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Abstract

TB is rated as one of the world’s deadliest diseases and South Africa ranks 9th out of the 22

countries with hardest hit of TB. Although many pieces of research have been carried out on

this subject, this paper steps further by inculcating past knowledge into the model, using

Bayesian approach with informative prior. Bayesian statistics approach is getting popular in

data analyses. But, most applications of Bayesian inference technique are limited to situa-

tions of non-informative prior, where there is no solid external information about the distribu-

tion of the parameter of interest. The main aim of this study is to profile people living with TB

in South Africa. In this paper, identical regression models are fitted for classical and Bayes-

ian approach both with non-informative and informative prior, using South Africa General

Household Survey (GHS) data for the year 2014. For the Bayesian model with informative

prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to

set up priors for the model 2014.

Introduction

Tuberculosis (TB) has been rated as one of the world’s deadliest diseases [1]. It is caused by an

obligate pathogenic bacterial specie in the family ofMycobacteriaceae calledMycobacterium
tuberculosis (MTB) [2], and it is an airborne disease. Over a decade ago, TB disease was less

predominant in Africa [3], but today, the occurrence of TB is greater in Sub-Sahara Africa.

According to WHO 2014 world report, South Africa ranks 9th out of 22 countries hit hardest

by TB. The prevalence of TB is a real concern for authorities and also researchers to find better

way to prevent it.

Past research on factors which influence TB epidemiology apart from its main cause by

MTB, have shown that other conditions which affect the host cellular immunity, such as HIV

disease, old age, diabetes, alcohol consumption, intense malnutrition and anti-tumour necrosis
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alpha factor (TNF-α) treatment, increase the risk of developing active TB. Other factors

include contact with infected person, race, gender [4–6].

Over the past century, Bayesian statistics techniques have received various objections from

the classical statisticians. This was mainly because of their intractabilities involved in calculat-

ing posterior distribution [7]. The posterior distribution is usually very complex and different

from the usual distributions. But, with the discovery of Markov Chain Monte Carlo (MCMC)

methods [8], Bayesian method started to gain momentum [7]. MCMC method is used in

Bayesian inference to draw samples from the posterior distribution.

In Bayesian approach, the posterior distribution of the parameter is obtained by combining

the prior distributions with the likelihood [7–9], while in classical statistics, only the likelihood

is used as a basis for inference [9].

In Bayesian inference, the prior information can be informative or non-informative prior.

A prior information is said to be informative prior if there is a solid external information

about the distribution of the parameter of interest. While non-informative or vague prior are

used in the case where no solid scientifically sound prior information is available about the

parameter of interest. In this situation, a prior that will not have a significant influence on the

posterior distribution is utilized.

The recent success of Bayesian techniques in data analysis is also imputable to the robust-

ness and accuracy of the results produced by the approach. For this reason, this paper aim to

provide knowledge on risk factors for TB in South Africa, using both the classical approach

and Bayesian approach (with informative and non-informative priors). This is done using a

generalized linear mixed model in both approaches.

Materials and methods

Data description

The dataset used for this paper is the South Africa General Household Survey yearly conducted

by Statistics South Africa (Stats SA). This is a secondary data source collected and made freely

available by Statistics South Africa (Stats SA) in their website (http://www.statssa.gov.za/). As

the national institution providing statistics in South Africa, data from Stats SA are covered by

ethical and scientific clearance and authorization. The main interest was on the GHS 2014

data. Bayesian and classical statistics models are fitted using the 2014 data. However, dataset

for the years 2011, 2012 and 2013 are used to set up priors for Bayesian model with informative

prior 2014. Classical and Bayesian analyses are implemented with the help of R [10] and Win-

BUGS [11] software, respectively.

GHS 2011 dataset has 93434 observations with 158 variables, 2012 dataset has 91859 obser-

vations with 156 variables, 2013 dataset has 93749 observations with 169 variables and 2014

dataset has 92459 observations with 183 variables.

The sampling technique used for the GHS is based on a Master Sample (MS) technique

employed since 2008. The MS uses a two-stage sampling design. At the first stage, a stratified

design with probability proportional to the size selection of Primary Sampling Units (PSUs) is

used and at the second stage, a sampling of Dwelling Units (DUs) with systematic sampling is

applied [12]. In 2009, an automated editing and imputation system was introduced by Stats SA

for the GHS. This follows a standard set of rules that can be applied consistently over time.

