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Abstract
Due to the increased outdoor transmission risk of new SARS-COV-2 variants, the health of urban
residents in daily travel is being threatened. In the new normal of long-term coexistence with SARS-
CoV-2, how to avoid being infected by SARS-CoV-2 in daily travel has become a key issue. Hence, a
spatiotemporal solution has been proposed to assist healthy travel route planning. Firstly, an
enhanced urban-community-scale geographic model was proposed to predict daily COVID-19
symptom onset risk by incorporating the real-time effective reproduction numbers, and daily
population variation of fully vaccinated. On-road onset risk predictions in the next following days
were then extracted for searching healthy routes with the least onset risk values. The healthy route
planning was further implemented in a mobile application. Hong Kong, one of the representative
highly populated cities, has been chosen as an example to apply the spatiotemporal solution. The
application results in the four epidemic waves of Hong Kong show that based on the high accurate
prediction of COVID-19 symptom onset risk, the healthy route planning could reduce people’s
exposure to the COVID-19 symptoms onset risk. To sum, the proposed solution can be applied to
support the healthy travel of residents in more cities in the new normalcy.
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Introduction

The COVID-19 pandemic has dealt a severe blow to global cities, with 90% of infections occurring in
urban areas (Acuto et al., 2020). The accelerated COVID-19 vaccination has been enforced in global
cities to contain further SARS-CoV-2 transmissions (Assiri et al., 2021; Batista et al., 2021; Castillo
et al., 2021; Sah et al., 2021). However, the emergence and spread of SARS-CoV-2 variants (e.g.
Omicron, Delta) may erode vaccine efficacy, potentially compromising efforts to control the pandemic
(Harder et al., 2021; Khan et al., 2022). Under the new normal of long-term coexistence with SARS-
CoV-2, global cities needmore than ever to resort to advanced technology to help urban residents avoid
being infected by SARS-CoV-2 while improving their daily travel (Jiang et al., 2021; Yue et al., 2021).
According to a survey conducted in 7 countries including China and theUnited States, reducing the risk
of infections is the priority for daily travel in the new normal, overtaking even destination time in
importance (McKinsey&Company, 2020). Therefore, how to avoid the SARS-CoV-2 infection during
daily travel to protect the health of residents has become a key issue.

In response to these above issues, based on the enhanced risk prediction of COVID-19 symptoms
onset, a spatiotemporal solution was proposed to provide healthy route planning with the least
exposure of COVID-19 symptoms onset risk for the daily travel of the public.

In order to assist people in healthy travel planning, it is necessary to be able to predict and identify
the spatiotemporal risk hotspots of COVID-19 (Ghosh and Cartone, 2020; Sharifi and Khavarian-
Garmsir, 2020). Since the outbreak of COVID-19, a series of studies on predicting and identifying
risk hotspots have emerged (Das et al., 2021; Guo et al., 2021; Islam et al., 2021; Lak et al., 2021;
Sannigrahi et al., 2020). For example, Jia et al. used a spatiotemporal risk source model to identify
the areas within high transmission risk and statistically derive the geographical spread and growth
pattern of COVID-19 in China (Jia et al., 2020). Feng et al. further compared transmission paths,
outbreaks timelines and coping strategies of COVID-19 in China and the US (Feng, Z et al., 2020).
It is helpful to understand the spatiotemporal characteristics, development dynamics and actual
processes of COVID-19 in different countries. Moreover, Ma et al. explored the spatiotemporal
clustering pattern and hot spots of COVID-19 cases at the city level (Ma et al., 2021).

