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Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic
plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of
fuels that contribute to tumor growth and progression. In this review, the authors summarize
the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness,
with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids,
sterols and eicosanoids. They also highlight the role of adipose tissue in tumor progression as well
as the potential antitumor role of drugs targeting critical steps of lipid metabolic pathways in the
context of melanoma.

Abstract: Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma.
It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce
microenvironment. Among the most prominent metabolic reprogramming features is an increased
rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all
membranes, but have also emerged as mediators that not only impact classical oncogenic signaling
pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism
have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of
the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis.
Fatty acid uptake from the surrounding microenvironment, fatty acid β-oxidation and storage also
appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the
major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has
been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these
metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma
aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be
applicable for melanoma treatment.
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1. Introduction

The metabolic remodeling is a crucial process that allows melanoma cells to adapt to tumor
microenvironment (TME) and to sustain growth and dissemination [1,2]. A comparative metabolic flux
profiling of melanoma cell lines and normal melanocytes showed that all melanoma cells consumed
more glucose and produced more lactate than melanocytes [3].

Interestingly, emerging evidence reported numerous alterations of the lipid metabolic network
that could sustain cell growth and metastasis in melanoma cells (Figure 1).Cancers 2020, 12, x  2 of 33 

 
Figure 1. Schematic overview of the lipid metabolic network that regulates melanoma progression. 
The figure highlights the lipid pathways that are mostly altered in melanoma cells: (1) the de novo 
synthesis, elongation and desaturation of fatty acids (FA), which produce the repertoire of FA with 
different saturation levels. (2) The import of FA from neighboring adipocytes that can fuel FA β-
oxidation (FAO) in mitochondria (3) to produce energy. (4) The lipid droplets, composed of neutral 
lipids, i.e., triacylglycerol (TAG) and cholesteryl ester (CE), which are critical to melanoma cell 
aggressiveness. (5) The synthesis of glycerophospholipids (GPL), including phosphatidylcholine 
(PC), phosphatidylethanolamine (PE,) phosphatidylserine (PS) and phosphatidylinositol (PI), which 
are produced from glycerol-3-phosphate (G3P). (6) The synthesis of sphingolipids, which begins with 
the condensation of serine and FA-Coenzyme A conjugates. Sphingolipids and glyceroPL are 
precursors of lipid mediators involved in cell signaling pathways and are used to build cell 
membranes in order to sustain cancer cell proliferation. (7) The cholesterol biosynthesis, initiated by 
the conversion of acetyl-CoA to acetoacetyl-CoA, and (8) the cholesterol import from the bloodstream. 
Cholesterol and sphingolipids, i.e., sphingomyelin (SM) and gangliosides, are part of the lipid rafts, 
which act as signaling hubs in cancer cell proliferation, adhesion and migration. (9) The synthesis of 
prostaglandin E2 (PGE2) from arachidonic acid (AA), a long-chain polyunsaturated FA (PUFA) freed 
from phospholipids (PL). PGE2 and the sphingolipid metabolite S1P are secreted and act through cell 
surface receptors to suppress immune response and promote melanoma progression. Abbreviations: 
LPA, lysophosphatidic acid; MAG, monoacylglycerol; PA, phosphatidic acid; TCA, tricarboxylic acid. 

The most prominent phenomenon is an increased rate of lipogenesis, in which nutrient-derived 
carbons get converted into fatty acids (FAs), sterols and complex lipids. Lipogenesis relies mainly on 
the availability of acetyl-CoA. The main precursor of cytosolic acetyl-CoA is citrate originating from 
the tricarboxylic acid (TCA) cycle under normal conditions [4]. This conversion is catalyzed by ATP 
citrate lyase (ACLY), which is overexpressed in a variety of cancer types, including melanoma. 
Moreover, increased ACLY expression was associated with poor outcome of patients with melanoma 
[5,6]. During metabolic stress such as hypoxia, the synthesis of acetyl-CoA preferentially originates 
from acetate [7,8]. Acetate dependence is specific to BRAF mutant but not NRAS mutant or wild-type 
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Figure 1. Schematic overview of the lipid metabolic network that regulates melanoma progression.
The figure highlights the lipid pathways that are mostly altered in melanoma cells: (1) the de
novo synthesis, elongation and desaturation of fatty acids (FA), which produce the repertoire of FA
with different saturation levels. (2) The import of FA from neighboring adipocytes that can fuel
FA β-oxidation (FAO) in mitochondria (3) to produce energy. (4) The lipid droplets, composed of
neutral lipids, i.e., triacylglycerol (TAG) and cholesteryl ester (CE), which are critical to melanoma cell
aggressiveness. (5) The synthesis of glycerophospholipids (GPL), including phosphatidylcholine (PC),
phosphatidylethanolamine (PE,) phosphatidylserine (PS) and phosphatidylinositol (PI), which are
produced from glycerol-3-phosphate (G3P). (6) The synthesis of sphingolipids, which begins with the
condensation of serine and FA-Coenzyme A conjugates. Sphingolipids and glyceroPL are precursors of
lipid mediators involved in cell signaling pathways and are used to build cell membranes in order
to sustain cancer cell proliferation. (7) The cholesterol biosynthesis, initiated by the conversion of
acetyl-CoA to acetoacetyl-CoA, and (8) the cholesterol import from the bloodstream. Cholesterol
and sphingolipids, i.e., sphingomyelin (SM) and gangliosides, are part of the lipid rafts, which act as
signaling hubs in cancer cell proliferation, adhesion and migration. (9) The synthesis of prostaglandin E2
(PGE2) from arachidonic acid (AA), a long-chain polyunsaturated FA (PUFA) freed from phospholipids
(PL). PGE2 and the sphingolipid metabolite S1P are secreted and act through cell surface receptors to
suppress immune response and promote melanoma progression. Abbreviations: LPA, lysophosphatidic
acid; MAG, monoacylglycerol; PA, phosphatidic acid; TCA, tricarboxylic acid.

The most prominent phenomenon is an increased rate of lipogenesis, in which nutrient-derived
carbons get converted into fatty acids (FAs), sterols and complex lipids. Lipogenesis relies mainly on
the availability of acetyl-CoA. The main precursor of cytosolic acetyl-CoA is citrate originating from the
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tricarboxylic acid (TCA) cycle under normal conditions [4]. This conversion is catalyzed by ATP citrate
lyase (ACLY), which is overexpressed in a variety of cancer types, including melanoma. Moreover,
increased ACLY expression was associated with poor outcome of patients with melanoma [5,6].
During metabolic stress such as hypoxia, the synthesis of acetyl-CoA preferentially originates from
acetate [7,8]. Acetate dependence is specific to BRAF mutant but not NRAS mutant or wild-type
BRAF/NRAS melanoma cells [9]. Importantly, melanoma brain metastases, which are associated with
an extremely poor prognosis, have been shown to exhibit increased dependency on acetate [10].

FA synthesis starts with the carboxylation of acetyl-CoA to malonyl-CoA, which is catalyzed by
acetyl-CoA carboxylase (ACC1). Then, through a series of repetitive condensations catalyzed by the
FA synthase (FASN), molecules of malonyl-CoA are assembled to form palmitic acid. The expression
of ACC1 [11] and FASN [12] is upregulated in human melanoma, as compared to conventional nevi.
The increased expression of FASN occurs independently of the BRAF and NRAS mutation status [5]
but is associated with the Breslow thickness and poor prognosis [12,13]. The specific inhibition of
FASN activity with the anti-obesity drug Orlistat was reported to reduce the occurrence and number
of lung metastases in a murine model of melanoma [14]. Thereafter, elongation and desaturation of
palmitic acid generate the basis for a diverse spectrum of saturated and unsaturated FA that can be
activated into fatty acyl-CoA by acyl-CoA synthetase long-chain (ACSL) family members. Of note,
the expression of ACSL3 has been also associated to a worse prognosis in melanoma [15]. Moreover,
a recent study reported that oleic acid, an abundant FA in lymph, protected melanoma cells from
ferroptosis in an ACSL3-dependent manner and increased their capacity to form metastasis [16].
Once activated, the FA can be incorporated into triglycerides (also named triacylglycerols (TAGs)),
glycerophospholipids (GPL) and sphingolipids (SL) or undergo β-oxidation in mitochondria for
energy generation [17]. In addition to their role in fueling various lipid metabolisms, FAs also
participate to protein acylation, thereby controlling protein trafficking, membrane localization and
signaling activities [18]. For instance, the S-palmitoylation of the melanocortin-1 receptor (MC1R),
which corresponds to the covalent attachment of palmitic acid to the protein at cysteine residues,
was associated with MC1R activation, thereby reducing melanomagenesis in mice [19]. Conversely,
the S-palmitoylation of the TEA domain (TEAD) transcription factors was shown to be critical in
TEAD’s binding to the Hippo kinases YAP (Yes-associated protein) and TAZ (Transcriptional activator
with PDZ domain) [20]. The YAP/TAZ-TEAD complex is known to activate expression of several genes
that favor tumor growth and metastasis in various solid cancers, including melanoma [21].

