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Abstract. Gliomas are the most common type of primary brain 
tumor in adults with a high mortality rate. Low‑grade gliomas 
progress to glioblastoma multiforme (GBM) in the majority 
of cases, forming secondary GBM (sGBM), followed by rapid 
fatal clinical outcomes. Protein tyrosine phosphatase receptor 
type Z1 (PTPRZ1)‑MET proto‑oncogene receptor tyrosine 
kinase (MET) (ZM) fusion has been identified as a biomarker 
for sGBM that is involved in glioma progression, but the 
mechanism of gliomagenesis and pathology of ZM‑negative 
sGBM has remained to be fully elucidated. A whole‑tran‑
scriptome signature is thus required to improve the outcome 
prediction for patients with sGBM without ZM fusion. In the 
present study, whole‑transcriptome sequencing on 42 sGBM 
samples with or without ZM fusion from the Chinese Glioma 
Genome Atlas database identified mRNAs with differential 

expression between patients with and without ZM fusion and 
the most significant survival‑associated genes were identified. 
A 6‑gene signature was identified as a novel prognostic model 
reflecting survival probability in patients with ZM‑negative 
sGBM. Clinical characteristics in patients with a high or low 
risk score value were analyzed with the Kaplan‑Meier method 
and a two‑sided log‑rank test. In addition, ZM‑negative 
sGBM patients with a high risk score exhibited an increase 
in immune cells, NF‑κB‑induced pathway activation and a 
decrease in endothelial cells compared with those with a low 
risk score. The present study demonstrated the potential use of 
a next‑generation sequencing‑based cancer gene signature in 
patients with ZM‑negative sGBM, indicating possible clinical 
therapeutic strategies for further treatment of such patients.

Introduction

Gliomas are the most common type of neuroepithelial tumor of 
the central nervous system. Glioblastoma multiforme (GBM), 
referring to grade‑IV glioma, is one of the deadliest of human 
cancer types. Based on the clinical course and molecular char‑
acteristics, GBMs may be classified into two subtypes (1‑3). 
Primary GBMs refers to the vast majority of GBMs, which 
are thought to form de novo in the elderly, with a median 
overall survival of 15 months after maximal surgical resec‑
tion, chemotherapy and radiotherapy (RT) (4). Secondary 
GBMs (sGBMs) typically progress from lower‑grade tumors 
and affect younger patients. Since the Philadelphia chromo‑
some was discovered in chronic myeloid leukemia in 1960, 
studies performed over the past six decades have identified 
fusion genes and proteins in a multitude of other types of 
cancer and through several different approaches (5). Fusion 
transcripts between fibroblast growth factor receptor 3 and 
transforming acidic coiled‑coil containing protein 3 (6), and 
between the MYB proto‑oncogene and the quaking homolog 
KH domain RNA binding protein were initially reported as the 
recurrent fusion transcripts in GBMs and pediatric gliomas, 
respectively (7). A previous study by our group identified a 
novel, recurrent fusion rearrangement involving the protein 
tyrosine phosphatase receptor type Z1 (PTPRZ1) and MET 
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proto‑oncogene receptor tyrosine kinase (MET) genes (ZM) 
in 15% of sGBMs (8). However, the mechanisms by which 
these genes contribute to gliomagenesis and progression in 
ZM‑negative sGBM have remained to be fully elucidated.

In the present study, RNA sequencing was performed on 
42 sGBM samples with or without ZM fusion. mRNAs with 
differentially expressed genes between patients with and 
without ZM fusion were identified and data were analyzed 
using a univariate Cox regression model in R language. A 
total of six mRNAs were selected to develop the risk score 
with random repeated sampling. ZM‑negative patients with 
high risk scores had a relatively shorter overall survival (OS) 
time compared with those with low risk scores. The risk 
score was independent of clinical observations, including 
sex, age, isocitrate dehydrogenase (IDH) mutation status, 
O‑6‑methylguanine‑DNA methyltransferase (MGMT) meth‑
ylation status and therapeutic strategies. The prognostic value 
of the risk score on patients' OS was higher compared with 
the aforementioned clinical information. The immune cell 
response was enhanced in ZM‑negative patients with high risk 
scores. Increased macrophages rather than endothelial score 
and NF‑κB enrichment were identified in patients with high 
risk scores. In summary, the risk score signature may be robust 
in predicting the survival of patients with ZM‑negative sGBM 
and may help identify novel therapeutic targets for further 
treatment for patients with ZM‑negative sGBM. 

