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INTRODUCTION 
 

Rheumatoid arthritis (RA) is a systemic, chronic, 

incurable autoimmune inflammatory disease affecting 

approximately 0.5%-1% of the world population [1]. 

Imbalanced immune responses both in circulating 

peripheral blood and in diseased joint cavities are 

closely related to the occurrence and development of 

RA [2]. It has been repeatedly illustrated that aberrant 

CD4
+
 helper T (Th) cells produce proinflammatory 

cytokines, and abnormally activated B cells can 

differentiate into plasma cells that ultimately produce a 

large panel of autoantibodies [3, 4]. In addition, 

aberrant alterations of innate immune cells such as 

monocytes, macrophages, and natural killer (NK) cells, 

as well as dendritic cells (DCs), are also related to RA 

[5–7]. Interferons (IFNs) are a family of cytokines 

produced by various cells that play pivotal roles in early 

defense against viral infection in mammals [8, 9]. 

Moreover, as important immunomodulators, IFNs also 
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ABSTRACT 
 

Interferon (IFN) signaling pathways play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Prior studies 
have mainly studied mixed alterations in the IFN signaling pathway in RA, but these studies have not been 
sufficient to elucidate how imbalanced IFN signaling subtly influences immune cells. Single-cell RNA (scRNA) 
sequencing makes it possible to better understand the alternations in the interferon signaling pathways in RA. In 
the present study, we found that IFN signaling pathways were activated in natural killer (NK) cells, monocytes, T 
cells, B cells, and most immune cell subclasses in RA. We then explored and analyzed the connections between 
abnormal IFN signaling pathways and cellular functional changes in RA. Single-Cell rEgulatory Network Inference 
and Clustering (SCENIC) analysis and gene regulatory network (GRN) construction were also performed to identify 
key transcription factors in RA. Finally, we also investigated altered IFN signaling pathways in multiple RA 
peripheral blood samples, which indicated that abnormal IFN signaling pathways were universally observed in RA. 
Our study contributes to a better understanding of the delicate and precise regulation of IFN signaling in the 
immune system in RA. Furthermore, common alternations in IFN signaling pathway-related transcription factors 
could help to identify novel therapeutic targets for RA treatment. 
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impressively affect several immunity responses [10]. 

Both abnormal levels of IFNs and alterations in IFN 

signaling pathways have been observed in RA, systemic 

lupus erythematosus (SLE), primary Sjögren syndrome 

(pSS), and other autoimmune diseases [11–13]. 

However, the specific mechanisms of IFN signaling 

pathways in RA are poorly understood. 

 

Although the etiology and pathogenesis of RA are still 

not fully understood, it has been demonstrated that IFN- 

and IFN-related signaling pathways partly promote the 

inflammatory response in RA patients [13]. Human IFN 

can be broadly grouped into three main classes: type I 

IFN, type II IFN, and type III IFN [14]. type I IFNs 

consists of IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω, and 

type II IFNs consists of only IFN-γ [15]. Type III IFN 

was discovered approximately two decades ago and 

includes IFN-λ1, IFN-λ2, IFN-λ3 as well as IFN-λ4 

[16]. In our study, we primarily discuss type I IFN 

(IFN-α and IFN-β) and type II IFN due to their 

important roles in RA. 

 

Individual case reports showed that patients were 

diagnosed with RA after using IFN-α to treat other 

diseases [17, 18]. Previous studies have also reported 

that type I IFN response genes are potential 

biomarkers for predicting the development of RA [11, 

19]. The relationship between IFNs and RA is not 

only restricted to high clinical relevance but is also 

reflected in many molecular biology studies. IFN-α 

increases the production of proinflammatory 

cytokines such as interleukin (IL)-1β and IL-18 in 

synovial cells [20]. In contrast, IFN-β inhibits 

expression of IL-1β and tumor necrosis factor (TNF) 

in peripheral blood mononuclear cells (PBMCs) [21]. 

Moreover, IFN-β-treated collagen-induced arthritis 

(CIA) mice exhibited relieved arthritis, suggesting 

that IFN-β exerts potential therapeutic effects [22]. 

Beyond expectation, randomized clinical research on 

the treatment of RA using recombinant IFN-β negated 

the therapeutic effects of IFN-β in RA [23]. Thus, the 

effects of IFNs and their response genes and pathways 

in RA deserve further investigation. 

 

In the past decade, the evolution of high-throughput 

technologies have made it possible to detect the 

expression of tens of thousands of genes in one sample at 

the same time, giving us novel insights into the 

pathogenesis of RA [24]. Nevertheless, the technologies 

and analytic tools of single-cell RNA (scRNA) 

sequencing are rapidly expanding and maturing [25, 26]. 

Researchers are able to understand the mechanisms of RA 

in parallel to the dimensions of cell and gene expression 

with the development of scRNA sequencing [26, 27]. In 

the present study, we comprehensively analyzed the 

discrepancies between RA and healthy controls in the 

terms of both scRNA transcriptomics and conventional 

RNA transcriptomics of PBMCs. Alterations in type I 

IFN and IFNs and their response genes and pathways, as 

well as the resulting potential impacts on the function of 

immune cells are discussed in detail. 

 

RESULTS 
 

Four primary immune cell classes were identified by 

scRNA transcriptome analysis 
 

To comprehensively explore the disorders in PBMCs 

from RA, scRNA sequencing data were preprocessed, 

and batch effects were removed (Supplementary Figure 

1A–1D). All cells were grouped to produce 27 clusters 

first, and all cells were visualized using the principal 

component analysis (PCA)-based uniform manifold 

approximation and projection (UMAP) method (Figure 

1B). Highly expressed marker genes in each cluster 

were calculated, and violin plots were used to illustrate 

the expression of several widely used marker genes in 

each cluster (Figure 1C). 

