shock [34]. Extracellular NAMPT activates TLR4, promotes B cell

maturation, and inhibits neutrophil apoptosis [35]. Notably, we also found a mutation in

CHRNA7 associated with a doubling of the odds of death. Stimulation of this receptor has

been associated with inhibited release of tumor necrosis factor and high mobility group box 1,

reduced nuclear factor-kappa B activation, and improved survival in a murine model of sepsis

[36].
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Sepsis presents with various phenotypes [37]. Even for patients who meet Sepsis-2 or Sep-

sis-3 criteria, patients may have different physiologic or different organs dysfunctions. E.g.,

one patient may meet Sepsis-2 criteria by having an abnormal heartrate and respiratory rate,

while another may have hypothermia and leukopenia. In Sepsis-3, one may have severe iso-

lated renal dysfunction, while another may have hypotension or less severe hypotension plus

thrombocytopenia. While some of these differences may be caused by the infectious agent,

other differences may be from individual genetic variability. That is, out of the many genetic

variants associated with sepsis, each individual will have a subset of these variants, leading to

individuals having different sepsis phenotypes. Unfortunately, our study does not have enough

patients to investigate this hypothesis.

GWAS in sepsis have potential to improve therapy and outcomes by two methods. First,

individualized or precision medicine may be used to tailor therapy based on the particular

genetic variants that each individual has [38]. Second, similar to checkpoint inhibitors in can-

cer chemotherapy that are effective in treating patients with a plethora of diverse mutations,

GWAS may help find sepsis checkpoints–particular gene products on which a variety of path-

ways converge [39, 40].

GWAS analyses typically use very restrictive p values, usually p< 5x10-8, to limit the false

discovery rate. However, such restrictive p-values only find variants that are relatively com-

mon or have relatively large effect sizes [41, 42]. At this threshold, studies of breast cancer

using GWAS have missed the association of BRCA1 and BRCA2 (prevalences <<1%), even

though they are associated with a lifetime risk of breast cancer in women of 65% and 45%,

respectively [43, 44]. GWAS to create polygenic risk scores use a much more liberal p thresh-

old and then use a variety of statistical methods to reduce the number of independent variants.

A study on multiple sclerosis suggested p< .2 and one on schizophrenia and bipolar disorder

used a p < 0.5 [23, 24]. We chose to use an intermediate threshold, p<0.05, after adjustment.

While this produces a large number of variants, mostly with small effect sizes, Boyle et al. have

argued that this is explained by genetic networks where the variants are transcribed or acti-

vated in relevant tissues [25]. Further studies are needed to determine if, when, where, and

how these variants are activated in sepsis.

There are few previous GWAS studies of sepsis. Our study differs from two other studies

which assessed the contributions of gene variations and mortality in sepsis [14, 45]. Our find-

ings of different genetic variants may be related to different types of sepsis or patient popula-

tions. Our study also differs from a third study, which evaluated prognosis and response to

therapy, whereas, our study also assessed genetic variants associated with sepsis occurrence

[15]. Our study is more similar to another study, which searched for associations between

alleles and sepsis occurrence in extremely premature infants [46]. In their small study with 351

septic infants, they found possible associations with two genes: FOXC2 and FOXL1. We found

neither gene to be associated with sepsis in our adult population. There are several differences

between their and our study that may explain our failure to reproduce their gene candidates.

They studied a multiracial population while we studied a population from European ancestry.

While all their cases had positive cultures or meningitis, the physiologic derangements or crite-

ria of sepsis were not described. Neither Sepsis-2 nor Sepsis-3 criteria require positive cultures

and most cases of adult sepsis are culture negative [47, 48]. Srinivisan et al. also found separate

genes associated with gram positive, gram negative, and fungal organisms [46]. Further study

is needed to determine if there are differences in genes associated with culture positive and cul-

ture negative sepsis.

In a study of Han Chinese trauma patients, Lu et al. studied 64 genetic variants and found 4

to be associated with sepsis-2: NOS2, PPARG, HSPA12A, and TLR1 [49]. We found PPARG to

be associated with only Sepsis-2, similar to their study, giving credence to its association. We
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did not find the other 3 genes. This may be related to using different gene candidates in the

studies or to differences in ethnicity. Further study is needed.

There are several limitations of this study. First, the analysis was conducted on an inferred

mostly European ancestry population. GWAS done on other populations may find other genetic

variants related to sepsis. Second, our control population was created on lack of sepsis or infection

as documented in the University electronic medical record. As we don’t have access to medical

records for treatment received at other hospitals, we may have missed episodes of sepsis or infec-

tion treated elsewhere. Similarly, control patients may develop sepsis after the analysis. This may

bias our results in unknown ways. Further study is needed using patients with more comprehen-

sive records. Third, our GWAS population was selected from patients presenting for surgery with

anesthesia at an academic referral medical center. They may not be representative of non-surgical

patients or the population at large. Given the constructs of our study, we don’t know if patients

donated DNA for analysis before or after sepsis. If donated after sepsis, there may be a survival

bias in our results. Finally, our study should be validated in other GWAS studies.

The main strength of this study is that the sepsis patients were obtained from careful review

of the medical record to find patients who met either Sepsis-2 or Sepsis-3 criteria. Studies of

sepsis that use administrative records, such as ICD codes, miss many cases of sepsis, which

would introduce biases in GWAS [50, 51].

In conclusion, we found we found that polygenic risk scores predict sepsis with good dis-

crimination. We found 95 variants on 72 genes to be independently associated with Sepsis-2

and 68 variants in 54 genes to be associated with Sepsis-3 sepsis.
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