Materials and methods

Samples. In the present study, 42 tumor samples of confirmed 
sGBM were selected for the analysis. The samples were 
collected from January 2005 through to December 2018. The 
methods of the RNA sequencing were provided in a previous 
study (9). Our data used in the study were original samples to 
be used to generate the dataset. The samples were collected at 
Beijing Tiantan Hospital (Beijing, China) by our group and the 
RNA sequencing data were uploaded to the Chinese Glioma 
Genome Atlas (CGGA) RNA sequencing dataset (http://www.
cgga.org.cn). For each patient, the following clinical informa‑
tion was collected: Sex, age, IDH status, MGMT promoter 
methylation status, RT, temozolomide (TMZ) chemotherapy 
and OS. Among the 42 cases, 35 were ZM fusion‑negative, 
whereas the other 7 cases were ZM fusion‑positive. Among 
the patients, 24 were male and 11 were female. The average 
age was 38.7 years (range, 8‑58 years). The sample IDs of 
ZM fusion‑negative samples are provided in supplementary 
Table SI. The clinical and molecular information of the 
42 patients was obtained from the CGGA database and held in 
the medical records. The tumor tissues included in the CGGA 
database were obtained during surgery and informed consent 
was obtained from all patients. 

Gene selection. Student's t‑test was used to identify the differ‑
entially expressed genes between ZM‑positive and ‑negative 
cases with P<0.05 used as a selection threshold. Univariate 
Cox regression was used to determine the genes associated 
with survival. The differentially expressed genes associated 
with survival were selected for further analysis. The hazard 
ratio (HR) of univariate Cox regression was used to develop 
the gene signature. The risk score model was developed 

using the following formula: Risk Score = �n
i=1 βi xi, where βi 

indicates the HR for each gene in the CGGA database of ZM 
fusion‑negative cases and xi indicates the expression value of 
each gene (10).

Gene ontology (GO) analysis. The correlation between the 
risk score and other genes was analyzed by Pearson correlation 
analysis using R programming language. The positively corre‑
lated genes (r>0.4; P<0.05) and the negatively correlated genes 
(r<‑0.4, P<0.05) were selected for analysis in the Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
http://david.abcc.ncifcrf.gov/home.jsp) to detect which func‑
tional terms were associated with the risk score (11).

Gene set enrichment analysis (GSEA). GSEA was used to 
analyze the association between the risk score and the hall‑
marks. The data were divided into two groups based on the 
risk score (low and high) and subjected to GSEA as previously 
described (12). The analysis was performed using the GSEA 
java software v4.0.3 (12).

Statistical analysis. In the present study, SPSS 16.0 (SPSS, 
Inc.), R software 3.2.5 (11) and GraphPad Prism 7.0 statis‑
tical software (GraphPad Software, Inc.) were used for data 
analysis and plotting. The R package ‘survival’ (http://www.
bioconductor.org/) was used to analyze the most significant 
survival‑associated mRNAs with the highest area under the 
curve (AUC) value in the dataset using the receiver operating 
characteristic curve analysis. The percentage of macrophages 
and endothelial cells was calculated by EPIC in R (13). 
Differentially expressed genes between ZM fusion‑positive 
and ‑negative cases were determined by Student's t‑test, which 
was also used to compare the risk scores between two groups. 
Survival analysis was performed using Kaplan‑Meier survival 
analysis and univariate and multivariate Cox regression 
analysis. The analyzed factors included risk score, sex, age, 
IDH status, MGMT promoter methylation status, RT and TMZ 
chemotherapy. P<0.05 was considered to indicate statistical 
significance. 