Beside FA synthesis, the cytosolic acetyl-CoA can also be transformed into 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA), which is then converted into mevalonate by the HMG-CoA reductase
(HMGCR), the rate-limiting step of cholesterol biosynthesis. Analysis of public databases revealed that
~60% of melanomas had increased expression (including chromosomal copy number increases) in at
least one of the cholesterol synthesis genes. These events were associated with decreased melanoma
patient survival [22].

While de novo lipogenesis constitutes a valuable source of energy, as well as lipid mediators,
hypoxia or driver mutations can also prime melanoma cells to consume FA from the TME, via FA
β-oxidation (FAO), to meet their energetic demands [23]. FAO was reported to promote melanoma
progression. For instance, carnitine palmitoyltransferase 2 (CPT2), which is critical for translocation
of long-chain acyl-CoA into the mitochondrial matrix, is one of the most significantly upregulated
genes in melanoma as compared to benign nevi [24]. Moreover, thanks to a targeted analysis of
human tumor samples from the TCGA database, it was recently revealed that increased expression of
FAO enzymes correlated with poor overall survival in melanoma patients [25]. In accordance, it was
demonstrated that FAO contributed significantly to the energy reserves of metastatic 4C11+ cells,
which were derived from melan-a melanocytes after sequential detachment-re-adhesion cycles [26].
How FAO promotes melanoma progression is still unclear. One can imagine that FAs serve as a valuable
source of acetyl-CoA that contributes to citrate formation, after entering the TCA cycle, and provide an
ATP boost for tumor cells under nutrient-depleted conditions [27]. Interestingly, other studies in which
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melanoma cells were co-cultured with adipocytes have shown that adipocyte-derived lipids were
utilized in the FAO pathway and decreased the dependence on de novo lipogenesis [25,28]. In this
context, glucose oxidation and lactate release were unchanged, indicating that glycolysis was not
impacted [29].

FA can be imported from plasma and lymph [16] either through the FA translocase (FAT/CD36),
the plasma membrane-associated FA binding proteins (FABP) or the FA transport proteins (FATP),
and FA levels can increase through close contact with adipocytes [28,30]. This latter event was
inhibited by the FATP inhibitor lipofermata in a zebrafish melanoma model [28]. Importantly, a recent
study reported that, when melanoma cells were exposed to the aged fibroblast lipid secretome,
they increased FA uptake via FATP2, whose expression was upregulated. Inhibiting FATP2 with
lipofermata was shown to overcome age-related resistance to BRAF/MEK inhibition in animal models
and significantly extend survival in older animals [31]. Moreover, FABP7 has been associated with
increased proliferation and invasive properties of melanoma cells [32–34]. CD36-mediated FA uptake is
prominent in metastasis-initiating melanoma cells, and this change was correlated with poor prognosis
in melanoma patients [35], thereby highlighting the importance of FA uptake for melanoma progression.

Increased FA biosynthesis and FA uptake may lead to increased levels of multiple lipids with a
signaling function that can affect numerous cellular processes, including melanoma cell differentiation
and motility. Melanoma is notorious for its high metastatic potential. Melanoma invasive behavior
is controlled by signaling pathways, e.g., the canonical and non-canonical Wingless-type (Wnt) and
the transforming growth factor beta (TGF-β) signaling pathways, that have been described to not
only regulate the actin cytoskeleton but also the expression levels and the function of the lineage
commitment factor microphthalmia-associated transcription factor (MITF) [36]. A wide range of
cellular stresses including hypoxia [37–39], low glucose [40] and inflammatory signaling [41–43] were
shown to reduce MITF expression and increase the metastatic properties of melanoma cells. Moreover,
meta-analysis of gene expression profiling of hundreds of human melanoma cells identified a highly
invasive phenotype, characterized by extremely low MITF expression, associated with a stemness-
and epithelial-to-mesenchymal transition (EMT)-based gene expression signature [44–46]. It is now
well recognized that melanoma cells are highly plastic and can undergo phenotype switching that
contributes to tumor progression. During this process, melanoma cells with an MITF-low phenotype
undergo invasion and dissemination, and then switch back to an MITF-high phenotype at the metastatic
site in order to proliferate [47]. Importantly, the reduction of MITF expression has been associated with
a switch in EMT-associated transcription factors (EMT-TFs). In particular, a reduced expression of
ZEB2 and SNAIL2, in favor of an increased expression in ZEB1 and TWIST1, has been linked to MITF
downregulation, E-cadherin loss and increased invasive properties of human melanoma cells [48].

Interestingly, recent findings revealed that the lipogenic enzyme ACLY regulated MITF, and its
downstream transcriptional targets by controlling histone acetylation at its promoter [6]. Moreover,
low activity of stearoyl-CoA desaturase (SCD), which catalyzes the rate-limiting step of FA desaturation,
reduced MITF expression and maintained melanoma cells in an MITF-low de-differentiated state [49].
Inversely, MITF was identified as a regulator of SCD expression and FA saturation, thereby establishing
a positive feedback loop to stabilize an MITF-low state associated with increased metastatic
dissemination. Mechanistically, low SCD expression and activity promoted ER stress and the
phosphorylation of eukaryotic initiation factor-α (eIF2α) leading to the activation of an ATF4- and
NF-κB-dependent inflammatory signaling that sustains a reduced MITF expression and melanoma
cell dedifferentiation [49]. These data demonstrate that FA metabolism can regulate melanoma cell
differentiation and progression.

This review aims to illustrate the major alterations affecting lipid storage organelles and the
metabolism of the main lipid classes during melanoma development (see Figure 2 for a detailed
view) and how these metabolic dysregulations contribute to phenotype plasticity and/or melanoma
aggressiveness. How these metabolic vulnerabilities could be targeted for therapeutic benefit is
also highlighted.
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Abbreviations: AA, arachidonic acid; ABC, ATP-binding cassette transporter; AC, acid ceramidase; ACAT, acyl-CoA: cholesterol acyltransferase; ACC, acetyl-CoA
carboxylase; ACLY, ATP citrate lyase; ACS, acyl-CoA synthetase; ACSL3, acyl-CoA synthetase long chain 3; Akt, AKT serine/threonine kinase; A-SMase,
acid sphingomyelinase; ATX, lysophospholipase D autotaxin; CE, cholesteryl ester; Cer, ceramide; CERS, ceramide synthase; CERT, ceramide transport
protein; COX, cyclooxygenase; DAG, diacylglycerol; DDA, dendrogenin A; DEGS, dihydroceramide desaturase; d-GM3, de-N-acetyl GM3; ECHS1, enoyl-CoA
hydratase short chain 1; EP, ethanolamine 1-phosphate; ER, endoplasmic reticulum; FA, fatty acid; FAO, fatty acid -oxidation; FASN, fatty acid synthase; FAT,
fatty acid translocase; FABP, fatty acid binding protein; FATP, fatty acid transport protein; GALC, galactosylceramidase; GCase, glucosylceramidase; GCS,
glucosylceramide synthase; GD3-S, GD3 synthase; GM2/GD2-S, GD2/GM2 synthase; GlcCer, glucosylceramide; GM3-S, GM3 synthase; GSL, glycosphingolipid;
G3P, glycerol-3-phosphate; HADHA, hydroxyacyl-CoA dehydrogenase subunit alpha; HADHB, hydroxyacyl-CoA dehydrogenase subunit beta; hexa, hexadecenal;
HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGCR, HMG-CoA reductase; HMGCS, HMG-CoA synthase; KDSR, 3-ketosphinganine reductase; LacCer,
lactosylceramide; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LPA, lysophosphatidic acid; lysoPC, lysophosphatidylcholine; lysoPL,
lysophospholipid; LXR, liver X receptors; MAG, monoacylglycerol; MAGL, monoacylglycerol lipase; NCDase, neutral ceramidase; NSMase, neutral sphingomyelinase;
PA, phosphatidic acid; PC, phosphatidylcholine; PGE2, prostaglandin E2; PGES, prostaglandin E synthase; PGH2, prostaglandin H2; PI, phosphatidylinositol; PI3K,
phosphatidylinositol-3-kinase; PIP3, phosphatidylinositol-3,4,5-triphosphate; PL, phospholipid; PLA2, phospholipase A2; PUFA, polyunsaturated fatty acid; S,
sphingosine; SCD, stearoyl-CoA desaturase; sFA, saturated fatty acid; SM, sphingomyelin; SMS, sphingomyelin synthase; SphK, sphingosine kinase; SPL, sphingosine
1-phosphate lyase; SPNS2, sphingolipid transporter 2; SPT, serine palmitoyltransferase; SR-BI, scavenger receptor class B type I; SREBP2, sterol regulatory element
binding protein 2; S1P, sphingosine 1-phosphate; TAG, triacylglycerol; TCA, tricarboxylic acid.
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2. Lipid Droplets

Lipid droplets (LD), also referred to as adiposomes, are the major cellular organelles for the
storage of neutral lipids, such as cholesteryl ester (CE) and TAG. TAGs are sequentially hydrolyzed,
by three different lipases, into free FA that can be mobilized for energy production, membrane synthesis
and generation of essential lipid-derived molecules. A highly aggressive behavior of melanoma cells
has been associated with increased expression of monoacylglycerol lipase (MAGL), that catalyzes the
hydrolysis of monoacylglycerols into FA and glycerol, and MAGL inhibition was shown to reduce
melanoma cell migration and survival [50]. MAGL has been identified in an EMT-associated gene
signature in solid cancers [51], and its upregulation resulted in cancer progression via NF- κB-mediated
EMT [52].

