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Neuron modelling helps to understand the brain behavior through the interaction between
neurons, but its mechanism remains unclear. In this paper, the spatiotemporal patterns is
investigated in a general networked Hindmarsh-Rose (HR) model. The stability of the
network-organized system without delay is analyzed to show the effect of the network on
Turing instability through the Hurwitz criterion, and the conditions of Turing instability are
obtained. Once the analysis of the zero-delayed system is completed, the critical value of
the delay is derived to illustrate the profound impact of the given network on the collected
behaviors. It is found that the difference between the collected current and the outgoing
current plays a crucial role in neuronal activity, which can be used to explain the generation
mechanism of the short-term memory. Finally, the numerical simulation is presented to
verify the proposed theoretical results.
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INTRODUCTION

Neuron modelling plays a vital role in understanding the brain behavior with its dynamic
mechanisms Sun et al. (2018); Wang et al. (2021a),Wang et al. (2021b), Wang et al. (2022); Perc
(2006). The HR model is the extended Fitzhugh–Nagumo model, which could exhibit various
firing activities (periodic, chaotic, bursting firings, etc.) of the membrane potential Hindmarsh
and Rose (1982), Hindmarsh and Rose (1984); Gu and Pan (2015). The dynamic bifurcation of
the HR model was calculated and analyzed to illustrate the effects of different parameters on the
dynamic behavior Wu et al. (2016). And the HR model with electromagnetic induction by
analyzing the stability of equilibrium points was studied to show that electromagnetic induction
could regularize chaotic regimes by the number of spikes Goulefack et al. (2022). The HR model
with the slow intracellular exchange of calcium ions was investigated to present the effects of the
coupling strength and the forcing current on the network behavior Rajagopal et al. (2019). Then
the role of delay in the bifurcation behavior was considered in the fractional-order HR model
with delay, and the condition for the existence of Hopf bifurcation was present Shi et al. (2020).
Also, noise-induced resonances were obtained to describe the response of the HR model to noisy
signals and intrinsic oscillations Baltanas and Casado (2002). A networked-organized HR model
with delay was developed to explain the spatial relations between neurons and model the process
of neural migration Lepek and Fronczak (2018). Although the phenomenon of spatiotemporal
patterns was often considered to show the firing activities in a general networked HR model with
the delay Umesh and Ambika (2021); Shi et al. (2022); Santos et al. (2017), the interaction
mechanism of network nodes remains unclear.

Turing instability is a kind of collective spatial behavior, and the pattern formation could
describe the interaction between species in a reaction-diffusion system and explain the
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biological mechanism (the formation of zebra and zebrafish
skin, the nonlocal synaptic interactions) Turing (1990);
Kolodina et al. (2021); Kondo et al. (2021). A nonlocal
evolution equation was developed to explain color patterns
on a guppy fish skin through the bifurcation theory Cygan
(2021). The effect of landscape heterogeneity on pattern
formation is studied to find the mechanisms of diffusion-
driven instabilities in the predator-prey interactions Zaker
et al. (2021). And the firing behavior of neurons can be
represented by the pattern formation in the network-
organized FitzHugh-Nagumo model Zheng and Shen
(2020). The elimination of spiral waves is investigated to
prevent some brain disorders by the transition between

pattern formations in an HR model Eteme et al. (2019).
Pattern formation is a well-studied phenomenon in neural
field models, which describes the collected groups of neurons
and presents the generation of spatial distribution in a
dynamical system Kriener et al. (2013). Sometimes, the
collective behavior is easier to keep the network in activity
Erichsen and Brunnet (2009). Also, short-term memory is a
kind of the collective behavior of neurons Zheng et al. (2020).
Meanwhile, the network topology is predominant in the
critical features of Turing systems Diego et al. (2018).
Therefore, the general networked HR model should be
considered to show the dynamical mechanism of neuronal
activity.

FIGURE 1 | The distribution ofHi(i = 1, 2, 3) when a = 1, b = 3, c = 1, d = 5, r = 0.01, s = 4, I = 1, xr = −1.6, d1 = 0.1, d2 = 0.3, τ = 0. (A) Turing instability occurs when
H1 < 0, or else stable. (B) Turing instability occurs whenH2 < 0, or else stable. (C) Turing instability occurs whenH3 < 0, or else stable. (D) The bifurcation about τwhen d1
= d2 = 0.