 

In the present study, NK cells, monocytes, and T and B 

cells were identified (Figure 1D), and these cells were 

conserved for further analysis. Although plasmacytoid 

DCs (pDCs) and myeloid DCs (mDCs) were also 

distinguished (Figure 1D), the number of cells was too 

small to analyze (466 mDCs, 72 pDCs, and 42 

megakaryocytes), so those cells were filtered out in 

subsequent experiments. Moreover, the marker genes of 

cluster 18 and cluster 19 did not support them as any 

common or specific cell types in PBMCs, so they were 

considered as mixed cells (Figure 1D). Considering that 

clusters 18 and 19 had few cells (the number of all cells 

in the two clusters was no more than 300), these two 

clusters were also abandoned. 

 

Altered IFN-stimulated signaling pathways and 

genes in NK cells, monocytes, T cells, and B cells 

from RA PBMCs  
 

Gene set enrichment analysis (GSEA) of NK cells, 

monocytes, T cells, and B cells was performed to reveal 

the differences between RA and healthy controls (HCs), 

and the GSEA results indicated the widespread 

dysregulation of immune cells in peripheral blood from 

the RA patient (Figure 2A–2D). Among all significant  

gene sets, it was not difficult to observe that the Gene 

Ontology (GO) biological process (BP) pathway  

named “RESPONSE_TO_TYPE_I_INTERFERON” was 

upregulated in NK cells, monocytes, T and B cells  

from RA sample (Figure 2E–2H). Moreover, three other 

gene sets named “RESPONSE_TO_INTERFERON_ 

ALPHA”, “RESPONSE_TO_INTERFERON_BETA”, 

and “RESPONSE_TO_INTERFERON_GAMMA” were  
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Figure 1. Study design and preliminary analysis. (A) Workflow of scRNA sequencing and microarray data analysis. Step 1: We first 
downloaded individual rheumatoid arthritis (RA) and healthy control (HC) peripheral blood mononuclear cell (PBMC) scRNA sequencing data 
(GSE159117 and GSE149689) from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). To eliminate the 
potential batch effects, canonical correlation analysis (CCA) was performed to integrate the two datasets. Afterwards, four main immune cell 
types (T cells, B cells, NK cells and monocytes) in PBMCs were identified. Then, we explored the up- and downregulated genes and gene sets 
using differential gene expression analysis and gene set enrichment analysis (GSEA). Subsequently, four main immune cell subtypes were 
identified using Monocle2, and up- and downregulated interferon (IFN)-related genes and gene sets in different immune cell subtypes were also 
identified. Step 2: Key transcription factors were identified, and gene regulatory networks (GRNs) were constructed using Single-Cell rEgulatory 
Network Inference and Clustering (SCENIC) analysis. Step 3: We downloaded microarray datasets including multiple RA and HC PBMC samples 
and explored the up- and downregulated IFN-related genes and gene sets. (B) Two-dimensional uniform manifold approximation and projection 
(UMAP) visualization of cell clusters. Cells were colored by clusters. (C) Violin plots of selected marker genes to identify cell classifications and 
their expression levels in each cell cluster. (D) The table of correspondence between cell clusters and cell types. 

https://www.ncbi.nlm.nih.gov/geo/
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Figure 2. The type I interferon (IFN) signaling pathway is activated in natural killer (NK) cells, monocytes, and T and B cells in 
rheumatoid arthritis (RA). All GSEA bar plots of NK cells (A), monocytes (B), T cells (C) and B cells (D) detected by single-cell RNA (scRNA) 
sequencing data. GSEA plots and Het maps showing the activated type I IFN signaling pathway and genes in NK cells (E), monocytes (F), T cells (G) 
and B cells (H) detected by scRNA sequencing data. Upregulated genes in RA are marked with an asterisk (*). All upregulated genes satisfied log2 
(fold change)>0.25 and adjusted p-value<0.05. (I) Venn diagram of upregulated type I IFN-stimulated genes in each immune cell type. 
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also activated in NK cells from the RA patient  

(Figure 2A). 

 

The above results indicate that IFN-α-, and IFN-β-

stimulated genes are comprehensively activated in RA 

peripheral blood. IFN-γ-stimulated genes are also 

upregulated in RA NK cells. Moreover, there were 

differentially upregulated IFN-stimulated genes in NK 

cells, monocytes, T cells, and B cells from RA (Figure 

2I), indicating that there were different alterations 

influenced by IFN in distinct immune cell types. 

Therefore, we further analyzed the alterations of IFN-α-

, IFN-β-, and IFN-γ-stimulated genes in NK cells, 

monocytes, T cells, and B cells from the RA patient. 

 

Alterations and influence of IFN stimulated 

pathways in RA NK cells 
 

To better explore the impacts of IFN-stimulated genes and 

signaling pathways in NKs from RA, we reclustered NK 

cells and divided them into three subclusters: activated 

CD56
dim

 NK cells, inactivated CD56
dim

 NK cells and 

CD56
bright

 NK cells (Figure 3A, 3B). We then examined 

the transcriptional changes associated with RA in these 

three NK subclusters using GSEA. The GSEA results 

showed that IFN-γ stimulated signaling pathways in the 

three NK subclusters were all activated (Figure 3C). 

Moreover, type I IFN stimulated signaling pathways were 

activated in activated CD56
bright

 NK cells and activated 

CD56
dim

 NK cells (Figure 3C). We also calculated 

differentially expressed genes (DEGs) in the three NK cell 

subclusters between the RA patient and HCs, and the 

results showed that some type I IFN- and IFN-γ-

stimulated genes, such as STAT1 and SOCS1, were 

significantly upregulated in NK cell subclusters (Figure 

3D–3G). The above results all indicate that IFNs are 

partially implicated in NK cell regulation, which 

eventually causes abnormal changes in the immune 

environment in peripheral blood. In addition, it is 

interesting that CD56
dim

 NK cells might produce more 

IFN-γ according to the results of differential gene 

expression analysis (Figure 3F), even though CD56
dim

 NK 

cells primarily exert cytotoxic effects in PBMCs. 

