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The purpose of this study was to construct a circular RNA (circRNA)-related
competing endogenous RNA (ceRNA) regulatory network and risk score model for
lung adenocarcinoma (LUAD). The relationship of the risk score to immune landscape
and sensitivity to chemotherapy and targeted therapy of LUAD was assessed. We
downloaded mRNA and miRNA expression data, along with clinical information, from
The Cancer Genome Atlas (TCGA) program, and circRNA expression data from the
Gene Expression Omnibus (GEO) database and identified differently expressed circRNA
(DEcircRNA), miRNA (DEmiRNA), and mRNA (DEmRNA) using R software. We then
constructed the circRNA-related network using bioinformatics method. The risk score
model was established by LASSO Cox regression analysis based on 10 hub genes. In
addition, the risk score model was an independent predictor for overall survival (OS) in
both the TCGA and CPTAC datasets. Patients in the high-risk group had shorter OS and
disease-free survival (DFS) than those in the low-risk group and were more sensitive to
chemotherapy and targeted therapy. The types of tumor-infiltrating immune cells were
different in the high- and low-risk groups. Our data revealed that the circRNA-related
risk score model is closely associated with the level of immune cell infiltration in the
tumor and the effects of adjuvant treatment. This network may be useful in designing
personalized treatments for LUAD patients.

Keywords: lung adenocarcinoma, circRNA, targeted therapy, chemotherapy, immune cells

INTRODUCTION

Worldwide, lung cancer is a leading cause of cancer-related deaths, and approximately half of
cancers are lung cancers (Imielinski et al., 2012; Bray et al., 2018). Since most lung cancer patients
are diagnosed at an advanced stage, the 5-year survival rate is only about 18%, even if diagnosis
and treatment were improved (Siegel et al., 2018). Therefore, exploring the molecular mechanism
of lung adenocarcinoma (LUAD) and establishing an effective prognostic model for this cancer are
critical in the formulation of effective individualized treatment regimens.
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Circular RNA (circRNA) derived from gene intron or exon
region are a special type of non-coding RNA. They have a closed
circular structure and no poly-A tail. Therefore, compared with
linear RNA, circRNAs have a more stable structure and are
not easily hydrolyzed by exonuclease or RNase (Wang et al.,
2016). The competing endogenous RNA (ceRNA) hypothesis
holds that circRNAs can compete with mRNA, the downstream
targets of microRNAs (miRNAs), to bind miRNA response
elements and, in turn, affect mRNA expression levels, thus
forming a complex posttranscriptional regulatory mechanism
(Salmena et al., 2011). To explore the potential function and
mechanism of circRNA in LUAD, we established the circRNA-
related ceRNA regulatory network. Based on the identification of
downstream mRNAs, we then generated a prognostic risk score
model.

Previous studies demonstrated that circRNA participates in
the regulation of immune cell infiltration in the tumors through
the ceRNA mechanism (Song et al., 2020). Therefore, we also
explored the relationship between the risk score and the level of
immune cell infiltration and assessed the relationship between the
risk score and the immunosuppressive molecules.

Currently, adjuvant therapy planning after tumor resection is
mainly designed according to TNM stage (Amin et al., 2017). Due
to the tumor heterogeneity, adjuvant treatment plans based only
on TNM stage have certain limitations. Therefore, we predicted
the sensitivity of LUAD patients to chemotherapy and targeted
drugs according to the risk score.

In this study, we first constructed a circRNA-related ceRNA
network through bioinformatics analysis, then constructed a
prognostic risk score model. Finally, we explored the relationship
between risk score and the level of infiltrated immune cells in
LUAD, genes related to immune checkpoint inhibitors (ICIs), and
sensitivity of chemotherapy and targeted therapy.