FIGURE 2 | The stability of system (1) when p = 0.05, τ = 0. (A) The distribution of eigenvalues Λi (labeled by *) when q = 0. (B) The corresponding pattern formation
is stable in system (1) when no eigenvalue Λi make H3 < 0 hold.
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It is well known that the neurons link each other through a
network, and the brain activity is the collective behavior of the
neurons rather than a single neuron. Pattern formation and
bifurcation Tian et al. (2021); Yang (2022); Ma et al. (2021) is a
crucial tool to elaborate on the dynamic and biological
mechanism of the collective behavior of the neurons. In this
paper, an HR model with a random network is considered to
show the spatiotemporal patterns of collective behaviors. The
effect of the network on pattern formation is presented
through the Hurwitz criterion, and the conditions of Turing
instability are derived. Then, Hopf bifurcation illustrates the

profound impact of network and delay on the collected
behavior. It is found that the difference in network topology
plays a vital role in neuronal activity. Finally, the numerical
simulation explains the generation mechanism of the short-
term memory.

MODEL DESCRIPTION

In this paper, we consider the following HR model on
networks,

FIGURE 3 | The stability of system (1) when p = 0.05, q = 0.96, τ = 0. (A) The distribution of eigenvalues Λi (labeled by *). (B) Turing instability occurs in system (1)
when some eigenvalue Λi make H3 < 0 hold.

FIGURE 4 | The stability of system (1) when p = 0.5, q = 0.96, τ = 0. (A) The distribution of eigenvalues Λi (labeled by *). (B) Turing instability occurs in system (1)
when a eigenvalue Λi make H3 < 0 hold.

FIGURE 5 | The stability of system (1) when p = 0.1, q = 0, τ = 0. (A) The distribution of eigenvalues Λi (labeled by *). (B) The corresponding pattern formation is
stable in system (1) when no eigenvalue Λi make H3 < 0 hold.
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FIGURE 6 | The stability of system (1) when p = 0.1, q = 0.82, τ = 0. (A) The distribution of eigenvalues Λi (labeled by *). (B) Turing instability occurs in system (1)
when some eigenvalue Λi make H3 < 0 hold.

FIGURE 7 | The bifurcation about p, q when τ = 0. (A) The inexistence bifurcation about p when q = 0. (B) The bifurcation about q when p = 0.1.

FIGURE 8 | The pattern formation of system (1) when τ = 65. (A) The pattern formation when p = 0.05, q = 0. (B) The pattern formation when p = 0.1, q = 0. (C) The
pattern formation when p = 0.1, q = 0.96. (D) The pattern formation when p = 0.15, q = 0.96.
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dxi

dt
� yi − ax3

i + bx2
i + I − zi t − τ( ) + d1 ∑n

j�1
Aij t( )f xj, xi( ),

dyi

dt
� c − dx2

i − yi + d2 ∑n
j�1

Aij t( )g yj, yi( ),
dzi
dt

� r s xi − xr( ) − zi( ),
(1)

where xi, yi and zi (i = 1, . . . , n) denote the membrane
potential, recovery variable and bursting variable at node
(neuron) i, respectively. I is the external stimulus,
A is the adjacent matrix of the interaction between nodes, f
(xj, xi), g (yj, yi) is the diffusive function. The equilibrium
point of system (1) can be derived from the following
Equation 2

y0 − ax3
0 + bx2

0 + I − z0 � 0,
c − dx2

0 − y0 � 0,
r s x0 − xr( ) − z0( ) � 0.

(2)

The linear term of system (1) at (x0, y0, z0) can be expressed as

dxi

dt
� yi − 3ax2

0xi + 2bx0xi − zi t − τ( ) + d1 ∑n
j�1

Aij xj − qxi( ),
dyi

dt
� −2dx0xi − yi + d2 ∑n

j�1
Aij yj − qyi( ),

dzi
dt

� rsxi − rzi,

(3)
where Aij is the symmetric adjacent matrix to show the
interaction of nodes on network. xj − qxi, yj − qyi is the linear

FIGURE 9 | The pattern formation of system (1) when τ = 68. (A) The pattern formation when p = 0, q = 0. (B) The pattern formation when p = 0.01, q = 0. (C) The
pattern formation when p = 0.1, q = 0. (D) The pattern formation when p = 0.1, q = 0.96.

FIGURE 10 | The bifurcation about p, q when τ = 65. (A) The inexistence bifurcation about p when q = 0. (B) The bifurcation about q when p = 0.1.
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part of f (xj, xi), g (yj, yi), respectively. q can be treated as the
difference between the collected current and the outgoing

current. Lij � Aij − q ∑n
j�1

Aij and ∑n
j�1

Lijvkj � Λkvki , Λk, vk �
(vk1, . . . , vkn)T are the kth eigenvalue of L and the
corresponding eigenvector, respectively Zheng and Shen
(2020). If the coefficient of xj does not equal to 1, it simplifies
to 1 by extracting the common factors.