Results

Identification of survival‑associated mRNAs. To characterize 
the transcriptomic RNA expression in sGBMs, RNA was 
extracted from 42 sGBM specimens with or without ZM 
fusion to perform whole‑transcriptome sequencing. Student's 
t‑test was performed to identify differentially expressed genes 
between samples with and without ZM fusion (Fig. 1A). 
Univariate Cox regression was performed in the ZM‑negative 
cohort and the genes associated with survival (P<0.05) were 
selected. The overlapping genes in the two analyses were 
selected for further analysis. Using the R package ‘survival’, 
the most significant survival‑associated mRNAs with the 
highest AUC value in the dataset were identified (Fig. 1B), 
which yielded six genes: Signal regulatory protein δ (SIRPD), 
kinesin family member 11 (KIF11), zinc finger protein 117 
(ZNF117), base methyltransferase of 25S rRNA 2 homolog 
(C7orf60), FH2 domain containing 1 (FHDC1) and dimethyl‑
arginine dimethylaminohydrolase 2 (DDAH2). Each of these 
genes was differentially expressed between ZM‑positive and 
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‑negative tumor tissues and demonstrated lower expression 
levels in patients without ZM fusion (Fig. 1C). The HR of 
the survival analysis of each gene was also determined; the 
HRs of SIRPD, KIF11, ZNF117 and DDAH2 were positive, 
which indicated oncogenic characteristics in cell biological 
processes, whereas the HRs of C7orf60 and FHDC1 were 
negative, which indicated that these genes may suppress tumor 
occurrence (Fig. 1D).

Clinical and genomic characteristics of risk score in patients 
with ZM‑negative sGBM. To investigate the clinical and 
genomic characteristics of the six selected genes, different 
weights were assigned to each gene for an independent risk 
score. The risk score of each patient was determined as 

follows: Risk score=(0.5368xSIRPD expression) + (0.6481 x 
KIF11 expression) + (2.1026 x ZNF117 expression) + (‑0.6095 
x C7orf60 expression) + (‑0.4264 x FHDC1 expression) + 
(0.4152 x DDAH2 expression). The corresponding coefficients 
and P‑values are presented in Table I. The high‑risk score group 
was distinguished from the low‑risk score group by the median 
score value as the cut‑off value. Patients with ZM‑negative 
sGBM with high risk scores exhibited poor prognosis, with 
significantly shorter OS times compared with those of patients 
with sGBM with low risk scores (median OS: High risk score, 
233 days; low risk score, 572 days; P<0.0001, log‑rank test; 
Fig. 2A). In addition, the progression‑free survival (PFS) time 
in the high‑ and low‑risk groups was evaluated and patients 
with ZM‑negative sGBM in the high‑risk group demonstrated 

Figure 1. (A) Differentially expressed genes between ZM‑positive and ZM‑negative samples. (B) ROC curve analysis of different numbers of genes to select 
to institute the risk score which predict the 1‑year survival with the best prediction. The horizontal lines indicate the median AUC. The bars indicate the 
max and min AUC. The boxes indicated the 25‑75% AUC. The circles represent the extreme value. (C) Expression of the six genes between ZM‑positive and 
ZM‑negative samples. The horizontal lines indicate the median expression. The bars indicate the maximum and minimum expression. The boxes indicated 
the 25‑75% expression. (D) Hazard ratio of the six genes by univariate Cox regression analysis. ZM, protein tyrosine phosphatase receptor type Z1‑MET 
proto‑oncogene receptor tyrosine kinase fusion; AUC, area under the curve; IDH, isocitrate dehydrogenase; MUT, mutated; WT, wild‑type; SIRPD, signal 
regulatory protein δ; KIF11, kinesin family member 11; ZNF117, zinc finger protein 117; C7orf60, base methyltransferase of 25S rRNA 2 homolog; FHDC1, 
FH2 domain containing 1; DDAH2, dimethylarginine dimethylaminohydrolase 2.
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a significantly shorter PFS time compared with patients in 
the low‑risk group, consistent with the trends of the OS time 
(Fig. 2B). The correlation between the risk score and mRNA 
expression was analyzed; the results indicated that the risk 
score may be a potential prognostic indicator (Fig. 2C).

Clinical indications of risk score as an independent marker 
for prognosis. The association between the risk score and 
clinical indicators, including sex, age, IDH status, MGMT 
promoter methylation status, RT and TMZ chemotherapy, 
was analyzed. The results demonstrated that the risk score 
was independent of sex, age, IDH mutation status, RT and 
TMZ chemotherapy, but associated with MGMT promoter 
methylation status (Fig. 3A). Uni‑ and multivariate Cox 
regression analysis was performed on these clinical factors. 
IDH status, risk score and TMZ chemotherapy were identified 
as potential prognostic markers by univariate Cox analysis 
(Fig. 3B). In the multivariate analysis, the risk score was the 
only factor identified as an independent prognostic marker in 
ZM‑negative sGBMs (Table II). Therefore, the risk score was 
the most significant marker to indicate survival in patients 
with ZM‑negative sGBM. 

