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Abstract

Behavioral experiments are usually designed to tap into a specific cognitive function, but ani-

mals may solve a given task through a variety of different and individual behavioral strate-

gies, some of them not foreseen by the experimenter. Animal learning may therefore be

seen more as the process of selecting among, and adapting, potential behavioral policies,

rather than mere strengthening of associative links. Calcium influx through high-voltage-

gated Ca2+ channels is central to synaptic plasticity, and altered expression of Cav1.2 chan-

nels and the CACNA1C gene have been associated with severe learning deficits and psy-

chiatric disorders. Given this, we were interested in how specifically a selective functional

ablation of the Cacna1c gene would modulate the learning process. Using a detailed, indi-

vidual-level analysis of learning on an operant cue discrimination task in terms of behavioral

strategies, combined with Bayesian selection among computational models estimated from

the empirical data, we show that a Cacna1c knockout does not impair learning in general

but has a much more specific effect: the majority of Cacna1c knockout mice still managed to

increase reward feedback across trials but did so by adapting an outcome-based strategy,

while the majority of matched controls adopted the experimentally intended cue-association

rule. Our results thus point to a quite specific role of a single gene in learning and highlight

that much more mechanistic insight could be gained by examining response patterns in

terms of a larger repertoire of potential behavioral strategies. The results may also have clin-

ical implications for treating psychiatric disorders.

Author summary

To deal with an uncertain and complex world, animals have developed a large repertoire

of behavioral heuristics and default strategies that spring into action in unknown situa-

tions. Building on this a priori repertoire, animals may find various ways to succeed on a

given behavioral task. Therefore, determining the exact behavioral strategy followed
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during a task may be essential for understanding the cognitive processes involved. Using

computational models to analyze behavior, we examined how a genetic variation in a gene

that encodes a calcium channel and has been associated with learning deficits influences

the way in which animals acted on a task in which a reward was associated with a specific

behavior. We found that a knockout of the relevant gene does not lead to a general learn-

ing impairment but rather led animals to adopt a behavioral strategy different from the

one employed by the control animals. Specifically, knockout animals managed to increase

their reward returns by basing their responses more on the previous reward location

rather than on reward-indicating stimuli, like the controls did. These findings may prove

useful for behavioral therapy in the context of psychiatric disorders associated with this

specific gene variation.

Introduction

The ability to learn, to adapt one’s own behavior in order to optimize positive and avoid nega-

tive feedback, is central to all living beings. Animals like humans are constantly seeking to

infer the (causal) structure of their environment and to predict the outcomes of their actions

[1,2], sometimes to a degree that “superstitial beliefs” about environmental contingencies may

form [3]. However, since the environment is only partially observable, with an often infinite or

exponentially exploding space of possibilities, inferring the optimal course of actions is, in gen-

eral, a computationally intractable problem [4]. Hence, animals like humans rely on heuristics,

strategies, and ecological biases that favor certain types of environmental contingencies over

others and narrow down the search space [5,6]. For instance, rodents are predisposed to

employ ecologically sensible strategies like win-stay, lose-shift, or alternate [7–9], and these

behaviors are also more readily acquired [10,11]. Moreover, recent evidence suggests that ani-

mal learning, even on apparently simple conditioning tasks, may often engage active, evi-

dence-driven choices among behavioral strategies, rather than mere passive strengthening of

stimulus-response (SR) associations [12,13]. The upshot here is that animal learning may rely

on a large variety of different previously acquired or predisposed strategies, rather than on a

uniform mechanism, like SR strengthening, that could either be enabled or disabled.

Given this larger repertoire of potential a priori strategies and heuristics with which animals

may enter any given experimental task context, there may be more than one way for increasing

reward [14,15], even though this may not have been experimentally intended. In such situa-

tions, more conventional analysis in terms of error counts or reaction times compared among

experimental groups may perhaps (wrongly) infer that one group is simply diminished in its

learning abilities compared to another, while the observed differences may actually be rooted

in the different behavioral strategies applied. Individual differences in learning strategies have

recently been approached within the framework of computational reinforcement learning

(RL) and decision-making theories [e.g., 16,17], which have been applied, for instance, to dis-

entangle model-free and model-based forms of learning and their distinct neural substrates

[18–20] or to reveal strategic interactions during (model-based) sequential planning [21].