The above-mentioned studies have improved our understanding of the spatiotemporal trans-
mission dynamics of COVID-19. However, there are still three shortcomings that need to be
resolved. A major shortcoming is that only a few studies have taken into account the effects of
changes in the transmission capacity of new SARS-CoV-2 variants when estimating the spatio-
temporal spread of COVID-19. Estimates of the growth rate, disease severity and impact of new
SARS-CoV-2 variants are crucial in the new normal (Franceschi et al., 2021). Moreover, the existing
research mainly focused on the city or regional scale (Bollen et al., 2021; Davies et al., 2021). Few
studies considered the transmission of new SARS-CoV-2 variants at the community level. In
addition, most existing models make predictions and analyses based on the diagnosis date (i.e. the
date on which the cases are confirmed) in historical data. It has been found that COVID-19 patients
are at their most infectious during the first week after the symptom onset (He et al., 2020; Kawasuji
et al., 2020). Thus, if using findings based purely on the COVID-19 diagnosis dates, as opposed to
the date of symptom onset, the key period for enabling the prevention of further COVID-19 in-
fections may be missed. Therefore, in this study, to achieve a more accurate prediction for assisting
healthy daily travel, it is necessary to adopt appropriate data-driven models and combine the new
characteristics of COVID-19 transmission to analyse its transmission trends at the community level.

Shi et al. developed intercity-scale and urban-community-scale extended weighted kernel density
estimation (WKDE) models to predict spatiotemporal COVID-19 symptom onset risk (Shi et al., 2021).
The models perform retrospective analysis based on the spatiotemporal information of onset cases to
predict the distribution of onset risk in terms of a future date. According to the transmission law of
COVID-19, the dynamic human mobility data was introduced into the models to improve the accuracy

2 EPB: Urban Analytics and City Science 0(0)



of prediction. The extended WKDE model predicts the COVID-19 symptom onset risk effectively and
provides competitive advantages based on (Shi et al., 2021): (i) high viral load and transmissibility
around the date of symptomonset and (ii) the delay between the onset dates and subsequent confirmation
report dates. Therefore, the tracking of the COVID-19 symptom onset better reflects at the community
level rather than the tracking COVID-19 confirmation.

However, the WKDE model at the urban-community-scale needs further improvement as re-
garding the new normal of long-term coexistence with SARS-CoV-2: (i) the protection from
vaccination; (ii) the transmissibility of different SARS-COV-2 variants; and (iii) control measures
and behaviour changes. As a result, this study enhanced the urban-community-scale WKDE model
by introducing (i) the real-time effective reproduction number for local cases Rt (Shi et al., 2021)
and (ii) the number V(t) of daily vaccinators who receive full protection.

The newly enhanced urban-community-scale WKDE model has been applied to predict the risk
of COVID-19 symptom onset in each of the 291 tertiary planning units (TPUs) in Hong Kong
(Figure 1). On-road onset risk prediction results were then extracted to assist the planning of healthy
routes with the least COVID-19 symptom onset risk. The study was conducted based on a spa-
tiotemporal dataset of 7184 local onset cases with community-level locations in Hong Kong from 18
January 2020 to 22 April 2021, including all four epidemic waves of COVID-19 epidemics in Hong
Kong so far, caused by different SARS-CoV-2 variants, respectively.

Methods

Data sources

In addition to asymptomatic cases, imported cases under mandatory quarantine, and cases with
unknown location information, a total of 7184 local onset cases from 18 January 2020 to 22 April

Figure 1. The boundaries of 291 TPUs in Hong Kong.
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2021 have been used in this study (The Centre for Health Protection, 2021) (Figure 2). These local
onset cases include information regarding the date of the onset and consequent report, as well as the
community-level location of these onset cases prior to diagnosis. To measure the impact of full
vaccination on the COVID-19 epidemic, daily data (The Government of the Hong Kong Special
Administrative Region, 2021) on people with sufficient effective protection, after the second dose,
were selected: (i) the daily number of people receiving the second dose of the BNT162b2 vaccine
from 22 March 2021 to 15 April 2021 (The Government of the Hong Kong Special Administrative
Region, 2021); (ii) the daily number of people receiving the second dose of the CoronaVac vaccine
from 3 March 2021 to 8 April 2021 (The Government of the Hong Kong Special Administrative
Region, 2021). The daily traffic volume data (i.e. number of vehicles per day) from 700 traffic
detectors covered all Hong Kong strategic routes (Figure 3) from 18 January 2020 to 22 April 2021
were used in this study (Transport Department of Hong Kong, 2021). These traffic detectors cover
218 TPUs, accounting for 75%. In the 218 TPUs, the number of vehicles per day obtained by traffic
detectors was used to represent the mobility within a specific TPU and the mobility from a specific
TPU to other TPUs. The remaining 73 TPUs are in the countryside, including beaches, woodlands
and mountain ranges. These areas are almost inaccessible areas. In the remaining 73 TPUs, the
mobility within a specific TPU and the mobility from a specific TPU to other TPUs was set as 0.
Moreover, the real-time effective reproductive number (Rt) for local cases during the same period
was generated by an enhanced Susceptible-Infectious-Removed (SIR) model (Leung et al., 2021)
(Figure 4).