Functional pathway annotation in patients with different risk 
scores. To investigate the potential functional pathways acti‑
vated in patients with high or low risk scores, GO analysis was 
performed on genes positively or negatively associated with 
the risk score. Genes enriched in ‘immune response’, ‘inflam‑
matory response’, ‘positive regulation of T‑cell proliferation’ 
and ‘cell division’ were significantly positively associated with 
the risk score in patients (Fig. 4A), whereas those enriched in 
relatively normal GO terms were negatively associated with the 
risk score in patients (Fig. 4B). To study the potential effect of 
immune cell differences in the present cohort, reference gene 
expression profiles of a major tumor‑infiltrating immune cell 
type (macrophages) were established and expression profiles 
were derived from endothelial cells. The reference profiles 
were obtained as cell type averages from the single‑cell 
RNA sequencing data of melanoma samples from Tirosh and 
colleagues (14). The reference cohort contained only samples 

from primary tumors and non‑lymphoid metastasis. The refer‑
ence gene expression profiles from each of the immune and 
endothelial cells were used to predict the expression profile of 
bulk tumor and to evaluate their association with the risk score 
of patients with ZM‑negative sGBM. The results demonstrated 
that patients with sGBM without ZM fusion and a high risk 
score exhibited a significantly higher macrophage signature 
expression compared with that of patients with a low risk score 
(Fig. 5B). By contrast, patients with a high risk score exhibited 
a lower endothelial cell signature expression compared with 
that in patients with a low risk score (Fig. 5A), indicating 
that these pathways may induce immune cells and suppress 
endothelial cells in patients with a high risk score. GSEA 
was performed with the risk score ranging from low to high; 
ZM‑negative patients with higher risk scores tended to exhibit 
a higher inflammatory response and tumor necrosis factor 
(TNF)‑α signaling activation by NF‑κB (Fig. 5C and D). These 
results may provide further therapeutic strategies for patients 
with ZM‑negative sGBM.

Discussion

Based on whole‑transcriptome sequencing on 42 sGBM 
samples from our own internal data, six genes were identi‑
fied as an independent signature with the most significant 
survival‑associated mRNAs and the best AUC in sGBMs 
without ZM fusion.

SIRPD is a member of a signal regulatory protein family 
involved in signal transduction and cell adhesion (15). No 
evidence has been confirmed in association with cancer initia‑
tion or progression.

The ZNF117 gene encodes a protein containing multiple 
C2H2‑type zinc finger motifs. It has been demonstrated to 
participate in the maturation and differentiation of adipocytes 
and may control fat accumulation (16). The association between 
ZNF117 and human cancer requires further investigation. 

KIF11, which is located on chromosome 22, encodes a 
kinesin‑like motor protein that participates in chromosome 
positioning, centrosome separation and bipolar spindle forma‑
tion during cell mitosis (17). Interactions between KIF11, MCF7 
and phosphatase and tensin homolog regulate chromosome 
stability (18). KIF11 has been identified as a novel prognostic 
biomarker and a treatment target for various types of cancer, 
including lung squamous cell carcinoma, prostate cancer and 
chronic myeloid leukemia (19‑22). In addition, previous studies 
demonstrated that KIF11 was an important regulator of activity 
in tumor stem cells of esophageal and colorectal cancer (23) 
and that upregulation of KIF11 was associated with high‑grade 
astrocytoma (24). Targeting KIF11 also altered the cell fate 
and reduced glioma cell invasion (25). Thus, KIF11 may be a 
potential therapeutic target in glioma treatment.

The FHDC1 gene is located on human chromosome 
4q31.3 (26) and encodes a protein product involved in the 
developmental stages of the mouse brain and the actin‑ and 
microtubule‑dependent regulation of Golgi morphology of 
human cells (27). However, a limited number of studies have 
demonstrated an association between the FHDC1 gene and 
cancer development and progression. Further clinical studies 
on FHDC1‑induced glioma initiation and progression require 
to be performed. 

Table I. HR (95% CI) and P‑values generated from the 
univariate Cox regression analysis in the dataset for each gene.