The GHS’ target population is private households in all the nine provinces of South Africa

and residents in workers’ hostels. Other collective living quarters like students’ hostels, hospi-

tals, the old-age home, prison and military barracks were not cover by the survey [12].

The GHS 2014 sample is dominated by females. Among the 92459 people interviewed,

43476 (47%) are male and 48983 (53%) are females. Concerning the TB status of people
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interviewed, results show that 243 (0.3%) have TB, 91629 (99.1%) don’t have and 587 (0.6%)

did not specify. In the analyses, the unspecified TB status were removed from the model. The

racial distribution of the data indicates that height (8) people out of ten (10) interviewed

(74287, 80%) are black Africans. GHS 2014 sample included 92459 people aged zero (0) years

and above. Only people aged 15 years or above (64084, 69.3%) have been included in the

model.

Generalized linear mixed models

Generalized linear mixed models (GLMMs) are an extension of linear mixed models (LMM)

and generalized linear models (GLM). GLMM is a generalization of linear mixed models

(LMMs) to consider dependent variables from distributions other than normal such as count

or binary responses. The extension of GLMs to GLMMs is done by the consideration of both

fixed and random effects (mixed effects). While GLMs consider only fixed effects models,

GLMMs incorporate additional random effects for situation dealing with longitudinal and

complex structured (multivel) data. Fixed effects models assume that all observations are inde-

pendent of each other, are not adequate for analysis correlated data structures such as clustered

or multilevel data where observations are nested within groups.

The Generalized Linear Mixed Model is mathematically formulated as:

cðEðyjX;W; �ÞÞ ¼ X 0bþW 0

�þ �; ð1Þ

where ψ represents the link function, Y is an Nobs × 1 vector representing the dependent vari-

able with Nobs been the total number of observations in the data and X is an Nobs ×Nc matrix

where each column represents one of theNc covariates (level 1 predictors). β is anNc × 1 vector

representing the fixed-effects regression coefficients (coefficients linked to the predictors).W
is an Nobs × Nr matrix including Nr random effects predictors (level 2 predictors); ϕ is a Nr × 1

vector of the random effects (coefficients linked to the random effect predictors); and � is an

Nobs × 1 vector of the residuals.

This study deals with a specific case of GLMM where the dependent variable is binary and

two levels of analyses (individual and provincial levels) are considered. In such situation, the

best model to use is the generalized linear mixed model with logistic link function, binary fam-

ily with two levels of analyses. In this particular study, only the provinces’ IDs is considered at

level two and no additional level two predictor is included in the model, therefore theW com-

ponent is removed from the model. For a given observation i within a province j, the General-

ized Linear Mixed Model (excluding the error term �) then becomes:

cðEðyijXi; �jÞÞ ¼ X
0

ibþ �j; ð2Þ

with i�1, . . ., Nobs and j�1, . . ., Np. This equation is the simplest mixed model called random-

intercept model with a single random effect for each province j among all the Np provinces. ϕj
is the random effect (one for each province-level two unit) representing the influence of a

province j on its within observations. Such influence is not captured by the observed covari-

ates. It is important to include the random effects because the sampled individuals are sup-

posed to be representative of the entire population in number and structure. The random

effects are usually assumed to follow a normal distribution: N ð0; s2
�
Þ where s2

�
is the variance

in the population distribution, and therefore the level of heterogeneity of observations in the

data structure.

Classical and bayesian generalized linear mixed modeling of Tuberculosis
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Furthermore, the model utilized a logistic link function, meaning:

cðEðyiÞÞ ¼ logitðDiÞ

¼ log
Di

1 � Di

� �

¼ log
Prðyi ¼ 1jXi; �jÞ

1 � Prðyi ¼ 1jXi; �jÞ

 !

;

ð3Þ

where E(yi|Xi, ϕj) = Δi = Pr(yi = 1|Xi, ϕj)
The final model is given as [13]:

Di ¼ Prðyi ¼ 1jXi; �jÞ ¼
eX
0

i bþ�j

1þ eX
0

i bþ�j
; ð4Þ

where Xi represents the predictors for an individual i in a province j, which can be quantitative

(continuous), qualitative (categorical), or both (mixed). The response variable is denoted as yi,
β is the vector of the fixed regression coefficients and ϕj is the random effect component [9].