 

We also examined functional changes in NK subclusters 

in RA, and the inactivated CD56
dim

 NK cells in RA 

exhibited lower activity in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway of 

“KEGG_NATURAL_KILLER_CELL_MEDIATED_C

YTOTOXICITY” (Figure 3H). In activated CD56
dim

 

NK cells, expression of the cytotoxic effector molecules 

PRF1 and GZMB was also significantly depressed 

(Figure 3I). These results indicate that the cytotoxic 

capacity of CD56
dim

 NK cells is reduced in RA. 

Importantly, it is reasonable to believe that those 

functional changes in RA NK cells are partly associated 

with the activation of IFN-stimulated genes and 

pathways based on previous studies [28]. 

 

Alterations and influence of IFN-stimulated 

pathways in RA monocytes 

 

In PBMCs, monocytes are commonly divided into 

CD14
++

CD16
−
 (classical), CD14

++
CD16

+
 (intermediate), 

and CD14
−
CD16

++
 (nonclassical) populations according 

to their developmental processes [29]. Here, we followed 

a similar classification and monocytes were split into 

CD14
+
 and CD16

+
 monocytes using single-cell trajectory 

analysis (Figure 4A, 4B). We then analyzed the activity of 

IFN-stimulated pathways by performing GSEA. CD14
+
 

and CD16
+
 monocytes were all activated by type I IFN 

(Figure 4C, 4D), and CD14
+
 monocytes were activated by 

IFN-γ simultaneously (Figure 4C, 4E). 

 

CD14
+
 monocytes are more inclined to migrate to local 

tissues with high levels of CD62L, and chemokines 

(CXCR2, CCR2), and CD14
+
 monocytes are also 

considered osteoclast precursors [29–31]. In our study, 

high HLA-DRB5 expression was also observed in 

CD14
+
 monocytes from the RA patient (Figure 4E), 

indicating an inflamed and erosive osteoclast phenotype 

in RA joint cavities. In contrast, CD16
+
 monocytes 

primarily secreted inflammatory factors in PBMCs [5]. 

We also found that CD16
+
 monocytes from RA patients 

expressed significantly more CH25H (Figure 4D), 

which could promote the inflammatory response in RA 

peripheral blood [32]. We propose that these inflam-

matory changes are caused by IFN’s influence 

according to prior studies [33]. 

 

Alterations and influence of IFN stimulated 

pathways in RA CD4
+
 and CD8

+
 T cells  

 

The heterogeneous nature of T cells makes investigation 

of T cells complex. For convenience, T cells were split 

into three subgroups: CD4
+
 T cells, CD8

+
 T cells, and 

naïve T cells via single-cell trajectory analysis (Figure 

5A, 5B). GSEA indicated that type I IFN- and IFN-γ-

stimulated pathways were activated in CD4
+
 T cells and 

CD8
+
 T cells but not in naïve T cells (Figure 5C). 

Meanwhile, expression of IFN-stimulated genes such as 

IRF7 was significantly increased in CD4
+
 T cells and 

CD8
+
 T cells from the RA patient (Figure 5D, 5E). In 

addition, levels of GZMH were increased in RA CD8
+
 

T cells (Figure 5E), which might also be caused by type 

I IFN activation [34]. 

 

Alterations and influence of IFN stimulated 

pathways in RA naïve B cells and plasma cells 
 

For B cells, cell trajectory analysis was performed,  

and the track plot of B cell trajectories is shown in  
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Figure 3. Interferon (IFN)-stimulated pathways promote cytokine secretion and inhibit cytotoxicity in rheumatoid arthritis 
(RA) natural killer (NK) cells. (A) Two-dimensional uniform manifold approximation and projection (UMAP) visualization of reclustered NK 
cells. Three NK cell clusters (activated CD56

dim
 NK cells, inactivated CD56

dim
 NK cells and CD56

bright
 NK cells) were identified. (B) Dot plot 

illustrating the expression levels of several marker genes in three NK cell subtypes. (C) Bar plots of selected gene set enrichment analysis 
(GSEA) results indicated altered IFN signaling pathways in three NK cell subtypes. (D) Violin plots of significantly upregulated type I IFN-
stimulated genes in RA-activated CD56

dim
 NK cells (STAT1) and in RA CD56

bright
 NK cells (OASL). (E) Violin plot of significantly upregulated IFN-

γ-stimulated genes in RA CD56bright NK cells. (F) Violin plots of significantly upregulated IFN-γ-stimulated genes in RA-activated CD56dim NK 
cells. (G) Violin plots of significantly upregulated IFN-γ-stimulated genes in RA-inactivated CD56dim NK cells. (H) GSEA plot of the 
“KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY” pathway in RA inactivated CD56dim NK cells. (I) Violin plots of significantly 
upregulated cytotoxic effector genes in RA activated CD56dim NK cells. All upregulated genes satisfied log2 (fold change)>0.25 and adjusted p-
value<0.05.
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Figure 6A. Three B cell clusters included naïve B 

cells, plasma cells, and memory B cells according to 

their marker genes (Figure 6B). GSEA results showed 

that type I IFN and IFN-γ primarily affected naïve B 

cells (Figure 6C), and upregulated type I IFN-

stimulated genes were also observed in RA naïve B 

cells (Figure 6D). Moreover, GSEA results indicated 

that naïve B cells were one of the sources of type I 

IFN (Figure 6C). 

 

Remarkably, the GSEA results showed that naïve B 

cells from RA were activated and tended to proliferate 

faster (Figure 6E). EGR1 has been demonstrated to 

promote B cell differentiation into plasma cells and 

support antibody secretion, and higher expression of 

EGR1 was identified in naïve B cells from RA (Figure 

6D) [35]. The pseudotimes of B cells were also 

significantly different between the two groups, and RA 

plasma cells exhibited older pseudotimes (Figure 6F), 

indicating that RA B cells are primarily concentrated at 

the end of the differentiation trajectory. Moreover, the 

proportions of three B cell types in RA and HC were 

compared, and the results revealed that the number of 

plasma cells in RA was increased with the same 

proportion of naïve B cells (Figure 6G). In addition, 

GSEA results demonstrated that naïve B cells from RA 

tended to produce more of the proinflammatory factors 

IL-1β and IL-12 (Figure 6E). 