Gene HR  9 5 %  C I  
P‑value

SIRPD 1.711 1.025‑2.855 0.040
KIF11 1.912 1.125‑3.248 0.017
ZNF117 8.187 1.306‑51.334 0.025
C7orf60 0.544 0.339‑0.871 0.011
FHDC1 0.653 0.441‑0.966 0.033
DDAH2 1.515 1.079‑2.126 0.016 

HR, hazard ratio; SIRPD, signal regulatory protein δ; KIF11, kinesin 
family member 11; ZNF117, zinc finger protein 117; C7orf60, base 
methyltransferase of 25S rRNA 2 homolog; FHDC1, FH2 domain 
containing 1; DDAH2, dimethylarginine dimethylaminohydrolase 2.
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Figure 3. (A) Risk score associated with different clinical characteristics of patients. The horizontal lines indicate the median risk score. The bars indicate the 
maximum and minimum risk score. The boxes indicated the 25‑75% risk score. (B) Forest plot of univariate Cox analysis. HR, hazard ratio; IDH, isocitrate 
dehydrogenase; MGMT, O‑6‑methylguanine‑DNA methyltransferase; NS, no significance; MUT, mutated; WT, wild‑type; unmeth, unmethylated MGMT 
promoter; CGGA, Chinese Glioma Genome Atlas; sGBM, secondary glioblastoma multiforme; RT, radiotherapy; TMZ, temozolomide.

Figure 2. (A) Survival analysis of patients with ZM‑negative sGBM in CGGA dataset. (B) PFS analysis in patients with ZM‑negative sGBM in CGGA dataset. 
(C) The correlation between the risk score and the six gene expression. ZM, protein tyrosine phosphatase receptor type Z1‑MET proto‑oncogene receptor 
tyrosine kinase fusion; sGBM, secondary glioblastoma multiforme; CGGA, Chinese Glioma Genome Atlas; OS, overall survival; PFS, progression‑free 
survival; SIRPD, signal regulatory protein δ; KIF11, kinesin family member 11; ZNF117, zinc finger protein 117; C7orf60, base methyltransferase of 25S rRNA 
2 homolog; FHDC1, FH2 domain containing 1; DDAH2, dimethylarginine dimethylaminohydrolase 2.
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DDAH2 encodes a dimethylarginine dimethylaminohydro‑
lase, which is important in nitric oxide generation by regulating 
the cellular concentrations of methylarginines. DDAH2 has 
been demonstrated to be associated with various types of 
disease, including hypertension (28), type 2 diabetes (29) and 
cancer. Upregulation of DDAH2 is associated with the inva‑
siveness of lung adenocarcinoma by inducing proliferation and 
capillary‑like tube formation of vascular endothelial cells (30). 
Further studies may focus on the therapeutic applications and 
the tumorigenic mechanisms of DDAH2 in other types of 
human cancer. 

C7orf60, also known as the base methyltransferase of 25S 
rRNA 2 homolog gene, was identified as a genomic event in 
human complementary DNA (31,32) and associated with 
smoking cessation (33) and Saccharomyces cerevisiae infec‑
tion (34). However, C7orf60 has not been demonstrated to be 
associated with cancer initiation or development. 

In the present study, these six genes were assigned as an 
independent signature with the most significant survival‑asso‑
ciated mRNAs and the best AUC. Patients with ZM‑negative 
sGBM and a high risk score exhibited a shorter OS and PFS 
compared with those with a low risk score, revealing prog‑

Figure 4. (A) Genes positively‑associated with the risk score analyzed by Gene Ontology analysis in protein tyrosine phosphatase receptor type Z1‑MET 
proto‑oncogene receptor tyrosine kinase fusion‑negative secondary glioblastoma multiforme. (B) Genes negatively‑associated with the risk score analyzed by 
Gene Ontology analysis in ZM fusion‑negative secondary glioblastoma multiforme.

Table II. Univariate and multivariate analysis of clinical prognostic parameters of patients with protein tyrosine phosphatase 
receptor type Z1‑MET proto‑oncogene receptor tyrosine kinase fusion secondary glioblastoma multiforme in the Chinese Glioma 
Genome Atlas RNA sequencing database.