MATERIALS AND METHODS

Data Collection and Preprocessing
Two circRNA expression datasets GSE101684 and
GSE112214 were obtained from GEO database.1 The
normalizeBetweenArrays function in the “Limma”2 package
in R software was used to normalize the expression data of
circRNA, and the batch effect was corrected by using ComBat
function in “sva” package in R software after merging the two
datasets (Leek et al., 2012). Linear fitting was performed on
the data by using lmFit function. Finally, the mean expression
value of 3,468 circRNAs in LUAD tissues and paracancerous
tissues were analyzed by using empirical eBayes in the “Limma”
package to determine the differentially expressed circRNAs
(DEcircRNAs) based on a screening criteria of false-discovery
rate (FDR) <0.05 and | log2 fold change(FC)| >1. However, we
did not consider the paired nature of the circRNA data when
we analyzed the differentially expressed genes. The “pheatmap”3

1https://www.ncbi.nlm.nih.gov/geo/
2https://bioconductor.org/packages/limma/
3https://CRAN.R-project.org/package=pheatmap

package was used to visualize the DEcircRNAs, whose expression
value had been normalized.

Clinical information of 522 LUAD patients and the expression
data of miRNA (513 tumor and 46 paracancerous samples) and
mRNA(513 tumor and 59 paracancerous samples) were acquired
from The Cancer Genome Atlas (TCGA).4 Fifty LUAD patients
were excluded from this research, because of unknown age (10
patients), no or less than 30 days of survival time (23 patients),
no tumor stage (eight patients), and no mRNA expression data
(nine patients). Finally, 472 LUAD patients with complete clinical
information were included in our study. Clinical Proteomic
Tumor Analysis Consortium (CPTAC)5 datasets containing
clinical information and RNA sequencing data of 102 LUAD
patients were obtained for external validation of the risk score
model. Low-expressing mRNAs with an average read counts
of <5 and low expressing miRNAs with an average read
counts of <1 were filtered out. The 17,143 mRNAs and 817
miRNAs meeting the above requirements were included in this
analysis. For the raw read counts of mRNA and miRNA, the
calcNormFactors function in the “edgeR” package (Robinson
et al., 2010) in R software was used to calculate the normalization
factors in each sample to normalize the gene expression data.
The exactTest function was used to identify the differentially
expressed genes based on the screening criteria of FDR <0.05 and
|log2 fold change (FC)| >1. For miRNA and mRNA correlation
analyses, we transform the read count matrix of miRNA and
mRNA into a matrix of transcripts per million (TPM) values.

Constructing the ceRNA Network
The target DEmRNAs of the DEmiRNAs were predicted
using the miRTarBase and TargetScan databases (Hsu et al.,
2011; Agarwal et al., 2015). To improve the reliability, the
coexpression relationship of the DEmiRNA and DEmRNA from
the DEmiRNA/DEmRNA pairs predicted by two database were
further analyzed by Spearman’s correlation analysis screened
according to a criteria of the Spearman’s correlation coefficient
(ρ) < –0.2, FDR <0.05, and the standard deviation (sd) >0.5. We
named these gene pairs NC-DEmiRNAs/DEmRNAs pairs. The
target miRNAs of DEcircRNA were predicted using the circBank
database,6 then we took the intersection of these targeted
miRNA and DEmiRNAs from the NC-DEmiRNAs/DEmRNAs
pairs. The expression patterns between circRNA and miRNA
of a circRNA/miRNA pairs must be opposite, that is, if a
circRNA expression is upregulated, the corresponding miRNA
must be downregulated, and vice versa. According to the above
result, we utilized Cytoscape (version 3.7.2) to construct a
circRNA/miRNA/mRNA network.

Functional Enrichment Analysis
We performed Gene Ontology (GO) function and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
on these 122 DEmRNAs in this network to evaluate their
enrichment for biological processes (BP), molecular function

4https://portal.gdc.cancer.gov/
5https://proteomics.cancer.gov
6http://www.circbank.cn/searchCirc.html
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(MF), and cellular component (CC) and to annotate their signal
pathways. The “clusterProfiler”7 package was used to perform GO
and KEGG analysis based on the screening criteria of adjusted p
(q-value) <0.05.