A comparative analysis of LD composition has recently revealed that the dedifferentiated melanoma
cell line M381 exhibited a relatively increased level of unsaturated CE and TAG, as compared to more
differentiated melanoma cell lines [53]. Importantly, a prolonged treatment with the SCD1 inhibitor
CAY10566 resulted in decreased levels of unsaturated lipids within LD and, inversely, in an excess
of saturated FA that can modify membrane fluidity and lead to apoptosis [53]. The SCD1 inhibitor
A939572 was also shown to prevent the proliferation of the MITF-high/proliferative IGR37 and 501mel
melanoma cell lines [49]. However, in this latter study, the authors demonstrated that the SCD1
inhibitor was not effective in the MITF-low/invasive IGR39 and A375M melanoma cell lines. Moreover,
consistent with the differential effect of SCD1 inhibition on the MITF-high and MITF-low cell lines,
the SCD inhibitor A939572 only substantially increased the saturated FA: monounsaturated FA ratio in
the sensitive IGR37 cell line, but not in the insensitive IGR39 cell line. These discordant observations
emphasize the importance of investigating the impact of MITF expression and/or melanoma cell
phenotype on LD composition.

It is recognized that LD accumulation is induced by hypoxia in an HIF-1α-dependent manner and is
associated with increased FABP-mediated FA uptake [54]. Interestingly, a lipid storing-phenotype with
LD accumulation, was observed in a melanoma stem cell (MSC) model as compared to differentiated
melanoma cells [55]. In accordance, the metastatic potential of human FEMX-1 melanoma cells has
been reported to correlate with LD enrichment [56]. Of note, a high-content genome-wide RNAi screen
revealed that Wnt ligands can potently promote LD accumulation [57]. Wnt5A-mediated activation of
STAT3 was shown to reduce MITF levels and ultimately downregulates the expression of melanocyte
differentiation antigens [58]. However, it is currently not known if a reduced expression of MITF is
associated with LD accumulation in dedifferentiated melanoma cells.

Interestingly, studies also reported that FA produced by neighboring adipocytes, which were
transferred to melanoma cells through extracellular vesicles (EVs), were stored in LD as TAG,
and potentially hydrolyzed by lysosomal lipases to fuel FAO. This phenomenon led to the relocalization
of mitochondria, as well as LD and lysosomes, to membrane protrusions and was associated with
tumor cell migration [25]. Accordingly, the EV-mediated increase in melanoma cell migration was
abrogated by the FAO inhibitors etomoxir and trimetazidine [29] and the mitochondrial fission inhibitor
Mdivi-1 [25].

Altogether, these observations reveal that melanoma cells can utilize LD accumulation and
metabolism to support their malignant behavior.

3. Phospholipids

GPL and some SL constitute the main phospholipids. GPLs are glycerol-based phospholipids,
whereas SL refer to a class of complex lipids containing a sphingoid long-chain base (amino alcohol),
which is synthesized from serine and a long-chain fatty acyl-CoA. Together, GPL and SL represent
the major structural components of biological membranes and are also a source of biologically
active compounds.
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3.1. Glycerophospholipids: Potential Roles in Melanoma Progression and Therapeutic Approaches

GPL are composed of 1,2-diacylglycerol and a phosphodiester bridge linking the glycerol
backbone to a polar headgroup, such as choline, serine, ethanolamine, inositol or glycerol,
to form phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE),
phosphatidylinositol (PI) or phosphatidylglycerol (PG), respectively. Interestingly, it was reported that
melanoma-derived microvesicles favor the establishment of metastasis in a PS-dependent manner,
possibly by downregulating the host’s inflammatory immune responses [59]. Moreover, lipidome
analyses revealed aberrant GPL metabolism with increased levels of PE and PC species in zebrafish
V12RAS-driven melanoma [60]. Importantly, several studies have shown that cancer cells undergoing
EMT have increased PC content and that phosphatidic acid (PA), a key intermediate metabolite
in the synthesis of GPL, could maintain the stemness of cancer cells, by reducing apoptosis [61].
Moreover, lysoPA (LPA), which is produced by the phospholipase A2 (PLA2)-catalyzed deacylation
of PA, was reported to stimulate melanoma invasion in 2D and 3D assays [62] and to induce MITF
degradation [63].

In contrast, melanoma cells display a high ability to hydrolyze lysoPC (LPC), which derives
from the cleavage of PC via the action of PLA2 [64]. Indeed, LPC inhibits the formation of focal
adhesion complexes, affects integrin activity and thereby reduces the metastatic spread of melanoma
cells, as shown in the B16F10 murine melanoma model [65]. LPC may be converted to LPA by the
lysophospholipase D autotaxin (ATX). Interestingly, high expression of ATX promotes melanoma
motility/invasiveness and enhances in vivo metastatic potential [66].

Furthermore, PI species with saturated and monounsaturated FA chains were reported to
increase with tumor stage in murine [67] and human melanoma [68]. A previous lipidomic
study showed that the ratio of saturated to unsaturated FA increased in highly metastatic B16F10
cells, as compared to poorly metastatic B16F1 cells, suggesting that membrane fluidity could,
counterintuitively, decrease during melanoma progression [69]. PI metabolism leads to the formation
of phosphatidylinositol-3,4,5-trisphosphate (PIP3) through the phosphatidylinositol-3-kinase (PI3K).
PIP3 can be dephosphorylated by the lipid-phosphate PTEN into PIP2. However, genetic inactivation of
PTEN is frequently found in melanoma [70], limiting this transformation. In contrast, the expression of
the p85 subunit of PI3K was higher in metastatic melanoma relative to primary melanoma as observed
in a large cohort study [71]. The activation of the PI3K/AKT pathway has been shown to suppress
transcription of the cell adhesion molecule E-cadherin, thereby leading to a more invasive phenotype of
melanoma cells [72]. Accordingly, PTEN inactivation, which results in the serine threonine kinase AKT
activation, decreased E-cadherin in RAS-activated melanoma cells [73]. Moreover, increased expression
of AKT was associated with a poor five-year melanoma-patient survival rate [74]. Interestingly,
AKT could promote MITF degradation [75], therefore affecting its differentiation-associated functions.

3.2. Sphingolipids

SLs consist of an 18-carbon amino alcohol backbone, usually sphingosine, to which an FA may be
attached through an amide bond, and a headgroup at the primary hydroxyl. Types of SLs include
simple SL, e.g., ceramide, sphingosine and sphingosine 1-phoshate (S1P), and more complex SLs,
such as sphingomyelin (SM), glycoSL and gangliosides. Numerous studies showed that SL metabolism
is dysregulated in melanoma cells, in order to reduce the intracellular level of ceramide, which is
known to promote apoptosis (for review, see References [76,77]). This results in the accumulation of
metabolites having a pro-tumoral action, including the ceramide derivatives S1P and gangliosides.
Here, we report studies demonstrating that several SL metabolites or SL-metabolizing enzymes play a
critical role in the melanoma cell phenotypic switch, as well as in melanoma progression.
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3.2.1. Potential Roles of Sphingolipids in Melanoma Progression

Role of Ceramide and S1P in Melanoma Progression

Previous studies revealed that, whereas SL-metabolizing enzymes promoting ceramide formation
were downregulated during melanoma progression, those responsible for ceramide degradation were
upregulated [77]. For instance, a low expression of the ceramide synthase CerS6 was associated
with the invasive capacities of different human melanoma cells [78]. Moreover, the expression of
the acid sphingomyelinase (A-SMase), which hydrolyzes SM into ceramide, was lower in primary
melanomas than in benign nevi, and further reduced in the lymph-node metastases. As a matter of
fact, in vitro and in vivo measurements of invasion demonstrated that the expression of A-SMase was
negatively correlated with melanoma aggressiveness [79]. Unexpectedly, a lower expression/activity
of A-SMase was observed in hyper-pigmented murine and human melanomas, as compared to the
hypo-pigmented ones, suggesting an inverse correlation between A-SMase expression/activity and
melanin content. Mechanistically, A-SMase was proposed to induce ERK-mediated MITF degradation
by the proteasome, associated with a downregulation of MITF targets CDK2, Bcl-2 and c-MET [79].
In accordance, increasing the intracellular content of ceramide in human melanoma cells by blocking
its conversion into glucosylceramide (GlcCer) with the GlcCer synthase inhibitor PDMP [80] or by
adding short-chain C2-ceramide [81], reduced cell proliferation or motility, depending on cell lines.
Of note, C2-ceramide was shown to reduce MITF expression in human melanocytes, suggesting that
ceramide could affect the phenotype switching associated with melanoma progression [82].