The link function that maps the original value of yi (0 or 1) to predictors is given as the log

of the odds that an event occurs, this is known as the logit of Δi and is expressed as [13, 14]:

logitðDiÞ ¼ Oi ¼ X
0

ibþ �j: ð5Þ

In classical statistics, the estimated values of the logistic regression parameters that maxi-

mise the probability of obtaining the observed data [13] are usually computed using the

method of maximum likelihood. The likelihood of n independent measurements, given vectors

of parameter θ and explanatory variables Xi is expressed generally as [9]:

pðyjy;XÞ ¼
YNobs

i¼1

pðyijy;XÞ: ð6Þ

For binary logistic regression with response variable yi = 0 or 1, the likelihood function is

expressed as [9]:

pðyjy;XÞ ¼
YNobs

i¼1

logit� 1
ðOiÞ if yi ¼ 1

1 � logit� 1
ðOiÞ if yi ¼ 0;

(

this is equivalent to

pðyjy;XÞ ¼
YNobs

i¼1

ðlogit� 1
ðOiÞÞ

yið1 � logit� 1
ðOiÞÞ

1� yi

¼
YNobs

i¼1

D
yi
i ð1 � DiÞ

1� yi :

ð7Þ

To compute the estimate of β which maximises the likelihood function, we need to differen-

tiate it with respect to β. To make this easier, we first take the natural logarithm (ln) of the like-

lihood function. That is:

ln ðpðyjb; �j;XÞÞ ¼
XNobs

i¼1

yi ln ðDiÞ þ ð1 � yiÞ ln ð1 � DiÞ½ �: ð8Þ

Classical and bayesian generalized linear mixed modeling of Tuberculosis
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Next is to take the partial derivatives of the log likelihood with respect to the parameters

(β), set the equation to zero and solve to obtain those parameters which are candidate for max-

imum. Furthermore, it is sufficient to check if the second derivative is positively defined for

those parameters.

The Wald test is applied to compute the confident interval of the parameters and it is given

as [13]:

b̂k � z1� a
2
ŜEðb̂kÞ: ð9Þ

Where z1� a
2

is the critical value of a standard normal distribution for a two sided test of size α

and ŜE is the estimate of the standard error. βk is fixed effect coefficient related to the kth

covariate.

The deviance statistic is used to test how well a model fits the data. It is a likelihood ratio

statistic for comparing fitted model to the saturated model and is expressed as [13, 15]:

D ¼ � 2 ln
ðlikelihood of the fitted modelÞ
ðlikelihood of the saturated modelÞ

� �

: ð10Þ

Using the log likelihood equation given in Eq (8), we have:

D ¼ � 2
XNobs

i¼1

½yi lnðDiÞ þ ð1 � yiÞ lnð1 � DiÞ� �
XNobs

i¼1

½yi lnðyiÞ þ ð1 � yiÞ lnð1 � yiÞ�

" #

;

¼ � 2
XNobs

i¼1

yi ln
Di

yi

� �

þ ð1 � yiÞ ln
1 � Di

1 � yi

� �� �

:

Classical approach

Classical inference supposes that the model parameters are fixed, though they are unknown

and that the data are random. It means that for a given parameter θ, the probability of the

observed data y can be written as: p(y|θ) [7, 8].

For a logistic regression, the multilevel model for varying intercept is given as [9]:

Prðyi ¼ 1Þ ¼ logit � 1ðX 0ibþ �jÞ

with

�j � N ð0; s2

�
Þ;

where σϕ is the standard deviation of the unexplained group-level errors [9].