Protein-Protein Interaction Network
Using the Search Tool for the Retrieval of Interacting Genes
(STRING) database,8 the interaction of these DEmRNAs from the
circRNA/miRNA/mRNA networks were explored. Interactions
among proteins with a comprehensive score >0.7 were thought
to be statistically significant. Then, we established a protein-
protein interaction (PPI) network for these DEmRNAs using
STRING and visualized it with Cytoscape. The CytoHubba
application was used to extract hub genes from the PPI network
according to the degree method.

Survival Prediction Model of Hub Genes
Using univariate Cox regression analysis, we explored the
relationship between hub gene expression levels and overall
survival (OS) in LUAD patients. A prognostic signature was
constructed using the least absolute shrinkage and selection
operator (LASSO) Cox regression analysis for 10 prognostic-
related hub genes and the coefficient of each hub gene was
calculated in the TCGA cohort. The optimal penalty parameter
that was calculated by 10-fold cross validation was used to
filter out signatures. Risk score = sum of coefficients ∗ TPM
value of hub genes. The formula was used to calculate a risk
score for each LUAD patient in the TCGA cohort and CPTAC
cohort, and patients were divided into low- and high-risk
groups based on the median of the risk score from TCGA
cohort. The “survival” package9 was utilized to carry out Kaplan-
Meier (K-M) survival analysis for the two groups. The receiver
operating characteristic (ROC) curve was generated using the
“survivalROC” package.10

Exploration of Immune-Infiltrating Cells
To explore the relationship between the level of immune cells and
risk score, we calculated the immune cell status of each tumor
sample in the LUAD dataset from the TCGA database using seven
currently accepted methods [including XCELL (Aran, 2020),
TIMER (Li et al., 2020), MCPCOUNTER (Dienstmann et al.,
2019), QUANTISEQ (Plattner et al., 2020), EPIC (Racle et al.,
2017), CIBERSORT (Chen B. et al., 2018), and CIBERSORT-
ABS (Tamminga et al., 2020)]. Wilcoxon signed-rank test was
performed to analyze immune cell differences between high-
and low-risk groups as calculated by these seven methods. The
correlation between the level of immune cells in tumors and
risk score was analyzed using Spearman’s correlation analysis;
the results are shown as a lollipop chart. The ggplot2 package11

was used to this procedure. p-Value <0.05 was considered
statistically significant.

7https://bioconductor.org/packages/clusterProfiler/
8https://string-db.org
9https://CRAN.R-project.org/package=survivalAnalysis
10https://CRAN.R-project.org/package=survivalROC
11https://CRAN.R-project.org/package=ggplot2

Investigation of the Relationship
Between ICI-Related Genes and Risk
Score
To analyze the relationship between ICI-related
immunosuppressor genes and risk score, we used the
“ggstatsplot”12 package to visualize the above results.

Evaluation of the Significance of Risk
Score Model in Chemotherapy and
Targeted Therapy
To evaluate the clinical significance of the risk score for LUAD
chemotherapy and targeted therapy, we converted the TCGA
gene expression matrix into a half inhibitory centration (IC50)
data matrix of the corresponding antitumor drugs with the
“pRRophetic” package (Geeleher et al., 2014), then analyzed the
IC50 difference between the high- and low-risk groups by the
Wilcoxon signed-rank test. Results were depicted by bar chart.

RESULTS

Differential Expression of Genes and the
circRNA-Related Network
A total of 64 DEcircRNAs (18 upregulated and 46
downregulated), 362 DEmiRNAs (271 upregulated and 91
downregulated), and 5,047 DEmRNAs (3,277 upregulated and
1,770 downregulated) were identified (Figures 1A–D). To
show the relationship between these DEcircRNAs, DEmiRNAs,
and DEmRNAs, a circRNA-related ceRNA regulation network
was constructed and visualized in Cytoscape based on the
results of bioinformatics analysis (Figure 1E). Four hundred
sixty-five negatively correlated (r < −0.2, FDR < 0.05)
DEmiRNA/DEmRNA pairs (100 DEmiRNA and 297 DEmRNA)
were predicted by Targetscan and miRTarBase databases. In
addition, 65 circRNA/miRNA (31 circRNA and 39 miRNA) pairs
predicted by circBank were constructed based on 64 DEcircRNAs
and 100 DEmiRNAs with opposite expression patterns. Finally,
this ceRNA network contained a total of 122 DEmRNA, 31
DEcirRNA, and 39 DEmiRNA.