It was recently provided evidence that SGMS1, the gene encoding SM synthase 1 (SMS1),
is frequently downregulated in melanoma and SMS1 downregulation is associated with a bad prognosis
in metastatic melanoma patients. SMS1 triggers the ceramide conversion to SM [83]. However, human
melanoma cell lines exhibiting low SMS1 expression do not accumulate intracellular ceramide. Rather,
they display higher intracellular levels of GlcCer than SM and ceramide, suggesting that ceramide
is mostly metabolized towards the GSL pathway. Whether and how SMS1 downregulation and the
consequent SL metabolism alterations modulate MITF and melanoma progression remains to be
investigated [83].

Of interest is the finding that degradation of ceramide into sphingosine via the acid ceramidase
(AC), followed by phosphorylation of sphingosine to S1P, by sphingosine kinase 1 (SphK1), is associated
with melanoma progression [77]. AC was shown to be highly expressed in melanocytes and proliferative
melanoma cells in vitro, as well as in biopsies from patients with stage II melanoma [84]. It was recently
demonstrated that MITF expression increased in AC-overexpressing melanoma cells and observed that
AC expression was higher in human melanoma cells exhibiting a proliferative phenotype as compared
to invasive ones [85]. In contrast, AC-knockout A375 cells, which accumulate long-chain saturated
ceramides, showed a strong decrease of MITF expression, as well as MYC, CDK1, CHK1 and AKT,
and were blocked at the G1/S cell-cycle checkpoint [86]. Downregulation of AC in melanoma cells
was also reported to induce E-cadherin loss and, inversely, to increase expression of TWIST1, which is
in accordance with a more aggressive phenotype [84]. In addition, it was demonstrated that low
AC expression was associated to increased FAK phosphorylation and relocation at focal adhesions.
This phenomenon led to increased expression of integrin β5 and integrin αV, which play a critical role
in the invasive behavior of melanoma cells [85]. Finally, using a ChIP-Seq database, AC was identified
as a direct target of MITF, demonstrating that MITF and AC are part of a positive feedback loop that
controls melanoma plasticity [85].

Consistent with the high levels of SphK1 reported melanoma cells [87–89], a shift of the
S1P-ceramide balance towards S1P production was observed. SphK1 activity is induced by
ERK1/2 [87,88] and SphK1 knockdown impaired anchorage-dependent and -independent growth of
different human melanoma cells in vitro [87], as well as B16F10 [90] and Yumm1.7 [89] murine melanoma
cell growth in vivo. S1P conveys oncogenic signals mainly through five G-protein coupled receptors,
named S1P receptors (S1P1-5), which are expressed both on tumor cells and neighboring cells in the
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TME [91]. A previous study reported that S1P can activate cell migration in S1P1-overexpressing B16F10
cells and, inversely, inhibit melanoma cell migration in S1P2-expressing cells, with the concomitant
inhibition of the small GTPase Rac and stimulation of RhoA, demonstrating a receptor subtype-specific
action of S1P in these cells [92]. Importantly, the SphK1/S1P pathway could also modulate MITF
levels, probably by acting on signaling pathways known to regulate its expression in melanoma
cells. Many studies reported that the SphK1/S1P axis was associated with the TGF-β signaling,
which is known to repress MITF expression through the transcription factor GLI2 [93], promoting
maintenance of melanocyte stem cells in a quiescent state [94]. Actually, S1P was shown to increase
TGF-β expression and secretion in different cancers, including melanoma [90]. Moreover, through its
binding to S1P receptors, S1P was able to induce TGF-β receptor trans-activation, resulting in SMAD
phosphorylation and cell migration [95,96]. Inversely, TGF-β stimulated SphK expression, thereby
controlling TGF-β-mediated extracellular matrix (ECM) remodeling, cell migration and invasion [97,98].
In addition, FTY720-induced SphK1 inhibition was associated with reduced β-catenin expression [99].
The Wnt/β-catenin pathway is a well-known activator of MITF expression in melanoma cells [100],
and deactivation correlates with a higher metastatic potential [44], suggesting a role of the Sphk1/S1P
axis in melanoma aggressiveness through MITF downregulation via the Wnt/β-catenin pathway.

Role of Gangliosides in Melanoma Progression

Several studies have revealed the role of gangliosides in melanoma progression [77]. Gangliosides
are sialic acid-containing glycoSLs that are also named oligoglycosylceramides derived as a first step
from lactosylceramide. High amounts of gangliosides, especially GM3, GD2 and GD3, are present in
human melanoma cells and tissues (for review, see Reference [101]). Melanoma cells that overexpress
GD3 synthase showed increased proliferative capacities [102], whereas those treated with the anti-GD3
antibody R24 had reduced growth in vitro and in mice [103]. Mechanistically, GD3 has been shown to
mediate melanoma cell proliferation through the convergence of pro-tumoral signals such as hepatocyte
growth factor (HGF) and the c-MET receptor tyrosine kinase [104]. GD3 also favors adhesion of GD3
synthase-overexpressing melanoma cells to the ECM by recruiting integrins through glycolipid-enriched
microdomains [105]. Similarly, overexpression of GD2 synthase promoted melanoma cell adhesion [106].
Finally, GD3 was reported to stimulate melanoma cell invasion via p130Cas or paxillin, which are
key components of the focal adhesion cytoskeleton [102]. More recently, it was demonstrated, using
GD3-high or GD2-high melanoma cells, that GD2 enhanced the adhesion properties of melanoma
cells, while GD3 stimulated their invasive capacities [106]. These observations unveil a critical role for
gangliosides in the switch from proliferative to migratory phenotypic states, with GD2 acting at the
primary and metastatic sites, in order to promote cell proliferation, and GD3 as a potential inducer
of melanoma cell invasion, in order to reach a metastatic niche [106]. Interestingly, the addition of
the GD3 precursor GM3 only to B16 melanoma cells with low metastatic potential to lungs increased
their dissemination in mice [107]. Moreover, de-N-acetyl GM3 (d-GM3), a derivative of ganglioside
GM3, was mainly found in metastatic melanomas but not in benign nevi or most primary melanomas.
d-GM3 containing melanoma cells possess increased migratory and invasive capacities, as compared
to melanoma cells lacking d-GM3, thanks to the stimulation of MMP2 expression via the urokinase-like
plasminogen activator receptor [108].

Whether gangliosides promote a pseudo-EMT in melanoma cells remains to be evaluated; however,
numerous studies have demonstrated that glycoSL-metabolizing enzymes are connected with EMT-TFs
in different cancer cells [109]. For instance, an increased expression of GD3 synthase was reported in
transformed human mammary epithelial cells overexpressing TWIST1 or SNAIL1 [110]. GD3 synthase
knockdown reduced breast-cancer stem-cell-associated properties and completely abrogated tumor
formation in vivo. Otherwise, inhibition of GlcCer synthase significantly decreased the expression of
ZEB1 and β-catenin in colon cancer stem cells [111].

Altogether, these studies clearly established that SL metabolism acts as a potential regulator of key
actors of melanoma progression, opening novel therapeutic avenue for the prevention of metastasis.
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3.2.2. Therapeutic Approaches Targeting Sphingolipids in Melanoma

Due to their wide range of action in melanoma cells, SLs are emerging as a goldmine for new
therapeutic agents, and the manipulation of their metabolism could be beneficial to control disease
progression. Moreover, due to the propensity of melanoma cells to deplete ceramide by modifying
the expression of AC, SphK1 and GlCer synthase, inhibitors targeting these enzymes have exhibited
therapeutic potential by tipping the balance towards ceramide accumulation to promote cell death.

For instance, AC inhibition with the chemically stable inhibitor ARN14988, which increased
ceramide levels, sensitized proliferative human melanoma cells to the cytotoxic action of various
antitumor agents [84]. In accordance, it was previously reported that dacarbazine causes degradation
of AC, and that this effect contributes to the drug′s cytotoxic action [112].