 

 
 

Figure 4. IFN promotes rheumatoid arthritis (RA) monocyte inflammatory responses. (A) Red and cyan points indicate CD14+ 
monocytes and CD16

+
 monocytes, respectively. The direction of arrows indicates the direction of the pseudotime. (B) Trajectory plots of 

monocytes indicating the expression levels of CD14 and FCGR3A (CD16a) in monocytes. (C) Bar plots of selected gene set enrichment analysis 
(GSEA) results indicate activated IFN signaling pathways in CD14+ and CD16+ monocytes. (D) Violin plots of significantly upregulated type I 
IFN-stimulated genes (IFI27, IFIT2) and upregulated proinflammatory gene (CH25H) in RA CD16+ monocytes. (E) Violin plots of significantly 
upregulated IFN-γ-stimulated genes (IFI27, EGR1, HSP90AB1, IFITM1, OAS2, HLA-DQA2, CCL2) and upregulated proinflammatory genes (HLA-
DRB5) in RA CD14+ monocytes. All upregulated genes satisfied log2 (fold change)>0.25 and adjusted p value<0.05. 
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Interestingly, plasma cells in RA exhibited lower activity 

in the “RESPONSE_TO_INTERFERON_GAMMA” 

pathway (Figure 6H), and the expression of IFN-γ-

stimulated genes, such as IFITM3 and IFI30, were 

downregulated in RA plasma cells (Figure 6I). In 

accordance with previous studies, this might affect 

antibody class switching in RA plasma cells [36]. 

 

Single-cell regulatory network inference and 

clustering (SCENIC) analysis revealed the chief 

transcription factors and gene regulatory networks 

(GRNs) in RA PBMCs 

 

The effects of IFNs on immune cells are complex. 

Here, we focused on the regulation of downstream 

transcription factors and their target genes by IFNs. 

We first calculated and compared the AUC values of 

the regulon between RA and HC, and significantly 

differential regulons are illustrated in Figure 7A. 

Regulons of IRF7_127g, STAT1_115g, STAT2_49g 

and STAT2_extended_101g were significantly 

upregulated in most cell types. Instead, the regulons 

of IRF1_14g and UQCRB_19g were significantly 

decreased in most cell types (Figure 7A). Sub-

sequently, we constructed GRNs in different immune 

cell types. Many IFN-stimulated genes were included 

in the GRNs (Figure 7B), and different cell types 

exhibited diverse IFN-stimulated genes, indicating 

different and fine regulation of gene expression in 

distinct immune cells. 

 

External datasets validated the activation of 

interferon-simulated pathways and genes in 

peripheral blood from RA patients 

 

Considering that the above results came from a single 

RA patient, we used external transcriptomic data from 

multiple individuals to explore the expression of IFN-

 

 
 

Figure 5. IFN promotes rheumatoid arthritis (RA) CD4+ Th1 polarization and increases RA CD8+ T cell cytotoxicity. (A) Trajectory 
plots of T cells from RA and healthy control individuals (HC). The direction of arrows indicates the direction of the pseudotime. (B) Dot plot 
illustrating the expression levels of several marker genes in three T cell subtypes. (C) Bar plots of selected gene set enrichment analysis (GSEA) 
results indicate activated IFN signaling pathways in CD4+ and CD8+ T cells. (D) Violin plots of significantly upregulated IFN-γ-stimulated genes in RA 
CD4+ T cells. (E) Violin plots of significantly upregulated IFN-γ-stimulated genes (IRF7, ISG15, IFI6, STAT1, TRIM22, SOCS1, PARP14) and the 
cytotoxic effector gene (GZMH) in RA CD8+ T cells. All upregulated genes satisfied log2 (fold change)>0.25 and adjusted p-value<0.05.  



 

www.aging-us.com 20519 AGING 

 
 

Figure 6. IFN alters rheumatoid arthritis (RA) B cell proliferation and activation and class switching in RA plasma cells. (A) 
Trajectory plots of T cells from RA and healthy control individuals (HC). The direction of arrows indicates the direction of pseudotime. (B) Dot 
plot illustrating the expression levels of several marker genes in three T cell subtypes. (C) Bar plots of selected gene set enrichment analysis 
(GSEA) results indicate activated IFN signaling pathways in RA naïve B cells. (D) Heat map of upregulated type I IFN stimulated genes in RA 
naïve B cells. Genes are ordered according to their expression levels in RA naïve B cells. (E) GSEA results indicate activated B cell functions in 
RA naïve B cells. (F) Probability density plot of B cell pseudotimes in RA and HC. Pseudotimes between the RA patients and HCs were 
compared using the Mann-Whitney U test. (G) Stacked bar plot of B cell subtype distribution in RA and HC. The horizontal dotted line 
indicates the overall B cell proportions in RA and HC. The proportions of memory B cells and plasma cells in the RA patient and HCs were 
compared to the proportions of naïve B cells, and comparisons were performed using Fisher’s exact test. (H) GSEA plot of the 
“GOBP_RESPONSE_TO_INTERFERON_GAMMA” pathway in RA plasma cells. (I) Heat map of downregulated IFN-γ-stimulated genes in RA 
plasma cells. Genes are ordered according to their expression levels in HC naïve B cells. 
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stimulated genes and pathways in RA PBMCs. We first 

analyzed a microarray dataset including 232 RA PBMC 

samples and 43 HC PBMC samples, and the GSEA 

results demonstrated that the “GOBP_RESPONSE_TO_ 

TYPE_I_INTERFERON” and “GOBP_RESPONSE_TO 

_INTERFERON_GAMMA” pathways were activated in 

RA (Supplementary Figure 2A, 2B), and related genes 

were also upregulated in RA (Supplementary Figure 2C,

 

 
 