Functional Enrichment Analysis
To explore the biological functions of the identified circRNAs,
we carried out GO function and KEGG signaling pathway
enrichment analyses for the 122 downstream DEmRNAs
regulated by circRNAs. The top 10 GO terms of BP, CC,
and MF are shown in Figure 2A. The BP terms were mainly
enriched in “positive regulation of cell cycle” involved in cell
cycle regulation, CCs were mainly enriched in “chromosomal
region” and “chromosome and centromeric region,” and MFs
were mainly enriched in “protein C-terminus binding,” “SMAD
binding,” and “histone deacetylase binding.” Finally, in the KEGG
signaling pathway, “MicroRNAs in cancer” was the common
signaling pathways for these genes. The all KEGG pathway
enrichment results are shown in Figure 2B.

12https://CRAN.R-project.org/package=ggstatsplot
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FIGURE 1 | Identified DEcircRNAs, DEmiRNAs, and DEmRNAs and constructed ceRNA network. (A) Heat map of the 64 DEcircRNAs; the color change represents
the difference in expression. (B) Relative expression level of 64 DEcircRNA in tumor tissue and normal tissue. Volcano plots for DEmRNAs (C) and DEmiRNAs (D).
(E) CeRNA network of DEcircRNAs, DEmRNAs, and DEmiRNAs. Rectangle represents circRNA; diamond represents miRNA; oval represents mRNA. Red represents
upregulate and green represent downregulate. The red points and green points represent up- and downexpressed, respectively. DE, differentially expressed.
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FIGURE 2 | Functional enrichment analysis and constructing of PPI network. (A) Top 10 terms of GO function enrichment analysis. (B) KEGG pathway analysis.
(C) PPI network of 122 genes, including 54 nodes and 117 edges. (D) The network of top 10 hub genes. Different colors represent different scores. PPI,
protein-protein interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Construction of the PPI Network
Using the STRING online tool, we established a PPI network
for the 122 DEmRNAs to further examine their interactions
(Figure 2C). This PPI network contained 54 nodes and 117 edges
after removing isolated nodes. According to the degree method,
the top 10 hub genes (UBE2C, BIRC5, TOP2A, RRM2, CDCA8,
HJURP, OIP5, RACGAP1, GINS2, and CDT1) in the PPI network
were extracted by the cytoHubba plugin (Figure 2D).

Construction and Validation of Risk
Scoring Model
We next explored the relationship between 10 hub genes and
OS by univariate Cox regression analysis; the 10 hub genes
were identified as those with p-value <0.05 (Figure 3A). We
then analyzed these hub genes using LASSO Cox regression
analysis (Figures 3B,C). According to the minimum standard,
three hub genes (HJURP, RRM2, and OIP5) were selected
to build a risk score based on the risk coefficient and TPM

value of genes. The risk score was calculated as follows: risk
score = (0.0599 ∗ HJURP expression) + (0.1113 ∗ RRM2
expression) + (0.0652 ∗ OIP5 expression). K-M survival analysis
also indicated that highly expressed OIP5, HJURP, and RRM2
had a lower OS in the TCGA cohort (Supplementary Figure 1).
To determine whether the risk score model was an independent
risk predictor for OS, we analyzed age, gender, TNM stage,
and risk score by univariate and multivariate Cox regression
analyses in the TCGA cohort. In the univariate Cox regression
analysis model, there was a significant correlation between risk
score and OS (Figure 3D). Moreover, the risk score was an
independent risk predictor for OS after adjusting for other
confounding factors in the multivariate Cox regression analysis
model (Figure 3E).