SphK1 inhibition was also proposed to decrease intracellular S1P levels and, inversely, to increase
ceramide levels in cancer cells. Treatment of melanoma cells with the non-lipid pan-SphK inhibitor
SKI-I led to cell cycle arrest at G0/G1 phase and apoptosis [87]. Moreover, the intraperitoneal
administration of SKI-I in mice harboring melanoma decreased tumor growth [87,89,90]. Consistently,
the growth of B16F10 tumors was impaired in SphK1−/− mice as compared to wild-type animals [88].
SphK1 inhibitors also potentiated the inhibitory effects of commonly used antineoplastic drugs. Indeed,
SphK1 inhibition by the immunomodulator FTY720, which is also a functional antagonist of S1P
receptors, downregulated the PI3K/AKT/mTOR signaling pathways and EGFR expression in SK-Mel-28
and A375 human melanoma cells, resulting in an increased sensitivity to cisplatin [113]. Moreover,
SphK1 inhibition, using either FTY720 or SKI-I in several melanoma cell lines, increased their sensitivity
to the BRAF inhibitor vemurafenib [114,115]. Finally, SphK1 inhibition by the sphingosine-competitive
inhibitor PF-543 [116] or Sphk1 downregulation by shRNA [89] enhanced the efficacy of immune
checkpoint blockade therapies in murine melanoma models, reducing Treg induction and infiltration,
respectively. In addition, Sphk1-deficient T cells display a high oxidative phosphorylation phenotype
and capacity to produce IFN-γ and IL-17 upon TCR stimulation. Consequently, Sphk1-deficient T cells
adoptively transferred into C57BL/6 mice are more efficient to control B16F10 melanoma growth as
compared to wild-type T cells [102]. Thus, Sphk1 is a promising target for improving anti-melanoma
immune response.

Inhibiting GlcCer synthase could be another way to increase intracellular levels of ceramide
and to reduce those of gangliosides. The inhibition of GlcCer synthase by PDMP inhibited cell
proliferation, migration and invasion of WM35 and WM451 human melanoma cells. These effects were
associated with the inhibition of key enzymes from the glycolysis pathway, including the pyruvate
kinase, the hexokinase and the lactic acid dehydrogenase [80]. Another GlcCer synthase inhibitor,
the imino sugar OGT2378, decreased GM3 content and reduced MEB4 melanoma tumor burden
in mice [117]. Importantly, gangliosides are expressed on the surface of melanoma cells and are
considered as melanoma-associated antigens, that can be targeted in vaccination protocols. In a phase I
study, 44% of patients with stage III or IV melanoma, who received GM3/VSSP vaccine, i.e., very small
proteoliposomes containing GM3 ganglioside with Neisseria meningitidis outer membrane protein
complex, showed an anti-GM3 IgM response with serum reactivity against melanoma cell lines and
tumor biopsies [118]. Similarly, administration of a human IgM monoclonal antibody (L612 HuMAb),
that binds GM3, led to an antitumor activity against melanoma in patients with stage IV melanoma [119].

Finally, introducing exogenous ceramides into cells has also been proposed as a method to trigger
apoptosis in tumor cells. To this end, short-chain ceramides carried in pegylated nanoliposomes were
used. Their administration to 1205Lu human melanoma cells reduced integrin affinity and impaired
invasive capacities, via PI3K and PKCζ tumor-suppressive activities [120]. Moreover, in combination
with sorafenib, nanoliposome containing ceramide inhibited growth of UACC-903 cells or 1205Lu cells
xenografts, by targeting the MAPK and PI3K signaling pathways [121].
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4. Sterols

Sterols belong to the isoprenoid family and cholesterol is the major sterol in mammalian tissues.
Cholesterol plays a crucial role in membrane integrity and fluidity; in addition, as an essential
component of lipid rafts, it also regulates endocytosis, membrane trafficking, cell signaling and motility.
Biosynthesis of cholesterol, also called cholesterologenesis, occurs through the mevalonate pathway
enzymes that condense three acetyl-CoA molecules in a two-step reaction to produce HMG-CoA.
HMG-CoA is reduced to mevalonate by the HMGCR, the first rate-limiting enzyme in cholesterol
biosynthesis. Then, a series of enzymatic reactions convert mevalonate to farnesyl pyrophosphate,
that can be used to produce geranylgeranyl pyrophosphate for protein prenylation, as well as squalene
for cholesterol synthesis (for review, see References [122–125]).

Cholesterol is synthesized de novo via HMGCR in melanocytes but exogenous cholesterol uptake
can also occur via the LDL receptor (LDLR)/Apo-B100 pathway [126]. Cholesterol biosynthesis and
uptake are tightly regulated in non-cancer cells by a mechanism of negative feedback that senses
intracellular cholesterol concentrations [125]. Indeed, high cholesterol levels prevent activation of
sterol regulatory element binding protein 2 (SREBP2), which, in addition to its involvement in FA
synthesis, functions as a master transcriptional regulator of HMGCR and LDLR. A high cholesterol
content also activates liver X receptors (LXRs), resulting in cholesterol synthesis inhibition, activation
of cholesterol efflux via increased expression of ATP-binding cassette (ABC) transporters, and reduced
uptake [122]. Finally, acyl-CoA-cholesterol acyl transferases (ACATs) can convert cholesterol into
less toxic cholesteryl esters, that are usually stored in LD, or into oxidized derivatives, which will be
ultimately metabolized into bile acids excreted by the digestive system.

4.1. Potential Roles of Sterols in Melanoma Progression

Cholesterol homeostasis is dysregulated in cancer cells, and changes in cholesterol metabolism
substantially impact cancer progression, including cell proliferation, migration and invasion [122,127,128].
Such changes include increased cholesterol biosynthesis, increased exogenous cholesterol uptake
by LDLR, elevated cholesterol esterification by ACAT1 and increased oxysterol production [124].
In melanoma, activation of the SREBP pathway and a positive feedback loop between SREBP-dependent
lipogenesis and PI3K-AKT-mTORC1 signaling were shown to sustain growth of tumor cells in vitro and
in vivo [129]. Of note, the activation of the SREBP pathway was independent of the oncogenic BRAF
mutation. Analysis of TCGA data indicates that approximately 60% of melanoma samples display
increased expression or chromosomal copy number in at least one of the cholesterol synthesis genes.
Interestingly, overexpression of several of these genes was correlated with decreased melanoma patient
survival [22]. In addition, the oxysterol 27-hydroxycholesterol was reported to promote melanoma
cell proliferation by sustaining the AKT/MAPK signaling pathway [130], whereas pharmacological
activation of LXRβ, the main isoform of LXRs expressed in melanoma cells, strongly inhibited tumor
invasion and metastasis [131]. Collectively, these studies point to strong correlations between enhanced
cholesterol metabolism and melanoma progression.

How changes in cholesterol metabolism participate in dedifferentiation and EMT-like process that
sustain melanoma metastatic potency has been poorly investigated. Exogenous cholesterol increases
melanogenesis in melanocytes and intermediate pigmented melanoma cells, via the production of cAMP,
the subsequent activation of the CREB/MITF/tyrosinase pathway, and also presumably by stabilizing
membranes and protecting melanogenic enzymes from proteasomal degradation. Unexpectedly, highest
contents in cholesterol were found in melanosomes of amelanotic melanoma cells [126], suggesting a
possible higher cholesterol demand in early stage melanosomes. The link between cholesterol levels and
melanoma cell dedifferentiation has never been explored. Interestingly, the transient overexpression of
CD271, a marker of dedifferentiated melanoma cells with stemness and invasive properties, induced the
expression of genes involved in cholesterol synthesis [132]. In addition, the activation of LXRs by the
synthetic ligand TO901317 potently inhibited melanogenesis through ERK-induced MITF degradation
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in human primary melanocytes and B16 melanoma cells [133]. Whether LXR receptors are involved in
melanoma dedifferentiation during tumor progression remains unknown.

Noticeably, some proteins involved in cholesterol metabolism were shown to contribute
to melanoma aggressiveness, independently of their known metabolic function. For instance,
the scavenger receptor class B type I (SR-BI), which mediates the selective uptake of HDL cholesteryl
ester into cells (including hepatocytes and steroidogenic cells) [134], was shown to drive an EMT-like
phenotype in melanoma cells, independently of its cholesterol transporting function [135]. Gain- and
loss-of-function of SR-BI revealed regulation of the proto-oncogene MET, an MITF target gene and a
key driver of EV formation [136]. By enhancing the formation of EVs, SR-BI might contribute to the
metastatic colonization. However, the potential role of SR-BI as an upstream regulator of MITF remains
to be demonstrated. Nevertheless, different studies suggest a regulatory/feedback loop between SR-BI
and MITF [126,137], in agreement with the strong correlation between their expression observed in
melanoma patient samples [136].