An enhanced urban-community-scale WKDE model for predicting the onset risk of
COVID-19 symptoms

As a further development of the original urban-community-scale WKDE model, the enhanced
urban-community-scale WKDE model proposed in this study, included the following three steps
(Shi et al., 2021; Shi et al., 2021; Tong et al., 2021; Tong et al., 2022): (i) making a retrospective

Figure 2. The daily variation in COVID-19 symptom onset cases (The Centre for Health Protection, 2021) in
Hong Kong from 18 January 2020 to 22 April 2021.
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Figure 3. Locations of traffic detectors in Hong Kong.

Figure 4. The daily variation in real-time effective reproductive number Rt(ti) (Leung et al., 2021; Shi et al.,
2021) for local cases of Hong Kong from 18 January 2020 to 22 April 2021. An enhanced urban-community-
scale WKDE model for predicting the onset risk of COVID-19 symptoms.
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inference of the historical existence likelihood of the infection in each location in which an onset
case has stayed, (ii) making inferences on the historical existence likelihood of the infection in each
spatial location of the whole city area, and (iii) making onset risk predictions in the whole city area
on a near-future day. The details of the three steps of the original extended WKDE model can be
found at the previous study and applications (Shi et al., 2021).

The main improvement of the improved urban-community-scale WKDE model was seen as the
historical existence likelihood of the infection in a spatial location at step (ii) and is formulated as
follows (Shi et al., 2021; Shi et al., 2021)

PInfectionðS, tiÞ ¼ nðtiÞ�1
XnðtiÞ

j¼1

1

VtðtiÞRtðtiÞMinter TPU ðS, tiÞMintra TPU ðS, tiÞPInfection

�
Lj, ti

�
Kh

�
S � Lj

�

(1)

where PInfection(S, ti) is the probability of any infected person infecting others in a random location S
in the city on day ti. All 460 days in this study period (18 January 2020–22 April 2021) are in the
order denoted as t1, t2,… t460. Lj is the j-th location among the places where onset cases remained.
PInfection(L, ti) denotes the probability that one onset case was infected on day ti in location L. Kh(S –
Lj) denotes a Gaussian kernel between locations S and Lj (Scott, 1979; Shi, 2010). The values of
PInfection (Lj, ti), Kh (S-Lj), and h have been determined in earlier model procedures (Shi et al., 2021;
Shi et al., 2021). Rt(ti) denotes the real-time effective reproductive number for local cases in the city
on day ti.

Vt(ti) denotes the factor about the protection from vaccination in the city on day ti, in the city on
day ti, calculated as follows

VtðtiÞ ¼ i�1
Xi

k¼1
vk (2)

where vk denotes the daily number of persons fully vaccinated and hence protected in the city on day
tk prior to ti. Before persons start to be fully vaccinated, the value of Vt(ti) is set equal to 1.

Mintra_TPU(S, ti) denotes a human mobility factor within a TPU containing location S on day ti,
calculated as follows (Shi et al., 2021; Shi et al., 2021)

Mintra TPU ðS, tiÞ ¼ i�1
Xi

k¼1
Xk (3)

where Xk denotes the daily traffic flow within the TPU containing location S on day tk prior to ti.
MinterTPU(S, ti) denotes a human mobility factor from other TPUs to the TPU containing location

S, calculated as follows (Shi et al., 2021; Shi et al., 2021)

Minter TPU ðS, tiÞ ¼ i�1
Xi

k¼1
Yk (4)

where Yk denotes the daily traffic flow from other TPUs to the TPU containing location S on day tk
prior to ti.