The heatmap and survival status plots showed that the
risk score was closely related to the expression levels of
the three genes, and the number of deaths in the high-risk
group was significantly higher than that in the low-risk group
(Figures 3F–H).
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FIGURE 3 | Construction and validation of risk score model. (A) Forest plots showing the results of the univariate Cox regression between10 hub gene and OS.
(B,C) The minimum criteria calculated by LASSO Cox regression. Forest plot of the univariate Cox regression analyses (D) and multivariate Cox regression (E)
analyses on clinical characteristics and risk score results. (F) Risk score plot show the risk score for each LUAD patient. (G) Heatmap of three hub genes from risk
score model between low- and high-risk groups. (H) Survival status plots show survival time and status for each LUAD patient; it can be seen that the number of
deaths in the high-risk group was significantly higher than that in the low-risk group. (I–M) The TCGA risk score model was validated with RNA sequencing data and
clinical data from CPTAC program. LUAD, lung adenocarcinoma.
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To evaluate the applicability of the risk score model
constructed from the TCGA dataset, the cases from the CPTAC
program were also divided into low- and high-risk groups by the
risk score median from the TCGA cohort. As with the TCGA
results, the risk score model was an independent risk predictor
in the CPTAC cohort (Figures 3I,J). And, the expression levels of
these three genes and distribution of survival state in the CPTAC
cohort were similar to those in the TCGA cohort in the high- and
low-risk groups (Figures 3K–M).

Kaplan-Meier survival analysis indicated that the OS
(Figures 4A,C) and DFS (Figure 4B) in the high-risk score
group were lower than those in the low-risk score group in both
TCGA cohort and CPTAC cohort. Finally, we established a ROC
curve of a risk score to examine its prediction power for OS. The
area under the curve (AUC) of the 3-year survival data was 0.660,
showing moderate accuracy and specificity in the TCGA cohort
(Figure 4D). The AUC of risk score was 0.784 at 3 years in the
CPTAC cohort (Figure 4E).

Regulatory Networks for Risk Score
Models
To visualized the upstream genes that regulate the risk score
model, we extracted ceRNA subnetwork from the total ceRNA
network. This subnetwork contained three prognostic hub genes,
three miRNAs (miR-101-3p, miR-218-5p, and miR-6720-3p),
and three circRNAs (hsa_circ_0077607, hsa_circ_0005699, and
hsa_circ_0092283) (Figure 5A). In addition, the expression
level of the three circRNAs and three hub genes were
upregulated in LUAD samples, while the three miRNAs were
downregulated (Figure 5B). Moreover, there was a negative
correlation (r <−0.2) between three hub genes and three miRNA
expressions (Figure 5C).

Immune Landscapes Affected by Risk
Score Model
To evaluate the associations between risk score and responses
of LUAD patient to immunotherapy, we analyzed whether
the risk score was associated with the types of immune cells
present and ICI-related genes. Our results showed that the
risk score was negatively correlated with mast cell activated,
T cell CD4 + memory resting, myeloid dendritic cell resting,
monocyte, T-cell regulatory (Tregs), myeloid dendritic cell
activated, and NK cell activated, macrophage M2, whereas
they were positively correlated with T cell CD4 + memory
activated, mast cell resting, macrophage M0, macrophage M1,
T cell follicular helper, and CD8 + T cells (Figure 6A and
Supplementary Figure 2A). To clarify the correlation between
risk score and the immune cells, we performed Spearman’s
correlation analysis, and the results were shown as a lollipop
chart (Figure 6B and Supplementary Figure 2B). In the same
time, the result also revealed that the expression levels of
genes related to ICI-related genes, such as CD274 (PD-L1),
PDCD1 (PD-1), LAG3, CTLA4, and HAVCR2 were higher
in the high-risk group than low-risk group (Figure 6C),
but CTLA4 and HAVCR2 were not statistically different
(Supplementary Figure 2C).