Bayesian approach

Bayesian inference assumes that the data are fixed and considers all unknown parameters as

random variables. If we consider a given parameter θ and a set of observed data, the Bayesian

approach will be interested in the probability of the parameter θ given the set of data available

y, mathematically this can be written as: p(θ|y) [7, 8]. The main interest is in computing the

posterior distribution of the unknown parameter θ given the observed data y. This is obtained

Classical and bayesian generalized linear mixed modeling of Tuberculosis
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by multiplying the prior distributions with the likelihood function and is given as [7]:

pðyjyÞ ¼
pðyjyÞpðyÞ
pðyÞ

/ pðyjyÞpðyÞ: ð11Þ

This is known as the principle of Bayesian approach. Here, p(y) is the prior distribution and

the likelihood p(y|θ) is given as [7]:

pðyjyÞ ¼
YNobs

i¼1

pðyjyÞ:

The likelihood function of Bayesian approach is the same as that of classical approach.

Thus, from Eq (7), replacing θ with the unknown parameter β we have that:

pðyjyÞ ¼ pðyjb; �jÞ ¼
YNobs

i¼1

D
yi
i 1 � Dið Þ

1� yi :

The commonly used and the simplest prior for logistic regression parameters is a multivari-

ate normal distribution. That is [7, 16]:

b � N ðL0;S
2

0
Þ:

Thus we have:

pðbÞ / exp
� 1

2
ðb � L0Þ

0

S� 1

0
ðb � L0Þ

� �

:

It follows from Eq (11) that p(β|yi)/ p(yi|β)p(β). Hence, the posterior distribution for a

logistic regression (considering only fixed effects) is given as:

pðbjyiÞ /
YNobs

i¼1

D
yi
i 1 � Dið Þ

1� yi � exp
� 1

2
ðb � L0Þ

0

S� 1

0
ðb � L0Þ

� �

:

This posterior distribution has a complex form which looks complicated to directly sample

from. It is even more complex and complicated when the random effects is included in the

model.

pðb;s2
�
jyiÞ / pðyjb; s2

�
Þ � pðbjs2

�
Þ � pðs2

�
Þ

pðb;s2
�
jyiÞ /

YNobs

i¼1

D
yi
i ð1 � DiÞ

1� yi � exp
� 1

2
ðb � L0Þ

0

S� 1

0
ðb � L0Þ

� �

� ðs2
�
Þ

a� 1e� bs2
� ;

where s2
�
� Gammaða; bÞmeaning pðs2

�
Þ ¼

b
a

GðaÞ
ðs2

�
Þ

a� 1e� bs2
� .

Because of the complex nature of the posterior, we used the Markov Chain Monte Carlo

(MCMC) technique to simulation of the random numbers following the posterior

distribution.

The MCMC method is one of the most used method that generates the estimates of θ
(unknown parameters) from appropriate distribution and then corrects the values generated

to have a better estimate of the desired posterior distribution, p(θ|y) [7, 9]. If the posterior

p(θ|y) is from a distribution which is complex or difficult to manipulate by the researcher,

MCMC techniques provide a good alternative to summarize the posterior distribution. When

Classical and bayesian generalized linear mixed modeling of Tuberculosis
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using the MCMC to generate a sample of p(θ|y), we have to check that the MCMC algorithm

converges to the desired posterior distribution.

Non-informative and informative priors. The most important aspect in Bayesian

approach is to set up a proper prior to include in the model. The following method is employed

in the selection of prior for the Bayesian approach with non-informative and informative

prior.

A vague (non-informative) prior that will not influence the posterior distribution is chosen

by using a normal distribution with a large variance (σ2 = 1000) and mean (μj = 1).

bk � N ð1; 1000Þ; ð12Þ

The variance σ2 is transformed to inverse variance τ = 0.001 before being introduced in the

model. The vague prior for the random effect is set up to be a gamma distribution with α = 0.1

and β = 0.01.

For the computation of the informative prior distribution of the Bayesian multilevel logistic

regression, each fixed effect parameter is consider as bkg0
� N ðmkg0

; s2
kg0
Þ where the mean mkg0

is the mean of the coefficient related to the covariate k for the year γ0 = 2014. mkg0
is obtained

by averaging only the values of significant estimates b̂k of all the previous years γ = (2011, 2012

to 2013). That is:

mkg0
¼

1

Ng

XNg

g¼1

b̂kg;

where Nγ is the total number of previous years where βk was significant and b̂kg
is the estimate

of parameter for each year γ between 2011 and 2013 where βk was significant.