Finally, the original onset risk prediction in each location was divided by the city’s maximum
predicted risk, on a specific date, and thereby standardized to a value of between 0 and 1.
Different levels of onset risk were set as follows: low onset risk [0–0.2], low-medium onset risk
[0.2–0.4], medium onset risk [0.4–0.6], medium-high onset risk [0.6–0.8] and high onset risk
[0.8–1].

Furthermore, a popular indicator for the prediction accuracy of the KDE model is the hit rate
(Ohyama & Amemiya, 2018; Pezzuchi, 2008; Zhang & Cheng, 2020). The hit rate is defined as
the percentage of all incidents (e.g. crimes) at a later Time 2, that are captured by the identified
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hotspots created from data at an earlier Time 1 (Ohyama & Amemiya, 2018; Pezzuchi, 2008;
Zhang & Cheng, 2020). Following the idea of a hit rate, the accuracy of the enhanced urban-
community-scale WKDE model is set as the percentage of all actual onset cases on the date of
prediction that occur in the areas with predicted onset risk higher than 0.8 (‘hotspots’) (Shi et al.,
2021; Shi et al., 2021).

Route searching with least COVID-19 symptom onset risk

An undirected graph R = (V, E, WONSET), including V nodes, E related edges and the weights of
edges –WONSET. The weight WONSET represented the COVID-19 symptom onset risk weight of the
edges. The example weight calculation method was shown in Figure 5. V1 and V2 were connected
by an edge E1 located in three grids. In three grids, the predicted COVID-19 symptom onset risk is
X1, X2 and X3, respectively. The calculation formula for the weight WONSET is (Tong et al., 2021)

WONSET ¼ d1;1 ×X2 þ d1;2 ×X1 þ d1;3 ×X3 (5)

where d1,1 is the length of edge E1 in grid 2, d1,2 is the length of edge E1 in grid 1 and d1,3 is the
length of edge E1 in grid 3.

Figure 5. The example weight calculation method.
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Based on the example weight calculation method, the COVID-19 symptom onset risk weight
of all edges in the road network of the whole city could be obtained. The widely used A*
pathfinding algorithm (Hasenfratz, 2015; Hasenfratz et al., 2015) was used to search the least-cost
path between two nodes of the road network according to the two weight metrics introduced. A*
requires each node vi 2 V to make a heuristic estimate h (vi) of the cost involved in getting from
node vi to the target node. A* is only guaranteed to compute the optimality of the path if an
acceptable heuristic is used, that is, if the heuristic never overestimates the cost of reaching the
goal node. To calculate the optimal path with less onset risk, we used the product of the line-of-
sight distance and the minimum onset risk within the modelled area. With the help of these
admissible heuristics, A* could be used to perform goal-directed exploration and quickly find the
least-cost path.

Results

Prediction accuracy of COVID-19 symptom onset risk by the enhanced
urban-community-scale WKDE model

Based on the onset cases data in 291 TPUs of Hong Kong from 18 January 2020 to 22 April 2021,
the daily spatiotemporal onset risk prediction of COVID-19 symptomwas obtained by the enhanced
urban-community-scale WKDEmodel developed in this study. The data of i) the real-time effective
reproduction number (Rt) for local cases (K. Leung et al., 2021; Shi et al., 2021) and ii) the number
of persons fully vaccinated for BNT162b2 and CoronaVac vaccines (The Government of the Hong
Kong Special Administrative Region, 2021) was used in the enhanced model. During the following
7 days when predicting the onset risk, the prediction accuracy (Shi et al., 2021; Shi et al., 2021) of
the urban-community-scale WKDE model was over 75% (Figure 6). The enhanced urban-
community-scale WKDE model achieved higher accuracy than the original extended WKDE
model (Figure 6). The average prediction accuracy of the enhanced urban-community-scale WKDE

Figure 6. Accuracy (Shi et al., 2021) of the predicted risk of COVID-19 symptom onset by the enhanced
urban-community-scaleWKDEmodel compared with the original extendedWKDEmodel. Daily prediction
of COVID-19 symptom onset risk by the enhanced urban-community-scale WKDE model.
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model in the future 14 days was 2.29% higher than that of the original extended WKDE model
(Figure 6).