A general solution of system (3) is

xi � ∑n
k�1

c1ke
λktvki ,

yi � ∑n
k�1

c2ke
λktvki ,

zi � ∑n
k�1

c3ke
λktvki .

(4)

Substituting system (4) into system (3), one has

λk

c1k
c2k
c3k

⎛⎜⎜⎝ ⎞⎟⎟⎠ � J
c1k
c2k
c3k

⎛⎜⎜⎝ ⎞⎟⎟⎠,

where

J �

−3 ax0
2 + d1Λ + 2 bx0 1 −e−λk τ

−2 dx0 d2Λ − 1 0

rs 0 −r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then the characteristic equation is

|λkE − J| � λ3 + a1λ
2 + a2 + a3e

−λ τ( )λ + a4 + a5e
−λ τ � 0, (5)

where

a1 � 3 ax0
2 − 2 bx0 − Λkd1 − Λkd2 + r + 1,

a2 � −3 ax0
2Λkd2 + 3 arx0

2 + 2 bx0Λkd2 + Λk
2d1d2 + 3 ax0

2

− 2 brx0 − rΛkd1 − rΛkd2 − 2 bx0 + 2 dx0 − Λkd1 + r,
a3 � rs,
a4 � −3 arx0

2Λkd2 + 2 brx0Λkd2 + rΛk
2d1d2 + 3 arx0

2 − 2 brx0

+ 2 dx0r − rΛkd1,
a5 � −rsΛkd2 + rs.

When τ = 0, the characteristic equation is,

p λ( ) � λ3 + a1λ
2 + a2 + a3( )λ + a4 + a5 � 0. (6)

According to Hurwitz criterion, the sufficient and necessary
conditions for stable system (1) are,

a1 > 0, a2 + a3 > 0, a4 + a5 > 0, a1 a2 + a3( ) − a4 + a5( )> 0. (7)
The converse-negative proposition is the condition of Turing
instability, namely, Turing instability induced by network when
one of Hi(i = 1, 2, 3) holds.

H1: a2 + a3 < 0,
H2: a4 + a5 < 0,
H3: a1 a2 + a3( ) − a4 + a5( )< 0.

More precisely, for H1, Turing instability occurs when

p1 Λk( ) � a2 + a3 � b1Λ2
k + b2Λk + b3 < 0

where

b1 � d1d2, b2 � −3 ad2x0
2 + 2 bd2x0 − rd1 − rd2 − d1,

b3 � 3 arx0
2 + 3 ax0

2 − 2 brx0 − 2 bx0 + 2 dx0 + rs + r.

According to the properties of quadratic equations of one
variable, the minimum value of p1 (Λk) is p1(− b2

2b1
); if − b2

2b1
> 0

and p1 (0) < 0, Turing instability occurs; if − b2
2b1

< 0 and
p1(− b2

2b1
)< 0, Turing instability occurs and the critical value is

Λk � − b2
2b1
.

For H2, Turing instability occurs when

p2 Λk( ) � a4 + a5 � c1Λ2
k + c2Λk + c3 < 0

where, the analysis process refers to p1 (Λk), and

c1 � rd1d2, c2 � −3 ard2x0
2 + 2 brd2x0 − rsd2 − rd1,

c3 � 3 arx0
2 − 2 brx0 + 2 dx0r + rs.

For H3, Turing instability occurs when

p3 Λk( ) � − a1 a2 + a3( ) − a4 + a5[ ] � q1Λ3
k + q2Λ2

k + q3Λk + q4 > 0

where

q1 � d1
2d2 + d1d2

2 ,
q2 � −6 ad1d2x0

2 − 3 ad2
2x0

2 + 4 bd1d2x0 + 2 bd2
2x0 − rd1

2 − 2 rd1d2 − rd2
2 − d1

2 − 2 d1d2 ,
q3 � 9 a2d2x0

4 − 12 abd2x0
3 + 6 ard1x0

2 + 6 ard2x0
2 + 4 b2d2x0

2 + 6 ad1x0
2

+6 ad2x0
2 − 4 brd1x0 − 4 brd2x0 − 4 bd1x0 − 4 bd2x0 + 2 dd1x0

+2 dd2x0 + rsd1 + r2d1 + r2d2 + 2 rd1 + 2 rd2 + d1 ,
q4 � −9 a2rx0

4 − 9 a2x0
4 + 12 abrx0

3 + 12 abx0
3 − 6 adx0

3 − 3 arsx0
2

−3 ar2x0
2 − 4 b2rx0

2 − 6 arx0
2 − 4 b2x0

2 + 4 bdx0
2 + 2 brsx0 + 2 br2x0

−3 ax0
2 + 4 brx0 − sr2 + 2 bx0 − 2 dx0 − r2 − r.