FIGURE 4 | The relationship between risk score and survival. Kaplan-Meier
plots of OS (A) and DFS (B) in the low- and high-risk groups in the TCGA
cohort. (C) Kaplan-Meier plots of OS in the CPTAC cohort. ROC curve
showed the prognostic value of risk score for OS in the TCGA cohort (D) and
in the CPTAC cohort (E). OS, overall survival; DFS, disease-free survival; ROC,
receiver operating characteristics.
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FIGURE 5 | Risk score-related regulatory subnetwork. (A) The ceRNA subnetwork associated with risk score. (B) Expression level of circRNAs, miRNAs [log2(TPM)],
and mRNA [log2(TPM)] in LUAD and normal samples (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Coexpression analysis of miRNA-mRNA pairs based on TCGA data.
LUAD, lung adenocarcinoma; ceRNA, competitive endogenous RNA. OS, overall survival.

Analysis of the Relationship Between the
Effectiveness of Chemotherapy and Risk
Score Model
In addition to immunotherapy, we analyzed the relationship
between risk score model and the effectiveness of chemotherapy
and targeted therapy in the LUAD cohort. Our result revealed that
LUAD patients in the high-risk score group were more sensitive
to chemotherapies such as cisplatin, docetaxel, gemcitabine, and
paclitaxel and targeted drugs such as erlotinib and gefitinib. This
suggests that the risk score model is a potential predictor of
sensitivity to chemotherapy and targeted therapy (Figure 7).

DISCUSSION

Numerous studies have shown that the circRNA-related ceRNA
mechanism plays a critical role in tumor function. The ceRNA
mechanism hypothesis states that some non-coding RNAs, such
as circRNAs and lncRNAs share miRNA response elements
on mRNAs, and therefore compete with miRNAs to regulate
the expression of mRNA indirectly, forming a complicated
posttranscriptional regulatory network (Salmena et al., 2011).
An increasing amount of evidence has shown that circRNAs
are involved in several physiological and pathological processes
of tumor development and progression (Song and Fu, 2019;

Wang et al., 2019; Zhang et al., 2019a,b,c; Bai et al., 2020; Zhang
N. et al., 2020; Zhang S. J. et al., 2020). CircRNAs have also
been shown to be involved in resistance to immunotherapy,
targeted therapy, and chemotherapy (Zhang et al., 2019b; Wen
et al., 2020; Li et al., 2021). In this study, we identified abnormal
gene expression in LUAD with data from the GEO database.
According to the conjoint analysis of two databases, we then
constructed a circRNA-related ceRNA regulatory network. Next,
we constructed a risk score model using three mRNAs in this
network and demonstrated that it is an independent risk factor
for the prognosis of LUAD. Because circRNA is related to
the resistance of adjuvant therapy drugs, we also analyzed the
relationship between the risk score model and the status of tumor
infiltrating immune cells and explored its application value in
immunotherapy, chemotherapy, and targeted therapy.

In the prognostic circRNA/miRNA/hub gene subnetwork,
three circRNAs (hsa_circ_0005699, hsa_circ_0092283,
hsa_circ_0077607) acted as “sponges” to adsorb three miRNAs
(hsa-miR-101-3p, hsa-miR-218-5p, and hsa-miR-6720-3p),
thus indirectly regulating the expression level of three mRNAs
(HJURP, OIP5, and RRM2) by sequestering these target miRNAs.
A growing body of research has demonstrated that circRNA
expression is dysregulated in lung cancer and may be related to
lung cancer progression and prognosis. For example, compared
with paracancerous tissue, the expression of circFGFR1 in lung
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FIGURE 6 | Exploration of the relationship between risk score and level of immune cells and immunosuppressive genes. (A) The level of immune cells in tumor
evaluated by CIBERSORT-ABS and CIBERSORT software in the high- and low-risk groups. (B) Spearman correlation analysis of risk score and level of immune cells
evaluated in CIBERSORT-ABS and CIBERSORT software. (C) The expression level of immunosuppressive genes in the high- and low-risk groups (*p < 0.05;
**p < 0.01; ***p < 0.001).