Daily prediction of COVID-19 symptom onset risk by the enhanced
urban-community-scale WKDE model

Based on the urban-community-scaleWKDEmodel, the daily spatiotemporal onset risk of COVID-
19 symptom in the four epidemic waves was predicted (Figure 7). It can be seen that in the whole
four epidemic waves, high-onset-risk communities were always concentrated in communities with
high traffic flow (Figures 6(a)–(f)), such as Central & Western (e.g. TPU_116, TPU_141 and
TPU_181), Wan Chai (e.g. TPU_124, TPU_145 and TPU_184), Kowloon City (e.g. TPU_215,

Figure 7. Predicted risk of original COVID-19 symptom onset risk across Hong Kong in all four epidemic
waves from 18 January 2020 to 22 April 2021. (a) Predicted risk of original COVID-19 symptom onset risk
across Hong Kong on 20 January 2020 in the first epidemic wave. (b) Predicted risk of original COVID-19
symptom onset risk across Hong Kong on 20 April 2020 in the second epidemic wave. (c–d) Predicted risk of
original COVID-19 symptom onset risk across Hong Kong on 20 July 2020 and 20October 2020 in the third
epidemic wave. (e–f) Predicted risk of original COVID-19 symptom onset risk across Hong Kong on 20
January 2021 and 20 April 2021 in the fourth epidemic wave.
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Figure 8. Predicted risk of original COVID-19 symptom onset risk on all roads of Hong Kong(a-o) on 20
January 2021. Healthy route planning app with less COVID-19 symptom onset risk.

Figure 9. Introduction interface and the example of healthy travel route planning and the shortest route
planning of the mobile application. (a) An example of the healthy travel route for COVID-19 symptom onset
risk in Hong Kong. (b) An example of the shortest route in Hong Kong. (c) The feedback interface in the
navigation process of the mobile application.
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TPU_226 and TPU_236) and Yau Tsim Mong (e.g. TPU_221, TPU_251 and TPU_253). In remote
areas of the New Territories or other areas with inconvenient transportation (e.g. TPU_652,
TPU_653, TPU_711 and TPU_712), the COVID-19 onset risk was relatively low. Moreover, the
spatiotemporal variation trend of COVID-19 onset risk from 18 January 2020 to 22 April 2021
could be also obtained. Furthermore, we further extracted the daily distribution of COVID-19 risk
on each road in Hong Kong. As a result, COVID-19 onset risk information on 70,788 roads covering
the whole of Hong Kong could be obtained (Figure 8). These would be used for healthy travel path
planning.

Healthy route planning app with less COVID-19 symptom onset risk

Based on the on-road predictions of COVID-19 symptom onset risk, a mobile application for
healthy travel route planning was developed, to provide the healthy travel routes with the least

Table 1. COVID-19 onset risk reduction on typical healthy routes compared with shortest routes in Hong
Kong.

Area Route

Healthy
route
(km)

Shortest
route
(km)

COVID-19 onset risk reduction (%)

Community
transmission

Sporadic cases or
clusters of local
onset cases

No local
onset
cases

Wan
Chai

Hopewell Centre – Causeway Bay
Station

1.4 1.3 5.47 8.86 4.93

Exhibition Centre – Times Square 2.3 1.9 8.53 13.75 7.68
Harbour Centre, – Wan Chai
Market

1.0 0.95 3.32 5.03 2.65

Nabe One – Lee theatre 0.65 0.5 2.14 3.17 2.06
Hong Kong Arts Centre – Victoria
park swimming pool