Cholesterol and SL are essential components of cell membranes and are enriched in
detergent-resistant membrane domains called lipid rafts, where major signaling processes, including
those that control cancer cell survival and metastasis, take place [138]. Interestingly, recent findings
showed that treatment of breast cancer cells with hydroxypropyl-β-cyclodextrin, a cholesterol-depleting
agent of lipid rafts, inhibited the TGF-β/SMAD-induced EMT, based on increased expression of
E-cadherin and decreased expression of vimentin [139]. Administration of methyl-β-cyclodextrin
(MβCD), another cyclodextrin derivative, to melanoma-bearing mice, retarded tumor growth and
extended animal survival. Mechanistically, MβCD was shown to block the protein kinase B/AKT
(PKB) by inhibiting Src kinase and reactivating the negative PKB regulator, PP2A phosphatase [140].
In human melanoma cells, MβCD induced apoptosis [141] and affected cell morphology and
migration [142]. More specifically, MβCD led to inactivation of Src by dissociation from lipid
rafts, over-activation of RhoA, formation of robust stress fibers, inhibition of the internalization of
β3 integrin and the dephosphorylation of the focal adhesion proteins paxillin and vinculin, resulting
ultimately in the suppression of focal adhesion disassembly [142]. Moreover, cholesterol depletion
significantly affects proton pumping activities of the V-ATPase, reducing the migratory and invasive
capacities of B16F10 melanoma cells [143]. This proton pump helps maintaining an acidic TME that
facilitates the activity of proteolytic enzymes, like metalloproteinases and cathepsins, thus creating a
favorable microenvironment for migration and invasion [144]. Altogether, these studies show that
cholesterol-containing lipid rafts are crucial to sustain cell morphology and the functions required for
metastatic process in melanoma, although the underlying mechanisms are still unknown.

Cholesterol also exerts a key role in the formation and function of invadopodia, which are
specialized cholesterol-rich membrane microdomains required for focalized ECM degradation.
In human melanoma cells, invadopodia formation, function and structural integrity were shown to
be dependent on plasma membrane cholesterol levels, as well as caveolin 1, a critical mediator of
cholesterol transport to the plasma membrane [145].

Finally, it is also well recognized that cholesterol regulates membrane fluidity [146]. Recent
findings demonstrated that motile cancer cells tend to exhibit lower membrane cholesterol levels to
increase plasma membrane fluidity, which is essential to improve their ability to infiltrate various
tissues [147,148]. Interestingly, in silico selected drugs for their putative inhibitory effects on EMT
gene signature in breast cancer cells reduced cell membrane fluidity by increasing cholesterol levels.
This resulted in decreased cell motility, stem cell-like properties and EMT in vitro, as well as metastasis
inhibition in vivo, highlighting the importance of cholesterol in membrane fluidity and metastasis [149].
Unexpectedly, the ABC transporter ABCA1, which functions as a cholesterol reverse transporter,
was shown to be expressed during EMT and drive metastatic properties in vitro and in vivo [149].
Finally, the association between cholesterol functions and cancer progression suggest a complex
relationship between cholesterol and disease that is not yet fully understood.
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4.2. Therapeutic Approaches Targeting Sterols in Melanoma

Targeting cholesterol metabolism was proposed to reduce cancer-related mortality. Indeed, the
long-term administration of statins, e.g., atorvastatin, lovastatin, pivastatin or simvastatin, which are
HMGCR inhibitors, was claimed to reduce the occurrence of different cancers [150,151], including
melanoma [152,153]. This remains controversial [154], as the use of statins, in addition to systemic
anticancer therapy, in patients with solid cancers did not improve overall survival or progression-free
survival, as demonstrated by meta-analyses of clinical trials [155,156]. Nevertheless, statin use was
associated with a reduced Breslow thickness [157], and a recent study suggests that statins may reduce
recurrence in patients with high-risk melanoma, i.e., ulcerated primary melanoma [158].

At the cellular level, statins have been linked to the halting of melanoma cell-cycle progression [159,160]
and the reduction of melanoma cell growth, migration and invasion [161], as well as the angiogenic
activity of melanoma cells [162]. They also reduce tumor growth [160] and metastasis in mouse
melanoma models [163–165], in part by abrogating the Rho/Rho-associated coiled-coil-containing protein
kinase (ROCK) pathway [164]. Alterations in expression of matrix-metalloproteases and cytoskeletal
reorganization may also contribute to the effects of the statins on invasion and migration of melanoma
cells [161]. Of note, statin-sensitive cancer cell lines exhibit mesenchymal-like phenotypes characterized by
abundant cytosolic vimentin and absent cell surface E-cadherin expression, while exogenous expression
of cell surface E-cadherin converts statin sensitive cells to a partially resistant state [166].

Statins reduce the production of mevalonate and its downstream products, which have been
shown to inhibit cancer cell growth and metastasis [167]. Interestingly, inhibition of the mevalonate
pathway and consequently, of Rho-GTPase prenylation, stimulates melanoma immunogenicity [168]
and leads to increased adaptive [169,170] and innate [165] immune response against the tumor [168].

Other compounds targeting cholesterol metabolism were proposed to control cancer growth.
First, dendrogenin A (DDA) is a newly identified cholesterol derivative whose levels decrease in tumors,
compared to normal tissues. DDA inhibited the cholesterol-5,6-epoxide hydrolase (ChEH) and was able
to bind to LXRβ [171]. Interestingly, DDA complementation induced lethal autophagy in melanoma
cells and reduced tumor growth in mice in an LXRβ-dependent manner [172]. Second, leelamine,
a natural compound derived from the bark pine tree, was shown to delay melanoma growth in
mice [173]. In vitro studies indicated that leelamine accumulates in acidic organelles such as lysosomes
and inhibits the transport of cholesterol to the cytoplasm, leading to deficiency of free cholesterol [174].
As suggested by molecular docking analysis, leelamine presumably competes with cholesterol binding
to the Niemann Pick type C protein type 1 (NPC1) protein, thereby affecting cholesterol export from
the lysosome to the cytoplasm [175]. Lack of available cholesterol prevented endosome trafficking
and receptor-mediated endocytosis, which in turn impaired receptor tyrosine kinase signaling and the
activation of downstream PI3K/AKT, STAT3 and MAPK signaling pathways. Inhibition of these key
oncogenic signaling by leelamine or the liposomal form of leelamine, nanolipolee-007 [176], decreased
cell proliferation and, inversely, increased tumor cell apoptosis [173]. Nanolipolee-007 also reduced
melanoma metastasis formation in spontaneous metastasis animal models, irrespective of the BRAF
mutational status of the circulating tumor cells [177].

5. Eicosanoids

Eicosanoids are a class of bioactive lipids derived from 20-carbon polyunsaturated FA (PUFAs),
most frequently arachidonic acid (AA). Eicosanoid biosynthesis is usually initiated by the activation of
PLA2 family members that catalyze the hydrolysis of the sn-2 acyl bond of membrane GPL to produce
free FA and lysophospholipids [178]. Several PLA2 isoforms, i.e., pla2g6, pla2g7 and pla2g10, appeared
to be upregulated in zebrafish V12RAS-driven melanoma [60], and PLA2G6 gene was associated with
melanoma risk in humans [179]. There are three major groups of eicosanoids formed via three distinct
pathways: prostanoids, which include the prostaglandins and thromboxanes and are formed through
the cyclooxygenase (COX) pathway, leukotrienes and related hydroxy FA coming from the lipoxygenase
pathway, and epoxy and dihydroxy acids formed via epoxygenase (P450) pathways. Prostanoids and
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leukotrienes orchestrate complex interactions between cancer cells and the TME that govern cancer
development and progression [180]. However, as the implication of leukotrienes in melanoma remains
largely unexplored, we will focus on the role of the prostanoid pathway in melanoma progression.

5.1. Potential Roles of Prostanoids in Melanoma Progression

COX enzymes convert AA into prostaglandin H2 (PGH2), which is then transformed into
prostaglandin E2 (PGE2) by the prostaglandin E synthase (PGES), encoded by the PTGES gene.
COX enzymes exist in two isoforms COX-1 and COX-2 but PGE2 synthesis is mainly controlled by
COX-2, which is encoded by the PTGS2 gene [181]. Elevated COX-2 expression is often associated with
a poor prognosis in numerous cancers including melanoma [182–184] and has been linked to increased
cell proliferation and invasion via activation of signaling pathways, playing a critical role in melanoma
progression, such as the MAPK, the β-catenin and the EGFR/PI3K pathways.

High levels of COX-2 have been detected in both murine and human melanoma models [185,186].
However, conflicting results have been obtained regarding the expression of COX-2 in human melanoma.
Vogt and colleagues observed that COX-2 is not expressed in benign and malignant melanocytic
tumors [187], whereas Denkert et al. [186] have shown that it is expressed in primary melanoma
cells, but not in benign nevi or in healthy epithelia. Another study showed that COX-2 expression is
upregulated during melanoma progression, and consistently overexpressed in metastatic melanoma
lesions [188]. In accordance, a recent study demonstrated that the level of COX-2 expression highly
influences the metastatic ability of human melanoma cells independently of the presence of NRAS or BRAF
mutations [189]. Furthermore, the modulation of COX-2 expression, either by gene disruption in mice, or
using siRNA or specific COX-2 inhibitors in human cell lines, hindered the growth and invasiveness of
melanoma cells [189]. B16 mouse melanoma cells injected into wild-type mice metastasized to bone and
soft tissues, whereas tumor growth and metastasis were greatly diminished in Ptges−/− mice. The authors
showed that melanoma cells activate PGE2 signaling in stromal cells to support their progression, resulting
in osteoclast activation, angiogenesis, and cancer cell dissemination [190]. While the pro-oncogenic
mechanism of action of COX-2 in melanoma remains to be elucidated, these studies present clear evidence
that COX-2 plays a key role in the progression of the disease.