cancer tissues was increased, and patients with higher circFGFR1
had a worse prognosis (Zhang et al., 2019b). Similarly, circTP63
and circular RNA100146 are highly expressed in NSCLC cells.
Knockdowns of these cicrRNAs significantly inhibited tumor
cell proliferation and invasion and promoted apoptosis. Further

studies revealed that circTP63 and circular RNA100146 acted
as a “sponges” for miR-873-3p and miR-361-3p/miR-615-5p,
respectively, to suppress the expression of these miRNAs,
increase FOXM1 and SF3 levels, and facilitate the progression of
NSCLC (Cheng Z. et al., 2019). However, the exact mechanism
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FIGURE 7 | The risk score model serves as a potential predictor of sensitivity
to chemotherapy and targeted therapy, as high-risk scores are associated
with lower IC50 of chemotherapy and targeted therapy drugs such as cisplatin,
docetaxel, gemcitabine, paclitaxel, erlotinib, and gefitinib (***p < 0.001).

of the circRNA-mediated ceRNA regulation network in LUAD
is still unknown. The roles of the three circRNAs in our
ceRNA subnetwork have not been reported yet. Therefore,
the roles of these circRNAs need to be further confirmed in
future experiments.

In the subnetwork, three miRNAs were identified, of which
miR-101-3p and miR-218-5p had been previously shown to
act as tumor suppressors in lung cancer. MiR-101-3p can
target downstream genes to inhibit cell invasion, viability, and
migration in lung cancers (Hou et al., 2017). The expression
levels of miR-218 (miR-218-5p) are decreased in NSCLC tissues,
and overexpression of this miRNA was shown to suppress the
proliferation of NSCLC cells by regulating CDK6 (Shi et al.,
2017). However, the function of miR-6270-3p in tumor has not
been studied. Therefore, we can speculate that they may play
critical roles in the progression of lung cancer.

According to results of LASSO Cox regression analysis for the
10 identified hub genes, OIP5, HJURP, and RRM2 were selected
to establish a ceRNA subnetwork. LUAD patients with high-risk
scores tend to have shorter OS and DFS. In addition, the risk

score was an independent risk predictor for OS after correction
for age, gender, and TNM stage. Previous work demonstrated
that the expression level of OIP5 was elevated in NLCSC
and esophageal cancer tissues, and silencing of OIP5 could
suppress tumor cell growth (Koinuma et al., 2012). Moreover,
the expression level of OIP5 was closely related to the prognosis
of NLCSC and esophageal cancer and was an independent
prognostic factor for LUAD (Koinuma et al., 2012). In addition
to lung cancer, the expression level of OIP5 is also increased in
nasopharyngeal carcinoma, and its knockout inhibits ability of
the proliferation, migration, and invasion of tumor cells (Zheng
et al., 2019). HJURP expression is increased in NSCLC tissues.
HJURP knockdown suppressed the migration and invasion of
NSCLC cells via inhibition of the activation of Wnt/β-catenin
signaling (Wei et al., 2019). Similarly, ectopic expression of
HJURP can promote proliferation, migration, and invasion of
other tumor cells (Chen T. et al., 2018, 2019; Kang et al., 2020).
Furthermore, high expression of HJURP is associated with poor
prognosis in patients with colorectal and ovarian cancer and is
an independent prognostic biomarker for those cancers (Li et al.,
2018; Kang et al., 2020). Many studies have shown that RRM2
plays an important role in tumorigenesis and tumor progression.
RRM2 overexpression, for example, promoted the gastric cancer
invasion capacity, while its silencing inhibited the proliferation,
invasion, and migration of lung cancer cells and other malignant
phenotypes (Morikawa et al., 2010; Yang et al., 2019; Jiang et al.,
2021). Moreover, the expression levels of RRM2 in lung cancer
tissues is also closely related to the prognosis of patients and the
level of tumor-infiltrating CD8+ T cells (Jiang et al., 2021).