2.6 2.5 6.95 10.32 6.49

Tsim
Sha
Tsui

Kowloon park – Peninsula Centre
Arcade

1.2 1.1 4.36 7.49 4.97

Hong Kong Heritage Discovery
Centre, Haiphong road
Kowloon park, Tsim Sha Tsui –
HKCC creative market

1.0 0.85 5.01 7.98 4.94

K11 Art Mall – urban council
centenary garden

0.65 0.6 1.98 2.74 1.87

Kowloon Shangri-La – Hong Kong
Science museum

0.8 0.7 4.25 6.82 3.97

Mody Road Garden – 1881
Heritage

1.6 1.2 10.51 16.24 9.19

Tuen
Mun

Tuen Mun Town Plaza – Siu On
Court Ting Lok House

0.9 0.8 5.17 8.49 4.86

V city – Siu Lun Court 1.9 1.7 7.87 11.01 7.61
San Hui playground public toilet -
Tuen Mun station

0.95 0.9 4.6 7.65 4.15

On Ting estate – Town Centre 0.75 0.65 3.82 6.13 3.54
Rose Dale Gardens shopping mall
– Chi Lok Fa Yuen

1.8 1.3 12.43 19.78 11.96
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COVID-19 symptom onset risk in Hong Kong (Figure 9). In the process, it was assumed that the
travel time between the edges of travel routes was proportional to the distance, and that the intensity
of onset risk was proportional to the exposure time. Therefore, the onset risk value of each pixel
along the edge was multiplied by the length of the edge located in each pixel, to directly gain the
onset-risk-weighted value of each route. The healthy route between the starting point and the
endpoint was then searched. A typical example is shown in Figures 9(a) and (b). The example
indicates the healthy route from the 6 Salvation Army St, Morrison Hill to the Convention Plaza
Office Tower, 1 Harbour Rd, Wan Chai (the route in Figure 9(a) indicates the least onset risk route,
while the route in Figure 9(b) indicates the shortest route). Thus, the healthy route was 200m longer
than that of the shortest route, while the healthy route regarding avoidance of COVID-19 onset risk
has been decreased by 21.4%.

Compared with the shortest routes, reduction percentages of COVID-19 onset risk on the
healthy routes were explored under three main epidemiological scenarios. In the three travel
hotspot areas in Hong Kong-Wan Chai, Tsim Sha Tsui and Tuen Mun, 50 routes longer than
0.5 km were randomly selected. We require a minimum straight-line distance of 0.5 km between
source and destination nodes to prevent very short routes where with high probability the shortest
and health-optimal routes are identical. Some typical examples are shown in Table 1. The results
show that in the most common scenario of sporadic cases or clusters of local onset cases, the
average reduction percentage of onset risk was the highest reaching an average of 11.28%. In the
two scenarios of community transmission and no local onset cases, the onset risk was reduced by
6.87% and 6.12%, respectively. In particular, during the navigation process, a specific function is
added to allow the user to provide feedback on the situation encountered during their travel
(Figure 9(c)). For example, when users find that there are more people travelling on the planned
healthy route, they can click on the feedback function to give feedback. This application will re-
plan to provide an alternative route to users.

Conclusion

Since the beginning of the COVID-19 pandemic, the demand for healthy travel has increased
significantly for the public. Therefore, an urgent challenge is how to ensure people’s safe and
healthy travel in daily travel under the new normal of long-term coexistance with SARS-CoV-2. The
emergence of new SARS-CoV-2 variants has increased this challenge, especially the SARS-CoV-2
variant Omicron, which is the most transmissible and most easily spread to date (Torjesen, 2021;
United Nations International Children’s Emergency Fund, 2022). In this study, a spatiotemporal
solution that supports healthy travel has been proposed and applied in Hong Kong, for the first time.

The results of the application of the proposed solution in Hong Kong reflect its characteristics in
the following aspects:

(1) Based on the enhanced urban-community-level WKDE model, the daily COVID-19 onset
risk in each community location of Hong Kong for the next few days can be predicted. In the
prediction in the four epidemic waves, the enhanced urban-community-level model has achieved
a high prediction accuracy with over 75% in the future 7 days. Therefore, the model can ac-
curately predict the spatiotemporal distribution of COVID-19 symptom onset risk under the new
normal.