 Univariate analysis Multivariate analysis
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable HR 95% CI P‑value  HR 95% CI P‑value

Age at diagnosis 1.006 0.966‑1.047 0.786   
      
Sex 1.203 0.563‑2.569 0.634   
      
MGMT 0.468 0.176‑1.243 0.127   
      
IDH 0.369 0.163‑0.836 0.017 1.087 0.392‑3.018 0.392
Radiotherapy 0.503 0.223‑1.133 0.097   
      
Chemotherapy 0.364 0.144‑0.924 0.033 0.369 0.114‑1.194 0.096
Risk score  3.116 2.032‑4.777 <0.001 3.354 1.966‑5.721 <0.001

All variables were considered as continuous variables. HR>1 indicates an increased risk, while HR<1 indicates a protective effect. HR, hazard 
ratio; IDH, isocitrate dehydrogenase; MGMT, O‑6‑methylguanine‑DNA methyltransferase.
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nostic value independent of other clinical features, including 
age, gender, IDH mutation and MGMT promoter methylation 
status. 

Over the past decades, the tumor microenvironment and a 
number of tumor‑associated cell types, including endothelial 
cells, pericytes, immune inflammatory cells, cancer‑associ‑
ated fibroblasts and stem and progenitor cells of the tumor 
stroma, have increasingly been demonstrated to contribute 
to the biology of numerous tumors and to regulate signaling 
that controls their development and progression. Immune cells 
differ in their gene expression profiles depending on their 
state and site of origin (for example blood or tumors) (35). 
Tumor‑associated endothelial cell phenotypes have been 
implicated in cancer development and tumor‑associated 
angiogenesis (36‑38). These endothelial cells participate in 
establishing lymphatic vessels (39) that serve as channels for 
the seeding of metastases commonly observed in a number 
of cancer types. Tumor‑promoting inflammatory cells include 
various macrophage subtypes that serve diverse and crucial 
roles in giving rise to tumorigenesis and malignancy (40). 
Qian and Pollard (41) demonstrated that tumor‑associated 
macrophages suppressed cytotoxic T‑cell and natural killer 
cell activity, which have been independently identified as 
myeloid‑derived suppressor cells.

The results of the present study demonstrated that 
ZM‑negative sGBM patients with a high risk score exhibited 
significantly higher macrophage expression compared with 
that of patients with a low risk score, whereas patients with 
a high risk score exhibited a lower endothelial cell signature 
expression compared with those with a low risk score, indi‑
cating increased immune cells and suppressed endothelial 
cells in samples from patients with a high risk score. In addi‑
tion, NF‑κB‑induced TNF‑α signaling activation tended to be 
enriched in patients with a high risk score, implying potential 
therapeutic targets for treatment in these patients. 

The major advantage of the present study was the use of 
next‑generation sequencing and systematic analysis under 
multidimensional conditions. The results identified a risk score 
that was associated with immune response in patients with 
ZM‑negative sGBM and may guide further clinical manage‑
ment. However, the extent of the immune response and the type 
of macrophage activation that may promote glioma progression 
in ZM‑negative sGBM still requires to be clarified. The cellular 
components within the tumor microenvironment requires to be 
studied further to reveal their clinical implications. In addition 
to the requirement for exploration of the immunoregulatory 
role of glioma cells, the results of the present study require 
validation in independent cohorts. Another limitation of the 

Figure 5. (A) Endothelial cell signature expression between patients with a low and high risk score. (B) Macrophage signature expression between patients with a 
low and high risk score. (C and D) Gene set enrichment analysis of the risk score in protein tyrosine phosphatase receptor type Z1‑MET proto‑oncogene receptor 
tyrosine kinase fusion‑negative sGBM. TNF, tumor necrosis factor; sGBM, secondary glioblastoma multiforme; CGGA, Chinese Glioma Genome Atlas.
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present stud is the relatively low number of sGBM samples 
and future studies may be performed in other, larger datasets, 
including The Cancer Genome Atlas. 

In conclusion, the present study demonstrated the clinical 
utility of next‑generation sequencing‑based cancer gene 
profiling in sGBM. The results revealed the diagnostic value 
of a six gene‑based risk score signature and clinical features 
of patients with ZM‑negative sGBM. An increase in immune 
cells and a decrease in endothelial cells were identified in 
patients with a high risk score; potential therapeutic strategies 
were identified as NF‑κB‑induced TNF‑α signaling activation 
in patients with ZM‑negative sGBM with a high risk score. 
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