Figure 7. Key transcription factors and gene regulatory networks (GRNs) in each immune cell type from rheumatoid arthritis 
(RA) peripheral blood. (A) Heat map of differential regulons in each immune cell type. The heat map color indicates the difference in AUC 
values in RA patients and HCs, and only significantly different regulons are shown in the heat map. Red and blue indicated that the regulon is 
upregulated and downregulated in RA, respectively. (B) GRNs in each immune cell type. Blue and orange dots represent upregulated and 
downregulated genes in RA, respectively. The size of the dots corresponds to the absolute value of fold changes. Gray lines and green lines 
represent unidirectional and bidirectional regulatory relationships, respectively. 
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2D). Furthermore, we investigated alterations in IFN-

stimulated pathways and genes in different cell types in 

RA PBMCs. The results indicated that the effects of type I 

IFN were primarily concentrated in CD14
+
 monocytes 

(Supplementary Figure 3), while the effects of IFN-γ were 

primarily concentrated in monocytes, effector memory 

CD4
+
 T cells and NK cells (Supplementary Figure 3). In 

addition, the GSEA results also suggested that NK cells in 

RA produced more IFN-γ (Supplementary Figure 3), 

which is consistent with the results of scRNA sequencing 

analysis. 

 

DISCUSSION 
 

IFNs are a series of natural cytokines that exert pivotal 

immunomodulatory activities [37–39]. Both type I and 

II IFN are presumed to be the bridge between innate 

immune and adaptive immune responses due to their 

functions in enhanced antigen presentation. From this 

point, the intensities of type I and II IFN signaling 

pathways are crucial for the balance between self-

reactivity and autoimmunity, illustrating that IFNs play 

important roles in autoimmune diseases. 

 

Type I IFN can be produced by many immune cell 

types, including DCs, monocytes, and macrophages 

[13]. T cells and NK cells are the major producers of 

IFN-γ [40]. Type I and II IFN can also act on immune 

cells in an autocrine fashion. The influences of IFN 

signaling on immune cells are comprehensive and 

involve multiple signaling pathways. The type I IFN 

receptor (IFNAR) activates its downstream target 

kinases, including JAK1 and TYK2, which promotes 

phosphorylation, dimerization, and nuclear 

translocation of STAT1 and STAT2 [41]. Finally, the 

expression of a series of genes called IFN-stimulated 

genes is facilitated. IFN-γ also regulates gene 

expression by activating the JAK-STAT1 signaling 

pathway and other factors, including the AP-1, 

STAT3, STAT5, the MAP kinase signaling pathway, 

the PI3K signaling pathway and the NF-κB signaling 

pathway [42]. 

 

NK cells, T and B cells and monocytes are the crucial 

proportions of PBMCs, which are also involved in 

innate and acquired immune responses and are related 

to a series of autoimmune diseases. GSEA is a popular 

and useful tool to identify specific up- or downregulated 

pathways. In the present study, we determined that IFN-

related signaling pathways were activated in PBMCs 

from RA microarray data using GSEA and GO and 

KEGG pathways from the Molecular Signatures 

Database (MSigDB). Then we focused on the abnormal 

expression of type I and II IFN-related genes and gene 

sets, and consequent alterations in NK cells, monocytes, 

and T and B cells from RA peripheral blood. 

CD56
dim

 NK cells exert roles in the immune response 

primarily through there cytotoxic effects on abnormally 

activated T cells and macrophages, and CD56
bright

 NK 

cells primarily regulate the immune response by 

producing cytokines [43]. Aberrant alterations of NK 

cells partially contribute to the progression of RA. It has 

been reported that there are increased CD56
bright

 NK 

cells in inflamed synovial joints, which also express 

more IFN-γ than NK cells in the peripheral blood [44]. 

Previous research also demonstrated that NK cell 

activity was impaired in RA [45]. 

 

NK cell activation relies on the stimulation of type I 

IFN [28]. In our study, we found that both type I IFN- 

and IFN-γ-stimulated signaling pathways were activated 

in activated CD56
dim

 NK cells and CD56
bright

 NK cells. 

Notably, in agreement with prior studies, our study also 

suggested decreased cytotoxic effects of RA activated 

and inactivated CD56
dim

 NK cells [45]. 

 

It has been reported that NK cells stimulated with IFN-γ 

exhibit increased phosphorylation of STAT1 or STAT4, 

and different activation of STATs leads to distinct NK 

cell phenotypes [28]. Specifically, STAT1 phospho-

rylation promotes the cytotoxic activity of NK cells, 

while STAT4 phosphorylation promotes NK cell 

cytokine secretion [46, 47]. Although a higher level of 

STAT1 in RA-activated CD56
dim

 was detected, we 

speculated that the impaired NK cell activity in RA 

CD56
dim

 NK cells was related to IFN-γ stimulation and 

downstream STAT4 phosphorylation. 

 

Aberrant activation of monocytes also contributes to 

RA. CD14
+
 monocytes are more inclined to migrate to 

local tissues including joint cavities [29, 30]. A large 

number of peripheral CD14
+
 monocytes differentiate 

into osteoclasts in RA, ultimately leading to bone 

erosion. Herein, our study indicated that CD14
+
 

monocytes from RA exhibited increased HLA-DRB5 

levels and IFN-γ signaling pathway activation. 

CD14
+
CD16

+
HLA-DR

+
 monocytes secrete high levels 

of TNF, which indicates that HLA-DR
+
 monocytes 

exhibit a potential proinflammatory phenotype [48]. 

IFN-γ has been considered an effective inducer of HLA-

DR expression on synovial monocytes by in vitro cell 

experiments [5]. Taken together with the above results, 

we speculate that higher expression of HLA-DR in 

CD14
+
 monocytes indicates stronger immune responses 

in RA peripheral blood.  