Gene Ontology function and KEGG signaling pathway
enrichment analyses for the 122 genes in ceRNA network
provided insight into the pathogenic mechanism of LUAD. The
most enriched BP was “positive regulation of cell cycle” that is
involved in the regulation of the cell cycle. As we all know, there
are more cells in the division phase in tumor cells than normal
cells. KEGG signaling pathway enrichment analysis indicated that
“microRNAs in cancer and cellular senescence” were significantly
enriched. The relationship between miRNAs and tumors has been
extensively studied (Hou et al., 2017; Shi et al., 2017; Cheng
Z. et al., 2019; Zhang et al., 2019b; Li et al., 2020) and we
also found a close relationship between miRNAs and LUAD.
More importantly, in the ceRNA network constructed in this
paper, all the 122 DEmRNAs identified were regulated by the
upstream miRNAs. These results confirmed the reliability of
our ceRNA network.

To construct a more effective prognostic model for LUAD
patients, we carried out Cox regression analyses for age, sex,
TNM stage, and risk score. The multivariate Cox regression
analysis results showed that risk scores and the TNM stage
were independent risk predictor factors for OS in TCGA
and CPTAC cohort. Moreover, the risk score exhibited good
prediction power for OS.

This model not only has good prediction power for OS but
we also found that the risk score generated by this regulatory
network is closely related to the state of tumor-infiltrating cells
and the response to immunotherapy. It has been shown that
patients with more infiltrating CD8 + T cells in tumor tissues
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are more sensitive to pembrolizumab (Garon et al., 2019). In
this study, we evaluated the status of LUAD tumor-infiltrating
immune cells in the TCGA cohort by seven common methods.
Considering that these methods have their own advantages,
disadvantages, and complexity, few studies have compared these
algorithms. Through integration analysis, the results showed that
in the high-risk score group, the level of CD8+ T-cell infiltration
was higher than that in the low-risk group. This implied that the
high-risk group may be more sensitive to ICIs. In addition, our
analysis results also showed that the expression levels of ICIs-
related immunosuppressive genes, especially PDCD1 (PD-1) and
CD274 (PD-L1), were significantly higher in the high-risk group
than the low-risk group. These results revealed that the risk score
model can accurately predict the therapy response to ICIs.

This model can not only predicted the response of patients
to immunotherapy, but also effectively predict the response
of patients to chemotherapy and targeted therapy. Compared
with the low-risk group, the IC50 values for cisplatin, docetaxel,
gemcitabine, paclitaxel, erlotinib, and gefitinib in the high-
risk group were lower. This means that patients in the high-
risk group are more sensitive to these drugs. This risk score
model is constructed using four mRNAs, and these mRNAs are
indirectly regulated by five circRNAs. Therefore, these circRNAs
can be considered affecting the immune landscape by indirectly
regulating the risk score-constructing transcripts to affect the
patient’s response to chemotherapy and targeted therapy.

There were some limitations in this study that should
be considered. First, the circRNA-related ceRNA regulatory
network was established based on databases and bioinformatics
algorithms. These predictions need to be validated with
experimental results. Second, due to the small sample size of
the GEO datasets and the lack of clinical information, we were
unable to assess the relationship between circRNA and survival.
Lastly, as the circRNA expression data were acquired from the
GEO database, we could not combine the circRNA results with
miRNA and mRNA results from TCGA for circRNA/miRNA
coexpression analysis of ceRNA correlation and connectivity.

In summary, the risk score calculated from the circRNA
regulatory network can predict the prognosis of patients with
LUAD and might be helpful in distinguishing patients who could
benefit from adjuvant therapy. However, the conclusions in our
study were inferred through bioinformatics analysis and needed
to be confirmed by further experimental.
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