Of note, TGF-β-induced EMT drives COX-2 expression, as well as PGE2 secretion, which in turn
mediates cell migration and invasion through the PI3K pathway in prostate cancer cells [191]. Similar
data were obtained in mammary epithelial cells, but this process depends on the inhibition of the
SMAD2/3 pathway [192]. The COX-2/PGE2 signaling pathway itself can induce EMT in lung cancer
cells via the activation of the β-catenin pathway [193]. However, even if the COX-2/PGE2 pathway
drives dedifferentiation in various solid cancer cells, it seems to have an opposite role in melanoma cells.
Indeed, PTGS2 silencing in human and murine melanoma cells resulted in decreased melanogenesis,
as well as MITF expression [194]. Accordingly, treatment of B16F10 melanoma cells with the COX-2
inhibitor resveratrol decreased MITF expression via the MAPK and PI3K pathways [195]. Another
study showed that ablation of Ptgs2 in B16F10 cells was associated with reduced cell proliferation,
migration, and invasion in vivo [196]. Altogether, these results show that even though the COX-2/PGE2
pathway has been shown to promote EMT in different cancer cell types, it seems to enhance MITF
expression in melanoma cells. Therefore, more data are needed to conclude whether this pathway
favors an invasive or a proliferative phenotype in melanoma cells.

It is also well recognized that the COX-2/PGE2 pathway mediates immune suppression in
melanoma. Indeed, genetic ablation of Ptgs2 in BrafV600E murine melanoma cells inoculated in mice
was reported to stimulate the antitumor type I immunity [197]. Similarly, a recent study showed that
Ptges knockdown in melanoma cells increased infiltration of CD8+ T and dendritic cells at the tumor
site, leading to tumor growth inhibition [198]. These results are supported by data obtained from stage
III melanoma patients for whom elevated PTGES expression was associated with low CD8+ T-cell
infiltration, as well as poor patient survival [198]. To sum up, these data clearly illustrate the role that
PGE2 plays to help cancer cells evade immune attacks and favor melanoma progression.
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5.2. Therapeutic Approaches Targeting COX-2 in Melanoma

Until the discovery of the COX-2 isoform in the early 1990s, non-steroidal anti-inflammatory
drugs (NSAIDs), e.g., aspirin, ibuprofen and naproxen, also called conventional NSAIDs, were effective
inhibitors of both forms of COX. New NSAIDs, termed COXIBs for selective COX-2 inhibitors,
were then developed. Both classical and selective NSAIDs demonstrated beneficial effects in preventing
melanoma development [199,200] and progression [201] in humans, independently of sun exposure
and age [199].

In mice, COX-2 inhibition limits cancer progression by promoting many effects, e.g., inhibition of
tumor cell proliferation and invasion, stimulation of immune responses, limitation of cancer-associated
inflammation or restriction of angiogenesis [184]. First, combination therapy based on IFN-γ and the
selective COX-2 inhibitor NS-398 showed decreased B16F10 melanoma growth in syngeneic mice and
improved survival as compared to IFN-γ alone [202]. NS-398 inhibited melanoma-induced suppression
of macrophage functional activities. Second, ablation of Ptgs2 in B16F10 cells was associated with
reduced myeloid-derived suppressor cell differentiation in vitro, and inhibited tumor development
and metastasis in vivo [196]. Third, the COX-2 inhibitor celecoxib induced apoptosis in melanoma cells
through an oxidative stress [203]. Celecoxib also reduced the expression of programmed death-ligand
1 (PD-L1) [204] and indoleamine 2,3-dioxygenase 1 (IDO-1) [205], which are known to suppress
antigen-presenting cells and cytotoxic cellular immune effectors in cancer [206,207]. Consequently,
celecoxib was proposed as a valuable therapeutic adjuvant for melanoma treatment. In a phase II trial,
metronomic cyclophosphamide and celecoxib have been added to a dendritic cell vaccine with the intent
to dampen immunosuppressive mechanisms. The results showed that 6-month survival significantly
increased compared to treatment without cyclophosphamide and celecoxib [208]. The results are still
pending for another clinical trial (NCT03396952), which will assess the antiproliferative effect of aspirin
in combination with monoclonal anti-PD-1 and anti-CTLA-4 antibodies in stage III and IV melanoma
patients [184]. Finally, the dual COX-2/5-lipoxygenase inhibitor, licofelone, was shown to improve
therapeutic melanoma vaccination by reducing immune-suppressive cell populations in mice bearing
B16F10 melanoma cells [209]. Other examples of the use of NSAIDs in melanoma are summarized
in Table 1.

Table 1. Relationship between expression of lipid metabolism associated genes and prediction of
melanoma patient outcome.

Lipid Classes Genes Expression in Melanoma Outcome References

FA

ACLY Overexpressed Worse prognosis [5,6]

ACSL3 Overexpressed Worse prognosis [15]

CD36 Amplified in metastasis Worse prognosis [210]

FAO (3 genes) Overexpressed Worse prognosis [25]

FASN Overexpressed Worse prognosis [5]

SCD Overexpressed Worse prognosis [5]

SL

SGMS1 Downregulated Worse prognosis [83]

SPHK1 Overexpressed Shorter survival
after anti-PD1 [89]

Sterols Cholesterol synthesis
(7 genes) Overexpressed Worse prognosis [22]

Eicosanoids
COX-2 Overexpressed in primary

melanoma

Decreased PFS; poor
prognosis factors (thicker

melanoma, high mitotic count)
[182,183]

PTGES Overexpressed Worse prognosis
(stage III melanoma) [198]

PFS: progression-free survival.
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6. Obesity and Melanoma: Role of Adipose Tissue in Tumor Progression

Lifestyle factors, such as diet and exercise and, consequently, the microbiote and obesity can alter
lipid homeostasis in individuals but also influence melanoma development and progression (for a recent
review, see References [211]). Only the impact of obesity, which is the most studied, is discussed here.

Epidemiological studies have shown that obesity is an established risk factor for melanoma
incidence [212] and progression [213–217], even though several epidemiological studies indicated
that this relation may be sex-dependent [212,218]. However, the correlation between melanoma
and obesity also exists in premenopausal women [219] and when studies were adjusted for sunlight
exposure [220–222], revealing that the differences first observed could in part be explained by self-limited
sun exposure and menopausal status. Strikingly, a recent study has revealed that obesity is a good
factor in term of response to targeted treatment or immunotherapy [223] and has been discussed as the
“obesity paradox” [217]. This advantage was specific to males, possibly due to sex hormones or leptin
immunosuppressive effects on T cell [223]. Preclinical studies have confirmed the positive correlation
between obesity and melanoma size, lymph node involvement and lung metastasis [216].

Obesity is usually caused by an excessive accumulation of adipose tissue (AT), with this
hypertrophic fat being the main driver of the pathologies associated with obesity, including cancer [224].
Several mechanisms linking obesity to melanoma have been described, including metabolic or endocrine
processes (especially alterations in insulin/IGF1 signaling and sex hormone metabolism), inflammatory
pathways and molecules secreted by adipocytes, the main cells of AT, such as leptin and adiponectin.
As they have been discussed elsewhere [216,217], only lipid-dependent mechanisms are discussed
here. As previously described, a preclinical study has revealed FA transfer between adipocyte and
melanoma, which fuels melanoma metabolism through FAO, to promote melanoma aggressiveness [28].
Nevertheless, the impact of obesity has not been tested in this study. Melanoma cells can also internalize
EV secreted by surrounding adipocytes [25,29,225]. The transfer of FAO enzymes via adipocyte EV
drives melanoma cells towards a more aggressive phenotype. In the context of obesity, both effects
were amplified due to the larger number of secreted EV, but also to the heightened FA content of
individual EV [25].

Adipocytes can also secrete SL [226]. Interestingly, SphK1 expression in AT [227] and S1P levels
in serum [228] were shown to increase with obesity; however, their role in the association between
obesity and melanoma remains to be demonstrated.

Obesity is also characterized by chronic low-level elevation of inflammatory cytokines, such as IL-1,
IL-6 and TNF-α, which can impair the immune system response and promote carcinogenesis [229,230].
Obesity is also associated with an increased infiltration of immunosuppressive cells into the tumor that
sustain cancer progression [231]. Interestingly, adipose-derived stem cells have been shown to promote
melanoma growth [232], revealing the role of proximal AT in the progression of this cancer. Moreover,
obesity resulted in the activation of AT macrophages, a process still observable after weight loss [233].
These results revealed that the chronic inflammation induced by obesity could be considered as a part
of trained immunity, a process that could be beneficial for patients and that could explain, at least in
part, the obesity paradox observed in melanoma.