(2) Different from the existing path planning applications that mainly consider time and distance
costs, a healthy route planning application that can provide the healthy travel route with the least
COVID-19 symptom onset risk was further developed in this solution. This can help the public plan
in advance for their healthy travel in the next few days. The application results in the four epidemic
wave in Hong Kong show that compared with traditionally used shortest path routes, healthy routes
could effectively reduce people’s exposure to the risk of COVID-19 symptoms onset. The mobile
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application helps people in Hong Kong in their planning of daily activities by providing healthy
routes to ensure their health.

The authors acknowledge several limitations of this study. Firstly, enough official data in
Hong Kong provides more detailed sufficient information than most other regions of the world
to support the spatiotemporal solution of healthy route planning with less COVID-19 onset risk.
Thus, the applicability of this solution in other parts of the world will depend on the availability
of data indicating the spatiotemporal distribution of COVID-19 cases in the corresponding
regions. Such COVID-19 spatiotemporal distribution data is available in many regions, for
example, the data in Taiwan, South Africa, Japan and Malaysia have been used to explore
COVID-19 onset risk prediction (Tong et al., 2022; Tong et al., 2021). Secondly, due to traffic
data accessibility in Hong Kong, human mobility within and between communities in Hong
Kong was estimated based on the vehicle traffic flow on main strategic routes, which does not
fully include other traffic modes or in on smaller roads. We plan to seek for aggregate cellphone
tracking data with higher data coverage in future to replace the existing human mobility data.
Thirdly, in the current application, when the user prepares to be in a stopped state while
travelling, the user still needs to exit the navigation through their operation. This will cause
inconvenience to the user. Therefore, we considered adding an automatic check-out function
based on an intelligent behaviour detection module from only inertial sensor data from the
mobile phone’s accelerometer (Peng et al., 2021). Fourth, this mobile application does not deal
well with the problem of traffic congestion caused by the congestion of users on the same
healthy route in the route planning. Based on the principles of game theory and the experience of
existing path planning applications like Google Map, we will further try to integrate the traffic
speed, volume and road occupancy into the healthy route planning to provide the best alter-
native route to balance the traffic volume. Furthermore, with the need for mobile contact
avoidance navigation in the dynamic and heterogeneous (indoor and outdoor) environments, the
novel route discovering algorithm like ASTRO (Accessible Spatio-Temporal Route Optimi-
zation) could be introduced and explored to improve the performance of the mobile application
(Anastasiou et al., 2021; Li et al., 2021).

Despite the above limitations, this study plays key roles in the following aspects:
(i) To support the healthy route planning by the proposed solution, especially for unvaccinated

elderly people. There are still more than 390,000 elderly people over 60 in Hong Kong who are
not fully vaccinated. Elders who are not fully vaccinated are more than 10 times more likely to
die from COVID-19 infection than those who have full vaccinated. Omicron further increases the
death risk for such individuals. Therefore, the mobile application of the health path planning can
reduce the risk of infection in the daily outdoor activities of the elderly to further protect their
health.

(ii) To support precise epidemic prevention and control by the enhanced urban-community-level
prediction method of onset risk. The pandemic is still not over, and the health and economic toll
continue to mount. It is clear that COVID-19 will be with us for a long time to come. The urban-
community-scale onset risk prediction method proposed in this study can support reliable mon-
itoring of the spatiotemporal spread of the virus. It will help the public health department to take
differentiated and precise epidemic control measures in communities within different risk levels.
Thus, the impact on social-economic activities can also be reduced. Moreover, this method can also
be used as a key part of the real-time early warning platform of the epidemic to provide more support
for people’s daily life.

Faced with the situation that may need to coexist with SARS-CoV-2 in the future, this study can
be used to help urban residents in more cities travel healthier. Furthermore, we hope to promote the
health-related Sustainable Development Goal (SDG3) – Ensure healthy lives and promote well-
being for all at all ages.

Tong et al. 13
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