Suppose r1, r2 (r1 ≤ r2) is the roots of p3′(Λk),
p3′ Λk( ) � 3q1Λ2

k + 2q2Λk + q3

where p3 (r1), p3 (r2) are local maximum and minimum
respectively. According to the properties of cubic equations of
one variable, Turing instability occurs when r1 < 0 and p3 (r1) > 0;
Turing instability occurs when r1 > 0 and p3 (0) > 0.

Finally, we consider the stability of system (1), namely,

p4 λ( ) � λ3 + a1λ
2 + a2 + a3e

−λ τ( )λ + a4 + a5e
−λ τ � 0. (8)

Suppose that the pure imaginary root λ = j ω (j represents the
imaginary unit) exists and we substitute it into the above
characteristic equation, we have

−a1ω2 + sin ω τ( )ω a3 + a4 + cos ω τ( )a5
+ −ω3 + a2 + cos ω τ( )a3( )ω − sin ω τ( )a5( )j
� 0.

Separating the real and imaginary parts

−a1ω2 + sin ω τ( )ω a3 + a4 + cos ω τ( )a5 � 0,
−ω3 + a2 + cos ω τ( )a3( )ω − sin ω τ( )a5 � 0.

Solving cos (ωτ), sin (ωτ) to get
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cos ωτ( ) � ω4a3 + ω2a1a5 − ω2a2a3 − a4a5
ω2a3

2 + a5
2 ,

sin ωτ( ) � ω ω2a1a3 − ω2a5 + a2a5 − a3a4( )
ω2a3

2 + a5
2 .

Due to cos (ωτ)2 + sin (ωτ)2 = 1, one has

s1x
4 + s2x

3 + s3x
2 + s4x + s5 � 0, (9)

where

x � ω2, s1 � a3
2,

s2 � a1
2a3

2 − 2 a2a3
2 + a5

2,
s3 � a1

2a5
2 − 2 a1a3

2a4 + a2
2a3

2 − a3
4 − 2 a2a5

2,
s4 � −2 a1a4a52 + a2

2a5
2 + a3

2a4
2 − 2 a5

2a3
2,

s5 � a4
2a5

2 − a5
4.

If a positive root exists xi (i = 1, 2, 3, 4) at least in system (9),
one has

τi � 1
ωi

arccos
ω4a3 + ω2a1a5 − ω2a2a3 − a4a5

ω2a3
2 + a5

2( ) + 2π
ωi
,

where ωi � ��
xi

√
is the solution of system (9) and the critical value

τ0 = min{τi} when d1 = d2 = 0, and τc =min{τi} when d1 ≠ 0 or d2 ≠
0. Also, the corresponding ω of τ0, τc is ω0, ωc.

The transversality condition

dλ

dτ
� t3cos ωτ( ) + t4sin ωτ( ) + t5

t21 + t22
≠ 0,

where

t1 � −sin ω τ( )ω τ a3 + cos ω τ( )τ a5 + 3ω2,
t2 � cos ω τ( )ω τ a3 + sin ω τ( )τ a5 − 2 a1ω,
t3 � −3 a3ω4 − 2ω2a1a5 − 3 a3ω

2 − τ a2a5,
t4 � 2ω3a1a3 − 3ω3a5 + ω τ a2a3 + 2ω a1a3,
t5 � −3 a2ω2 − a3τ a5.

If

dλ

dτ
|τ�τc,ω�ωc

> 0,

Turing instability occurs when τ0 > τ > τc. τ0 > τmake system (1)
without network stable, and network induce Turing instability,
namely, τ0 > τ > τc.

Through the above analysis, we can draw the following
sufficient conditions for Turing instability.

Theorem 1. Turing instability occurs in the network-organized
system when a Hi (i = 1, 2, 3) holds; Turing instability occurs in
the network-organized system with delay when τ ∈ (τ0, τc).

Proof 1. The proof process can refer to the above analysis.