 

CD16
+
 monocytes in RA also exert momentous effects 

on RA by producing proinflammatory cytokines, such 

as IL-1β, IL-6, and TNF-α [5]. In our study, we found 

that RA CD16
+
 monocytes expressed more CH25H than 

HCs, accompanied by activation of the type I IFN 

signaling pathway. CH25H is an enzyme that catalyzes 
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the formation of 25-hydroxycholesterol (25HC) from 

cholesterol, and it has been demonstrated that CH25H 

acts as an inflammatory signaling amplifier in macro-

phages [32, 49]. Moreover, individuals with higher 

CH25H expression in synovial membranes are more 

likely to develop RA [50]. Previous research has 

demonstrated that CH25H is an IFN-stimulated gene 

and that expression of CH25H is induced by IFN-α 

[33]. Thus, we hypothesized that type I IFN promotes 

the expression of CH25H in RA CD16
+
 monocytes, 

which aggravated the inflammatory response in RA 

CD16
+
 monocytes. In addition, although expression of 

CH25H represents an inflammatory signal, the 

relationship between CH25H and RA needs further 

investigation because there are few relevant studies. 

 

Consistently, CD4
+
 T cells occupy a core status in RA 

[51]. CD4
+
 T cells contain a CD4

+
 T cell subtype 

mixture of Th1, Th2, Th17, and regulatory T cells 

(Tregs). Among them, enhanced Th1 and Th17 

activities, as well as elevated IFN-γ and IL-17, promote 

inflammatory responses both in synovial membranes 

and in PBMCs [52]. Our study demonstrated that the 

IFN-γ stimulated signaling pathway was activated in 

RA CD4
+
 T cells, indicating that it enhanced CD4

+
 Th1 

polarization in RA. These results are consistent with 

previous studies [52]. CD8
+
 T cells also function in RA, 

but their precise roles in RA pathogenesis are still 

unclear [53]. Some animal studies have demonstrated 

that CD8
+
 T cells have proinflammatory effects via 

cytotoxicity [54]. However, other studies have indicated 

that CD8
+
 T cells play a regulatory role in inflamed 

joints [55]. In the present study, we found that GZMH, a 

cytotoxic gene, was upregulated in RA CD8
+
 T cells, 

supporting the view that the cytotoxicity of CD8
+
 T 

cells is enhanced in RA. It is also known that IFN-γ can 

enhance the cytotoxicity of CD8
+
 T cells. Therefore, we 

hypothesized that the cytotoxicity of CD8
+
 T cells was 

elevated and was associated with the activation of IFN-

γ-stimulated pathways [34]. 

 

In RA, unnatural B cell activation leads to the 

production of autoantibodies, including anti-cyclic 

citrullinated peptide (anti-CCP) and rheumatoid factor 

(RF). Unsurprisingly, we found that naïve B cells in RA 

exhibited stronger proliferation and activation, 

accompanied by the activation of activation of type I 

IFN. It has been previously demonstrated that type I 

IFN boosts B cell proliferation and differentiation to 

plasma cells [56]. EGR1, a type I IFN-stimulated gene, 

was also upregulated in RA naïve B cells [35]. Thus, we 

hypothesized that the activation of type I IFN partially 

enhanced B cell differentiation into plasma cells. 

 

Activated B cells also regulate immune responses by 

secreting cytokines [36]. Both proinflammatory 

cytokines and anti-inflammatory cytokines can be 

produced by B cells, depending on the stimulus [57]. It 

has been reported that B cells from the autoimmune 

disease multiple sclerosis produce less of the anti-

inflammatory cytokine IL-10 [58]. Here, our study 

indicated that naïve B cells in RA had the potential to 

produce the proinflammatory cytokines IL-1β and IL-

12, which might aggravate the inflammatory status in 

RA peripheral blood. Whether the cytokines from RA B 

cells are related to type I IFN and IFN-γ activation 

remains to be further investigated. 
 

Inhibition of the IFN-γ signaling pathway in RA plasma 

cells is another interesting phenomenon observed in the 

present study. Previous studies have demonstrated that 

IFN-γ intervenes in plasma cell isotype switch 

recombination by promoting IgG2a production and 

inhibiting IgG1 production [59, 60]. Coincidentally, 

IgG1 and IgG4 are the primary subtypes of anti-CCPs 

in RA [61, 62]. As a result, we conjectured that the 

inhibited IFN-γ signaling pathway in plasma cells might 

be associated with plasma cell isotype switch 

recombination in RA, which eventually promotes the 

production of autoantibodies. 
 

Finally, IFN-regulated pathways and genes are complex 

and numerous. Therefore, we attempted to use SCENIC 

to evaluate the activity of each transcription factor and 

their target genes. We found that the activities of the 

regulons IRF7_127g, STAT1_115g, STAT2_49g, 

STAT2_extended_101g, IRF1_14g and UQCRB_19g 

were significantly increased or decreased in most cell 

types. There were several imbalanced transcription 

factors in RA, such as IRF1, IRF7, STAT1, and STAT2. 

They could be regulated by IFN, addressing the 

important IFN effects in RA [63–65]. Furthermore, we 

constructed GRNs by integrating the results of SCENIC 

analysis and DEG analysis in each cell type. Our GRNs 

might not be comprehensive due to the strict 

calculations of DEGs. Moreover, only a single RA 

sample with missing clinical characteristics was used in 

the main analysis of the present study, which limited the 

generalizability of the findings. Further research is 

required to explain the significance of these 

transcription factors in RA. Once their expression and 

functions are identified, these transcription factors could 

be used as potential targets in the treatment of RA due 

to their extensive influence instead of partial alterations 

in RA. 

 

CONCLUSIONS 
 

Knowledge of the relationship between IFN and RA is 

tortuous because IFN participates in multiple regulatory 

effects on the immune system [66]. Initially, type I IFN 

was used as a treatment option [67]. Subsequently, the 
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promoting effects of IFN-stimulated signaling pathways 

on RA have been gradually recognized [68]. The type I 

IFN signature represents type I IFN response genes and 

pathways, that are activated in RA patients, which may 

play a role in the potential development of RA [11]. 

Meanwhile, contradictory findings indicated the dual 

effects of IFN-γ on RA, and our findings demonstrated 

that IFN-γ-stimulated pathways were not always 

activated in all cell types in RA [69].  