To compute the estimate of the variance s2
kg0

, a pooled variance is used.

s2

kg0
¼ S2

kg0
¼

XNg

g¼1

ðnkg � 1ÞS2
kg

XNg

g¼1

ðnkg � 1Þ

where nkγ (γ = 2011, � � �, 2013) is the number of observations for the covariate k in the year γ
and S2

kg ðg ¼ 2011; � � � ; 2013Þ is the corresponding variance.

For situations where an estimate is not statistically significant for any previous years

between 2011 and 2013 a non-informative prior is used meaning: bkg0
� N ð1; 1000Þ with

mkg0
¼ 1 and s2

kg0
¼ 1000

The prior of the random effect parameter of a multilevel regression model is considered as

a gamma distribution with parameters ag0
and bg0

: �g0
� Gammaðag0

; bg0
. To compute an

informative ag0
and bg0

, the following formulae of a gamma distribution parameters are used:

ag0
¼
Ẑ2

g0

S2
g0

and bg0
¼
S2

g0

Ẑ g0

:

With Ẑ g0
being the mean and S2

g0
the corresponding variance of the gamma distribution in

2014 model. The problem of obtaining informative values of ag0
and bg0

is then simplified to

Classical and bayesian generalized linear mixed modeling of Tuberculosis
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finding averages of Ẑ g and S2
g

for previous years (for γ = 2011, � � �, 2013):

Ẑ g0
¼

1

Ng

XNg

i¼1

Ẑ g and S2 ¼
1

Ng

XNg

i¼1

S2

g
:

It is very important to check the convergence of the MCMC algorithm used in the study

because a problem of non convergence or auto-correlation in the MCMC sample can lead to

wrong results. Appropriate diagnostics such as; the Gelman-Rubin convergence diagnostic

test, monitoring the Markov Chain (MC) error, checking for autocorrelation and observing

the trace plots, can be used.

The Gelman-Rubin convergence diagnostic. The Gelman-Rubin convergence diagnostic

was created by Gelman and Rubin in 1992 [7]. This test is only used when multiple chains are

generated simultaneously. The diagnostic test is applied by computing and comparing within-

sample variability and between-sample variability.

The within-sample variability (WSS) is the mean of variance among each sample. The

between-sample variance BSS
T 0

is the variance of the generated posterior mean over all the sam-

ples, where T0 denote the number of iterations used for each chain. The test statistics for the

diagnostic test can be obtained using [7]:

R̂ ¼
V̂
WSS

¼
T 0 � 1

T 0
þ

BSS
T 0
WSS

k þ 1

k
;

where k is the number of chains or samples generated and

V̂ ¼
T 0 � 1

T 0
WSSþ

BSS
T 0

T 0
k þ 1

k

is the pooled posterior variance estimate. R̂ ! 1 as convergence is attained.

Results and discussion

The purpose of this paper is to determine significant predictors of TB in South Africa, compar-

ing the classical approach and the Bayesian approach. To achieve this, we set up a generalized

linear mixed model for the two approaches. The final outcome is to find predictors of individ-

ual’s risks of having TB in South Africa in 2014. Various predictors including HIV status and

socio-economic factors are included in the model. The predictors (excluding the reference

with the coefficient associated) introduced in the model are: The intercept (β0), Gender:

Female (β1), Race: Non Black African (β2), Area of residence: Rural (β3), HIV status: No (β4),

Working for a wage: No (β5), Marital status: Single (β6), Marital status: Separated/divorce/

widow (β7), Highest Education Level: Primary (β8), Highest Education Level: Secondary or

above (β9), Age (β10), Province (β.Prov)
Going through the descriptive analysis, it appears that out of the 9 provinces, Eastern Cape

followed by Northern Cape have the highest percentage of respondents with TB. Descriptive

results show that the percentage of males living with TB is greater than that of females. Also,

areas of residence have equal proportion of respondents with TB.

In addition, people living with HIV have a higher prevalence of TB compared to those with-

out HIV. People from the black community have a higher proportion of TB compared to oth-

ers. Considering marital status, separated, divorced or widowed respondents have the highest

prevalence, followed by the singles and married. Looking at the level of highest education

attainment, results indicate that people with no education have a higher percentage of TB,

Classical and bayesian generalized linear mixed modeling of Tuberculosis
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followed by those with primary education level and those who have secondary school educa-

tion level or more.