RESULTS AND DISCUSSION

In this section, these parameters a = 1, b = 3, c = 1, d = 5, r = 0.01, s =
4, I = 1, xr = −1.6 Hindmarsh and Rose (1984) and d1 = 0.1, d2 = 0.3
are set. The adjacentmatrixA is generated by randomnetwork Zheng

and Shen (2020); Erdos and Renyi (1959) and the link probability p
and nodes n = 100 is the initial value. For node i and node j, if the
random number <p, Aij = Aji = 1, or else Aij = Aji = 0. Suppose the
special form f (xj, xi) = xj − qxi, g (yj, yi) = yj − qyi in system (1). Also, x
represent 100 neuron nodes in the pattern formation.

From Figure 1, system (1) is stable when d1 = 0, d2 = 0, τ = 0,
which is the precondition of Turing instability induced by
network and delay. Namely, Hi > 0 when Λi = 0
(Figure 1A,B,C) and the current values below the activity
threshold of the single neuron. Also, Λi can not lead to Turing
instability when Λi < 0, which means it is difficult to keep the
network in activity when the collected current is the same as the
outgoing current. Let’s take H3 (H1 and H2 are relatively simple,
and H3 is more representative.) as an example to illustrate the
stability of system (1) (Figure 2–6). Although system (1) without
delay is periodic behavior (Figure 2B) under the initial stimulus,
it ultimately tends to the rest state (Figure 2A) when no stimulus
is added. Short-term memory attributes to a fixed point attractor
Wang (2001), which could persistent neuronal activity when the
remembered stimulus is removed Goldman (2009). The above
results bring into correspondence with our results (Figure 2).
When the collected current is larger than the outgoing currentq =
0.96, H3 < 0 holds (Figure 3A) and Turing instability occurs
(Figure 3B). In general, most of the neurons will be in the rest
state. Meanwhile, a few persistent neuronal activities because of
the constant external stimuli (Figure 3B). When the link
probability p increases and the difference q becomes larger, H3

< 0 holds (Figure 4A) and the corresponding pattern formation
(Figure 4B) shows the periodic neural activity. Namely, constant
external stimulation from other neurons is necessary to keep the
neural activity. For the short-term memory, noise could induce
the switch of different memories Zheng et al. (2020), and the
constant external stimulation from other neurons can also leads
to the switch of different memories. Only the link probability
could not causes instability (Figure 5A), but it could keep the
neural activity longer (Figure 5B). When the difference between
the collected current and the outgoing current exceeds the
threshold value of the neural activity (Figure 6A), Turing
instability occurs (Figure 6B). Namely, the short-term
memory generation requires enough stimulation, which is in
line with the actual situation. Also, these above results can be
verified by the bifurcation (Figure 7):system (1) is always stable
when q = 0 (Figure 7A) and q could induce Turing instability
(Figure 7B).

Delay plays a vital role in the rise or fall of neural activity.
From Figure 8, the dynamic behavior (Figure 8A) is different
from system (1) without delay (Figure 2), but the link probability
nearly has no effect on the stability of system (1) (Figure 8B),
because the collected current always equal to the outgoing current
when q = 0. When q ≠ 0, the periodic behavior of the neuron may
occur (Figure 8C,D). Meanwhile, the periodic behavior of the
neuron under different p (Figure 8C,D). It is found that the link
probability p could make system (1) network synchronization
and the synchronicity becomes stronger with the increase of p,
but the neuronal activity is low (Figure 9A,B,C, Figure 10A). Of
course, q could increases neuronal activity (Figure 9D), which
can also be represented in the bifurcation (Figure 10B). The
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phenomenon of spatiotemporal patterns Lepek and Fronczak
(2018); Umesh and Ambika (2021); Shi et al. (2022); Santos et al.
(2017) was often considered in the network-organized system
when q = 1. The difference q < 1 between the collected current
and the outgoing current plays a vital role in the neuronal activity
through the above analysis, which may further show the firing
mechanism in a general networked HR model with delay.
Meanwhile, short-term memory results from external stimuli
Zheng et al. (2020), but not all stimuli result in short-term
memory. The difference q < 1 may theoretically explain why
some stimuli can’t lead to short-term memory.

CONCLUSION

In this paper, spatiotemporal patterns are investigated to illustrate
the collected behavior of neurons and the generation mechanism of
short-term memory. We obtain the algebraic expressions for Turing
instability to occur in any HR network setup. Then, we derive the
critical value of Hopf bifurcation to present a profound impact of
both network and delay on the Turing instability. Also, we find that
the collected current and outgoing current play a vital role in
neuronal activity, especially in the generation mechanism of the
short-term memory. Meanwhile, the collected behavior may fire
when the input to the neuron is below a certain threshold, and the
output reaches a stationary regime. Finally, we try to explain the
generation mechanism of the short-term memory through the
theoretical results and numerical simulation.
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