Whereas obesity clearly influences melanoma progression, further studies are needed to improve
our understanding of the mechanisms orchestrating this complex interplay, and especially the role of
lipids in this deleterious association.

7. Conclusions

The last few decades of work have revealed the importance of lipid metabolism in melanoma
progression. Table 1 brings together studies in which a relationship between the expression of
lipid-metabolism-associated genes and prediction of melanoma patient outcome has been demonstrated.

Moreover, the above-discussed studies highlight that targeting lipid metabolism may offer novel
therapeutic strategies. Table 2 summarizes the in vitro and in vivo effects induced by pharmacological
compounds known to target enzymes or receptors linked to lipid metabolism in different melanoma models.
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The compounds listed in Table 2 that were included in clinical trials targeting melanoma are
indicated in Table 3.

Table 2. Effects of pharmacological agents targeting lipid metabolism in melanoma.

Targeted
Enzyme/Receptor Agent Melanoma

Cells/Models Effects Reference

FASN
Orlistat

B16F10
Reduced number of metastasis in mice [14]

Cerulenin Reduced proliferation. Increased
apoptosis [234]

MAGL JZL184 C8161 Decreased cell migration [50]

SCD1
A939572 IGR37 501mel

IGR39 A375M

IGR37, 501mel:
Decreased cell proliferation

Increased apoptosis
IGR39, A375M: No effect

[49]

CAY10566 M381 Apoptosis [53]

FATP2
Lipofermata

WM793 1205Lu
Yumm 1.7

Sensitization of melanoma cells in an
aged TME to BRAF and MEK inhibitors

Increased survival in old animals
[31]

FATP1 Zebrafish Reduced melanoma growth and invasion [28]

CPT1/ECHA
(FAO) Etomoxir/Trimetazidine SK-Mel-28

1205Lu Reduced melanoma migration [29]

AC ARN14988
ARN398

G361
A375

Sensitization of proliferative but not
invasive cells to 5-FU [84]

SphK1

FTY720

SK-Mel-28
A375 Increased cisplatin-induced apoptosis [113]

WM115
SK-Mel-28

Increased vemurafenib-induced
apoptosis [114]

SKI-I
WM9 Reduced proliferation of

vemurafenib-resistant cells [115]

Yumm 1.7 Increased efficacy of anti-PD1 and
anti-CTLA-4 in mice [89]

PF-543 B16F10 Increased efficacy of anti-PD1 in mice [116]

GCS
PDMP B16F10 Increased genistein-induced apoptosis [235]

OGT2378 MEB4 Reduced tumor growth in mice [117]

LXRβ GW3965
T0901317

SK-Mel-2
SK-Mel-334.2

B16F10

Reduced cell invasion and sensitization to
vemurafenib in vitro. Reduced tumor
growth, angiogenesis and metastasis

in vivo

[131]

ChEH
LXRβ DDA B16F10,

SK-MEL-28
Increased autophagy. Reduced tumor

growth in mice [172]

HMGCR

Simvastatin

A375M, G361,
C8161, GAK,

MMAc
Cell cycle arrest and increased apoptosis [159]

B16F10 Dose-dependent cell cycle arrest.
Reduced tumor growth in mice [160]

Lovastatin, Mevastatin,
Simvastatin

HT144, M14,
SK-MEL-28

Reduced cell growth, migration and
invasion [161]

Fluvastatin,
Simvastatin B16BL6 Reduced cell migration, adhesion and

invasion in vitro and metastasis in mice [164]

Lovastatin

LB1319-MEL,
BB74-MEL,

LB2033-MEL,
LB583-MEL

Increased expression of MHC class I
Chain-related protein A (MICA) [165]

A375 and G361 Reduced cell growth and angiogenesis
and increased apoptosis [162]

Atorvastatin
A375M,

SK-MEL-28,
WM-266-4

Reduced invasion in vitro and in mice [163]



Cancers 2020, 12, 3147 19 of 33

Table 2. Cont.

Targeted
Enzyme/Receptor Agent Melanoma

Cells/Models Effects Reference

NPC1 Leelamine Nine human
melanoma cell lines

Reduced cell proliferation in vitro and
tumor growth in mice [173]

COX-2

NS-398 B16F10 Reduced cell growth and improved
survival in mice [202]

Aspirin
Melanoma PDX

cell lines
A375, B16F10

Reduced cell motility, pigmentation
in vitro, and tumor growth in

immunodeficient mice
[236]

Celecoxib

SK-Mel-5 Reduced cell proliferation [189]

B16F10 Increased ROS-dependent apoptosis [203]

KUL98-MELA
Rejection of IDO1-expressing human

tumor xenografts in modified
immunodeficient mice

[205]

A375, SK-MEL-2 Reduced PD-L1 expression and cell
growth [237]

Selenocoxib-1-GSH
(analog of celecoxib)

WM35, WM115,
WM278.1, A375M,

1205 Lu

Cell cycle arrest and increased apoptosis
Reduced tumor growth in mice [238]

Celecoxib
(+cyclophosphamide)

28 patients with
metastatic
melanoma

Six-month increase in survival [208]

COX-2/5-
lipoxygenase

inhibitor
Licofelone B16F10 Improved antitumor activity of a

therapeutic melanoma vaccine [209]

CPT1, Carnitine palmitoyltransferase I; ECHA, α subunit of the trifunctional enzyme.

Table 3. Clinical trials evaluating lipid-metabolism-targeting drugs in melanoma. Data were extracted
from ClinicalTrials.gov database (https://clinicaltrials.gov).

Agent Clinical Trial Title Posting Year Status

Lovastatin
NCT00963664 Evaluation of interferon–lovastatin therapy

for malignant melanoma 2009 Withdrawn

NCT00462280 Lovastatin in treating patients at high risk
of melanoma 2007 Completed

(with results)

Fluvastatin NCT04285749 Prevention of recurrence and metastasis in
genetically high-risk melanomas 2020 Withdrawn

Aspirin

NCT04062032
Metabolomic and inflammatory effects of

oral aspirin (ASA) in subjects at risk
for melanoma

2019 Recruiting

NCT04066725 Aspirin as an ultraviolet (UV) protectant in
human subjects at risk for melanoma 2019 Recruiting

NCT03396952 Prostaglandin inhibition and immune
checkpoint blockade in melanoma 2018 Active, not

recruiting

NCT01753089 Dendritic-cell-activating scaffold
in melanoma 2012 Active, not

recruiting

https://clinicaltrials.gov
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Table 3. Cont.

Agent Clinical Trial Title Posting Year Status

Celecoxib

NCT04093323

Polarized dendritic cell (aDC1) vaccine,
interferon alpha-2, rintatolimod, and

celecoxib for the treatment of HLA-A2+
refractory melanoma

2019 Not yet
recruiting

NCT01313429

Tumor-cell vaccine for patients undergoing
surgery for sarcomas, melanomas, germ

cell tumors or malignancies that have
metastasized to the lungs,

pleura or mediastinum

2011 Recruitment
terminated

NCT01341496 Tumor-cell vaccines and iscomatrix with
chemotherapy after tumor removal 2011 Recruitment

terminated

NCT00197912 Dendritic-cell-based therapy of
malignant melanoma 2005 Completed

NCT00093678
Celecoxib in managing pain, weight loss

and weakness in patients with
advanced cancer

2004 Withdrawn

NCT02839694

Adjuvant oral decitabine and
tetrahydrouridine, with or without

celecoxib, in people undergoing pulmonary
metastasectomy

2016 Withdrawn

NCT02054104

Adjuvant tumor lysate vaccine and
iscomatrix with or without metronomic
oral cyclophosphamide and celecoxib in

patients with malignancies involving lungs,
esophagus, pleura or mediastinum

2014 Suspended

However, the large spectrum of functions lipid molecules fulfills in cell signaling underscores the
importance of a more detailed understanding of the potential interplays between each lipid subfamily
and the consequences in cancer progression. Understanding the link between alterations of the
lipidome and the disease will also be useful for the development of novel lipid biomarkers. In this
respect, it was recently showed that SphK1 expression constitutes a potential biomarker to predict
melanoma progression and resistance to anti-PD-1 therapy. Indeed, it has been discovered that patients
with low SphK1 expression in melanoma cells had significantly longer progression-free survival and
overall survival than those with high SphK1 expression and patients with high SphK1 expression
mostly failed to respond to anti-PD-1 therapy [89]. One might speculate that other modifications in
lipid metabolism are potential biomarkers in melanoma; however, the discovery of clinically useful
biomarkers still requires the inclusion of consistent large-scale proteomic studies in clinical trials.
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