The classical and Bayesian multivariate generalized linear mixed models are fitted using the

same predictors: The response variable y is TB or severe cough with blood (being the reference

category). To test the significance of individual predictors, we used 95% Confidence Interval

(CI) for classical statistics and 95% Credible Interval (Cred.I) for Bayesian approach. If these

interval contains the number zero (0) we said that the parameter (estimate of the mean Beta) is

not significant otherwise it is significant.

Classical inference

The glmer function in R is used to fit the classical model. The result is given in Table 1 on

Page 9.

Findings from this model reveal that all the variables used in the model are significant pre-

dictors of the risk of TB at 95% significant level or above. Considering gender, it appears that

females are 34% (OR = 0.657) less likely to suffer TB compared to males. Also, results indicate

that people from other population groups are 41% (OR = 0.589) less likely to suffer TB com-

pared to black Africans.

Furthermore, findings reveal that people living in the rural areas are 12% (OR = 0.878) less

likely to have TB compared to those living in the urban areas. Concerning the risk of coinfec-

tion TB and HIV, results show that people who are HIV negative are 78% (OR = 0.219) less

likely to suffer TB compared to those living with HIV. Likewise, results illustrate that people

unemployed are 1.94 times more at risk of having TB compared to those working for a wage,

commission or salary.

Additionally, results about marital status highlighted that people who never got married are

1.07 times more likely to have TB as compared to those living with someone as husband and

wife. For those who once got married (either divorced, widow or separated), findings led to an

OR = 1.93 which indicates that, they are 1.93 times more likely to suffer TB compared to those

living together as husband and wife. Furthermore, findings indicate that people whose highest

education is primary school are less likely have TB compared than those who are not educated

Table 1. Model summary for the year 2014.

Parameters Classical approach Bayesian non-informative Bayesian informative

Estimate 95%C.I Estimate 95%Cred.I Estimate 95%Cred.I

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

β0 -5.55* -6.01 -5.08 -4.02* -5.71 -2.44 -4.22* -7.51 -1.38

β1 -0.42* -0.43 -0.4 -0.51* -0.82 -0.2 -0.51* -0.81 -0.21

β2 -0.53* -0.55 -0.51 -0.42 -0.91 0.05 -0.41 -0.90 0.05

β3 -0.13* -0.15 -0.12 -0.14 -0.50 0.22 -0.11 -0.48 0.25

β4 -1.52* -1.54 -1.5 -1.61* -2.02 -1.18 -1.60* -2.00 -1.17

β5 0.66* 0.64 0.67 0.57* 0.22 0.95 0.58* 0.22 0.95

β6 0.07* 0.05 0.09 0.12 -0.29 0.49 0.10 -0.28 0.48

β7 0.07* 0.05 0.09 0.16 -0.30 0.61 0.16 -0.30 0.61

β8 -0.14* -0.16 -0.11 -0.21 -0.73 0.32 -0.22 -0.74 0.32

β9 -0.25* -0.27 -0.22 -0.29 -0.80 0.24 -0.29 -0.81 0.26

β10 0.02* 0.02 0.02 0.02* 0.01 0.03 0.019* 0.01 0.03

The values with * are the significant values.

C.I = Confidence Interval and Cred.I = Credible Interval

doi:10.1371/journal.pone.0172580.t001
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(OR = 0.869). Also, people whose highest education is secondary school or higher are 22%

(OR = 0.779) less likely to have TB compared to those who are not educated. For age of respon-

dents, result gives an OR = 1.022 indicating that the risk of TB increases 1.022 times as they

grow a year older.

Bayesian inference

For the Bayesian approach, WinBUGS software is used to fit the model. WinBUGS is a free

software that is managed by Biostatistics unit of Medical Research Council (MRC) in the

United Kingdom (UK). The same covariates as in Classical model are included in the Bayesian

model. Two Bayesian models are fitted in this paper: Bayesian with vague or non-informative

prior and Bayesian with informative prior.

Bayesian model with non-informative prior. The results for the model with non-

informative prior are given in Table 1 on page 9. Findings show that the result of Bayesian

with vague prior (data 2014) is very similar to that of classical statistics, which is in line with

the theory. Indeed, the theory indicates that non-informative priors should not have effect on

the posterior. The important part is that the credible interval for Bayesian statistics is very dif-

ferent from the confident interval for classical statistics. Indeed, the credible interval is more

robust than the confidence interval which is highly affected (quality) by the sample size. That

is why some variables significant in frequentist (classical statistics) are not in Bayesian infer-

ence with non-informative.