 

In the present study, we comprehensively analyzed the 

alterations of type I IFN- and IFN-γ-stimulated 

pathways in RA. Parts of the findings from the 

transcriptome analysis corroborate previous studies. The 

present study indicated that IFN signaling pathways are 

activated in RA patients, in agreement with prior 

investigations. A previous study showed that CD56
dim

 

NK cells from RA patients are impaired, and our study 

supported that conclusion [45]. Enhanced Th1 activity 

and imbalanced Th1/Th2 cells in RA were detected very 

early [51]. Our research also found enhanced IFN-γ 

signaling pathway in RA CD4
+
 T cells, indicating that 

Th1 polarization is enhanced in RA CD4
+
 helper T cells. 

However, the subtypes of CD4
+
 helper T cells are 

diverse, and the relationship between the Th17/Treg 

balance and RA has been observed in prior research 

[51]. How IFN signaling pathways and CD4
+
 helper T 

cell differentiation influence each other needs to be 

clearly demonstrated in future studies. 

 

Our study also delivers some novel findings. We linked 

disease promotion of CD56
bright

 and CD56
dim

 NK cells in 

RA with activated IFN signaling pathways. Our research 

also indicated that the activated type I IFN signaling 

pathway might promote production of the inflammatory 

signaling amplifier CH25H. In addition, RA patient 

primary B cells tended to differentiate into plasma cells, 

and our investigation demonstrated that the type I IFN 

signaling pathway might be one of the factors causing this 

differentiation. Our analysis also demonstrated that the 

IFN-γ signaling pathway in RA was activated, which 

might influence antibody class switching in RA plasma 

cells and autoantibody production. Finally, SCENIC was 

used to identify key transcription factors in different 

immune cells in RA, and GRNs were also constructed to 

reveal the mechanism of transcription regulation, which 

provides directions for future research on IFN signaling 

pathways in RA. 

 

Although this study comprehensively explored the 

effects of abnormal type I and II IFN signaling 

pathways in RA PBMC immune cell subtypes, only one 

RA scRNA sample was used in our study, and the 

clinical characteristics of the RA patient were unknown. 

Thus, we suggest that further studies should focus on 

IFN-stimulated signaling pathways in RA using 

multiple samples and corresponding clinical 

information. Additionally, it is crucial to distinguish 

different INF signal alterations in distinct cell types to 

obtain a better cell classification performance, cell 

sorting is worth using before performing scRNA 

sequencing. Regardless, it is questionable whether IFN 

signaling pathways directly and/or indirectly promote 

the occurrence and development of RA according to 

previous studies. The relationship between IFN 

signaling pathways and RA immune cells should be 

carefully evaluated with a series of in vitro and in vivo 

experiments using a combination of novel sequencing 

technologies and traditional molecular biology 

techniques. 

 

MATERIALS AND METHODS 
 

Acquisition of single-cell sequencing data and 

microarray data  

 

Both PBMC scRNA sequencing data and mRNA 

expression microarray data were downloaded from the 

Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/). PBMC scRNA 

sequencing data of one RA patient and two HCs were 

obtained from GSE159117 and GSE149689, 

respectively [70, 71]. The mRNA expression data of 

232 RA and 43 HC PBMC samples, which were 

preprocessed by frozen robust multi-array analysis 

(fRMA) with batch effects corrected, were obtained 

from GSE93272 [72]. Microarray data preprocessed by 

fRMA of several immune cell subtypes in PBMCs were 

obtained from GSE93776 [72]. The design of this 

research is shown in Figure 1A. 

 

Data preprocessing and quality control 
 

For scRNA sequencing data, the R package Seurat 

(version 4.0.0) was used to preprocess the scRNA 

sequencing data [73–76]. First, cells were included if 

they met all three of the following parameters: (1) the 

number of genes in each cell was greater than 500; (2) 

the total number of molecules in a cell was greater than 

1000 and less than 15000; and (3) the mitochondrial 

gene expression ratio was less than 5% and 15% for 

GSE159117 and GSE149689, respectively. Two  

GEO series scRNA data were normalized using 

“NormalizeData” function, and 3000 highly variable 

genes were identified using “FindVariableFeatures”. 

Second, two GEO series were integrated in Seurat using 

the canonical correlation analysis (CCA) method with 

the “FindIntegrationAnchors” and “IntegrateData” 

functions. 

 

Subsequently, the PCA method was performed for 

dimension reduction after data scaling, and the top 30 

https://www.ncbi.nlm.nih.gov/geo/
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principal components were selected to perform the 

downstream analysis. The UMAP algorithm was used to 

visualize and explore the data. Cell clusters were 

identified by the function “FindNeighbors” using the K-

nearest neighbors (KNN) algorithm and the function 

“FindClusters” with a resolution of 1.25. 

 

Cell class identification 
 

We calculated marker genes to annotate cell clusters 

to specific immune cell types. The following marker 

genes were used for cell type annotation: CD3D, 

KLRF1, CD79A, CD68, LILRA4, CD1C, and TUBB1 

[77–80]. Correspondence between marker genes and 

cell types is shown in Figure 1C. Considering that the 

numbers of pDCs, mDCs, and megakaryocytes were 

too small, they were excluded from all subsequent 

analyses. 

 

Single-cell trajectory analysis and cell subtype 

identification 
 

To estimate the dissimilar functions of the different 

immune cell types in detail, the four main classes of 

immune cells (NK cells, monocytes, T cells, and B 

cells) were further divided according to the general 

classification criterion and certain marker genes. NK 

cells identified above were chosen, and reclustering 

was performed in Seurat using the same pipeline as 

previously described. NK cells were then subdivided 

into three clusters, and the following genes were used 

for NK cell subtype annotation: PRF1, GZMA, 

GZMB, GNLY (activated CD56
dim

 NK cells), GZMH 

(inactivated CD56
dim

 NK cells), and GZMK and SELL 

(CD56
bright

 NK cells) [81, 82]. For monocytes, T cells 

and B cells, the R package monocle (version 2.18.0) 

was used to perform single-cell trajectory analysis, 

and pseudotime trajectories were constructed using 

the DDRTree algorithm [83]. Subsequent genes were 

used for cell subtype identification: CD14 (CD14
+
 

monocytes), FCGR3A (CD16
+
 monocytes), CCR7, 

SELL (naïve T cells), CD4 (CD4
+
 T cells), CD8A 

(CD8
+
 T cells), TCL1A (naïve B cells), PRDM1 

(plasma cells), FAS, CD80 and CD27(memory B 

cells) [78, 84–86]. 