Considering the credible interval, results of non-informative prior Bayesian model indicate

that variables; “Gender”, “HIV”, “Working for Wage” and “Age”, are the only significant pre-

dictors of the risk of having TB. While “Race”, “Area of residence”, “Marital status” and “level

of education” are not significant determinants of TB in South Africa. Regarding the effects of

gender on the risk of TB, findings highlight that females are 40% (OR = 0.6) less likely to have

TB compared to males. Results also show that people that are HIV negative are 80.01%

(OR = 0.20) less at risk of TB than those living with HIV. Furthermore, unemployed people are

1.77 times more at risk of having TB than others while as age increases by a year, the risk of

having TB also increases by 1.02.

A Bayesian regression with vague prior is implemented also for 2011, 2012 and 2013 data

and results are presented in Table 2. Results indicate that all significant predictors in 2013

were also significant predictors in 2012 and 2011. These predictors are gender, race, HIV status

and education level. This indicates a certain pattern and consistency over the previous years.

Indeed, males, black African, HIV positive and people with no education level appear to be

consistently at high risk of having TB during the entire period 2011–2013. In addition, past

data (2011–2013) analyses show some peculiarities such as unemployed and single people

being at higher risk of TB than others in 2012 and unemployed and people living in rural areas

being significantly at high risk of TB in 2011. Using all these information from past data analy-

ses (2011–2013), informative priors were set up according to the procedure explained in the

methodology and included in Table 2.

Once the results of the model are computed, it is important to check for the convergence of

Markov Chain Monte Carlo. Fig 1 illustrates the convergence of the Bayesian with informative

prior using the Gelman-Rubin Convergence Diagnostic test. The algorithm converged after

100, 000 iterations. To remove the autocorrelation and burning periods, a lag of 20 was consid-

ered and the first 35, 000 iterations removed. The output of Gelman-Rubin convergence diag-

nostic test displays the red lines representing the R̂. The graph shows that all the R̂ ! 1. Also,

the blue and green lines which represent the within sample variance and the pooled posterior

Classical and bayesian generalized linear mixed modeling of Tuberculosis
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variance, are stationary. Thus, the Gelman-Rubin Convergence Diagnostic test suggests that

the algorithm converges.

Bayesian approach with informative prior. Most of the studies found in literature make

use of non-informative prior in Bayesian inference. This is due to difficulties of availability of

scientifically solid prior information about the unknown parameters. In this study, previous

dataset for the year 2011 to 2013 were available and used to set up informative priors for the

2014 model. Table 2 gives the result of the informative priors. Bayesian approach with infor-

mative prior is conducted using the same model as that of the non-informative and classical

models detailed in previous sections. The result of the Bayesian model with informative priors

is given in Table 1.

The third model scrutinized in this paper consists of a Bayesian approach with informative

prior. Results of this model displayed in Table 1 is almost identical to the results obtained for

the Bayesian model with non-informative priors. This result indicates that the prior informa-

tion are not strong enough or they are very close to the 2014 data. Results of the Bayesian with

informative prior show that “Gender”, “HIV”, “employment” and “Age”, are the most signifi-

cant predictors of the risk of having TB in South Africa while “Race”, “Area of residence”,

“Marital status” and “level of education” are not significant determinants. The details suggest

that females are 40% less at risk of having TB compared to males. Also, HIV negative respon-

dents are 80.20% less at risk of TB compared to those who are HIV positive. In addition, those

who are not working are 1.79 times more at risk of having TB compared to others who do. The

result also shows that an increase in age increases the risk of having TB by 1.02.

Discussion

At the end of this study, the results showed no significant difference between Bayesian with

informative prior and Bayesian with non informative prior which could be due to the covari-

ates utilized in this model or to the strength of the likelihood. However, Bayesian with infor-

mative prior is from definition better than the non informative prior because it includes

scientifically based information in the model and the contribution of an informative prior vary

from one model to another. On the other hand, the results from Bayesian approach are

Table 2. Model summary for Bayesian approach with non-informative for the year 2011 to 2013 with the computed priors.

Parameters 2013 Output 2012 Output 2011 Output Informative

Estimate CI Estimate CI Estimate CI Prior

97.5% 2.5% 97.5% 2.5% 97.5% 2.5% mean Var.

β0 -1.75 2.24 -44.9 -1.53 1.99 -30.6 -0.71 0.69 -2.09 1 1000

β1 -0.64* -0.33 -0.95 -1.06* -0.77 -1.36 -0.98* -0.72 -1.24 -0.89 0.022

β2 -0.82* -0.27 -1.42 -0.83* -0.33 -1.38 -0.78* -0.31 -1.28 -0.81 0.072

β3 0.05 0.40 -0.29 0.20 0.55 -0.15 0.48* 0.79 0.18 0.48 0.026

β4 -1.69* -1.33 -2.05 - 1.78* -1.39 -2.14 - 1.46* -1.1 -1.88 -1.64 0.034

β5 0.33 0.72 -0.03 0.71* 1.09 0.35 0.82* 1.19 0.47 0.77 0.035

β6 0.25 0.64 -0.14 0.40* 0.78 0.03 -0.02 0.32 -0.35 0.40 0.036

β7 0.31 0.75 -0.14 -0.21 0.25 -0.70 -0.08 0.30 -0.47 1 1000

β8 0.03 0.53 -0.45 -0.03 0.45 -0.49 -0.22 0.16 -0.59 1 1000

β9 - 0.57* -0.03 -1.10 -0.63* -0.12 -1.12 - 0.58* -0.18 -0.98 -0.59 0.059

β10 -0.01 9.5e−4 -0.02 -0.004 0.01 -0.02 -0.004 0.01 -0.01 1 1000

τ.Prov 50.05* 215.0 5.0e−4 16.11* 76.93 0.001 6.83* 19.63 1.35 α = 0.44 β = 55.20

values with * are the significant values.

doi:10.1371/journal.pone.0172580.t002
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different from that of classical statistics, even Bayesian with vague priors produces results dif-

ferent from that of classical statistics.

Findings from Bayesian inferences and classical models are difficult to compare, the reason

been that they are two fundamentally different techniques with different tools for decision

making, P−value or confidence interval for one and credible interval for the other. However,

when both techniques provide different results, findings from the Bayesian model are given

preference because the technique is more robust and precise than the traditional (classical) sta-

tistics. Bayesian approach is usually criticized based on the choice of prior included in the

model. Indeed, a wrong prior can include misleading information in the model which may

result in misleading findings while a good prior will strengthen the quality of outputs. To

avoid any doubt, two situation were considered in this study: a vague or non-informative prior

with no real effect on the posterior and an informative prior set up using rigorous scientific

steps. Findings of this study suggest that decision makers should give more credit to Bayesian

Fig 1. WinBUGS’ output of autocorrelation.

doi:10.1371/journal.pone.0172580.g001
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model with informative priors than that of Bayesian with vague (non-informative) or classical

statistics techniques. In conclusion, this study clearly advocates for the use of Bayesian findings

compared to non Bayesian techniques.

Bayesian with informative and non-informative priors provided very close results. But the

output of the informative prior is considered to be more precise and robust, compared to that

of non-informative Bayesian model and classical model because of the presence of previous

scientifically solid knowledge in the model. The use of informative priors (scientifically based

evidence) or the addition of supplementary informative in the model will theoretically

decrease the variance of the model and lead to a better model. It is based on the theoretical def-

inition of informative prior (in addition to the result of our analysis which confirmed it), we

concluded that Bayesian methods provide more precise and powerful result.

Conclusion

Findings of the final model of this paper reveal that males, HIV positive, unemployed and

older people are more at risk of TB than the others. Results also suggest that factors such as

Race, Area of residence, Marital Status and Education Attainment are not statistically signifi-

cant in the study of TB in South Africa.

One of the key discoveries of this paper is that Bayesian approach helps in selecting the

more significant factors related to the risk of TB in South Africa, as compared to the classical

approach that suggested that all the factors are significant. This paper suggests that to reduce

the risk of TB in South Africa, attention should be given to old men, who are unemployed and

HIV positive.
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