 

Differentially expressed gene identification 
 

DEGs between cells from two individuals are important 

for determining their potential distinct biological 

functions. To identify DEGs between RA and HC in 

different immune cell subtypes, we used the 

FindMarkers function in Seurat to evaluate them and set 

min.pct = 0.1, logfc.threshold = 0.25, only.pos = 

FALSE, and only genes with adjusted p-value < 0.05 

were retained. 

Gene set enrichment analysis 
 

GSEA was performed using the R package 

clusterprofiler (version: 3.18.1) [87]. Gene set files were 

downloaded from http://www.gsea-msigdb.org/gsea/ 

downloads.jsp, and all GO gene sets and KEGG gene 

sets were used for enrichment analysis. For scRNA 

sequencing data, genes were ranked using the 

“FindMarkers” function in Seurat. For microarray data, 

gene log2 (fold-change) values were calculated using 

the R package limma (version: 3.46.0), and all genes 

were decreasingly ranked by their log2 (fold-change) 

values [88]. The normalized enrichment score (NES) 

was used to assess the results of gene set enrichment. 

Pathways with an adjusted p-value<0.05 and |NES|>1 

were considered significant. GSEA plots were created 

using the R package enrichplot (https://yulab-

smu.top/biomedical-knowledge-mining-book/, version: 

1.10.2). Bar plots were generated using the R package 

ggpubr (https://CRAN.R-project.org/package=ggpubr, 

version: 0.4.0). 

 

Single-cell regulatory network inference and 

clustering analysis and regulatory network 

construction 
 

SCENIC is a computational method to infer GRNs from 

single-cell RNA-seq data [89]. SCENIC analysis was 

performed according to the official workflow. We used 

the R package SCENIC (version: 1.2.4) and the 

GRNboost2 algorithm in the python package arboreto 

(version: 0.1.5) to assess the gene regulatory 

relationships in subclasses of PBMCs [90]. Genes that 

were expressed at either very low levels or in too few 

cells were removed first; subsequently, we split the 

targets into positive- and negative-correlated targets by 

calculating the correlation in R. Gene coexpression 

networks were then constructed using the GRNboost2 

algorithm in Python and SCENIC in R. AUC values of 

the regulon were calculated to measure the activity of 

the regulon. A heat map of regulon AUC values in each 

cell type was illustrated and clustered using R the 

package pheatmap (version: 1.0.12). Finally, the AUC 

values of the regulon in each subclass cell were 

compared using the limma package between the RA 

patients and HCs. Only a regulon with a logFC≥0.05 

and adjusted p-value < 0.05 was considered 

significantly different between RA and HC groups. 

Finally, genes belonging to both different regulons 

between RA and HC and DEGs identified using the 

FindMarkers function were used for GRN construction. 

 

Statistical analysis 
 

We compared B cell pseudotime between RA and  

HC by using Mann-Whitney U test by function 

http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
https://yulab-smu.top/biomedical-knowledge-mining-book/
https://yulab-smu.top/biomedical-knowledge-mining-book/
https://cran.r-project.org/package=ggpubr


 

www.aging-us.com 20525 AGING 

“wilcox.test” in R. Differences in B cell subtype 

proportions were compared using Fisher’s exact test 

using the function “pairwise.fisher.test” in the R 

package fmsb (https://CRAN.R-project.org/package= 

fmsb, version: 0.7.0), and p-values were adjusted using 

a Benjamini–Hochberg (BH) method. A p-value < 0.05 

was considered significant. 

 

Data availability 

 

Publicly available datasets were analyzed in this study. 

This data can be found here: https://www.ncbi.nlm.nih. 

gov/geo/query/acc.cgi?acc=GSE159117; https://www. 

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149689; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE93272; https://www.ncbi.nlm.nih.gov/geo/query/acc. 

cgi?acc=GSE93776. 
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Supplementary Figure 1. Principal component analysis (PCA) visualization suggested that batch effects were removed 
between rheumatoid arthritis (RA) and healthy control individuals (HC) by canonical correlation analysis (CCA). (A) PCA 
visualization of cells before performing CCA, and cells are colored by batch. (B) PCA visualization of cells before performing CCA, and cells are 
colored by sample. (C) PCA visualization of cells after performing CCA, and cells are colored by batch. (D) PCA visualization of cells after 
performing CCA, and cells are colored by sample. PC: principal component. 
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Supplementary Figure 2. Upregulated interferon (IFN)-stimulated signaling pathways and genes in rheumatoid arthritis (RA) 
peripheral blood. (A, B) Bar plots of selected results of GSE93272 gene set enrichment analysis (GSEA) indicated upregulated Type I IFN (A) 
and IFN-γ (B) stimulated signaling pathways in RA. (C) Violin plots of the top 10 upregulated genes in the type I IFN-stimulated signaling 
pathway. (D) Violin plots of the top 10 upregulated genes in the IFN-γ-stimulated signaling pathway. Genes in (C, D) are ordered according to 
fold changes, and only genes satisfying adjusted p-value <0.05 are shown. 
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Supplementary Figure 3. Upregulated interferon (IFN)-stimulated signaling pathways in immune cells from rheumatoid 
arthritis (RA) peripheral blood. Bar plots of selected results of GSE93776 gene set enrichment analysis (GSEA) showing activated IFN-
stimulated signaling pathways in RA peripheral blood. The horizontal axis represents the normalized enrichment score. Adjusted p-values of 
all pathways satisfied were less than 0.05. 