Building on ideas like these, we show here how a genetic variation may determine an animal’s

learning strategy and associated performance patterns. Specifically, we studied learning in

terms of behavioral strategies on a 2-choice operant cue discrimination task in 2 groups of

mice, a group with a genetic modification associated with severe learning deficits [22], namely,

a selective knockout (KO) of the Cacna1c gene coding for the α subunit of Cav1.2 L-type high-

voltage-dependent calcium channels (Cav1.2NesCre), and matched controls with intact gene
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expression (Cav1.2fl/fl). Calcium influx through voltage-dependent calcium channels is essen-

tial for synaptic plasticity and other cellular adaptations [23] thought to underlie instrumental

learning [24]. The CACNA1C gene has also been implicated in the pathophysiology of psychi-

atric disease [22,25], rendering it an important target for understanding learning mechanisms

not only in normal but also psychiatric conditions. By studying the detailed pattern of behav-

ioral responses and rewards received across the learning process, combined with analyses

based on behavioral (reinforcement) learning models, we found that Cav1.2NesCre mice did not

simply exhibit a general learning deficit but rather relied on different behavioral strategies

than Cav1.2fl/fl mice.

Results

Cav1.2NesCre and Cav1.2fl/fl mice both improve performance, but to

differing degrees and with different patterns

To examine potential learning deficits caused by selective ablation of the Cav1.2 L-type calcium

channel subunit, a cue discrimination task consisting of 3 different task phases was set up (Fig

1). The basic task required animals to perform a nose poke response on one side of a touchsc-

reen box if a light square came up in the upper central position of the screen and to the other

side if the stimulus was shown in the lower position (Fig 1I). Hence, the animals had to associ-

ate cue location (top, bottom) with response side (left, right) for a maximum of reward returns

(correct responses according to this “cue rule” were always rewarded). In task phase I, trials

with the cue in top or bottom position occurred in a pseudorandom order (see Materials and

methods for details), but correction trials consisting of repetitions of the unsuccessful trial

were run after each wrong (nonrewarded) response. In task phase II, “slightly ambiguous” tri-

als with reduced stimulus contrast were introduced, i.e., with cues appearing in both positions

but the one indicating the correct response side brighter than the other (Fig 1II). In phase III,

“fully ambiguous” trials were added with cues in both positions with the same brightness

(responses to both sides were rewarded in this case [Fig 1III]). Also, in phases II and III, trials

which required animals to perform responses to the side opposite to the one rewarded in the

previous trial (termed “shift trials” here) were always followed by 1–2 trials in which the cue

indicated the side rewarded in the previous trial (“stay trials”) (see Materials and methods and

S1 Fig for details). As detailed below, these manipulations in phases II and III served as addi-

tional probes for the behavioral strategies or biases exhibited by the animals (except for the

analyses targeting specifically these trials, however, different trial types were pooled for analysis

whenever possible). They were introduced in sequential task stages and not all at once so as to

not overload the early learning phase for the animals. No significant side bias was found in

either group of animals on the first day of testing, nor was there a difference in side preference

between groups (see Materials and methods).

First, we assessed the number of correct responses according to the experimenter-defined

“cue rule” (Fig 2). Both groups of animals, Cav1.2NesCre and Cav1.2fl/fl, displayed levels of accu-

racy as defined by this rule that ranged significantly above chance in all 3 task phases, as con-

firmed by both subject-level binomial and group-level t tests (see Fig 2 legend for statistical

details). This verifies that performance levels in both groups significantly increased over the

course of the task, even if assessed purely in terms of the experimenter-defined cue rule. Never-

theless, a 2 × 3-factorial analysis of variance (ANOVA) with “group” (Cav1.2NesCre versus

Cav1.2fl/fl) as between- and “task phase” as within-subjects factor revealed a main effect of

group (F(1,21) = 20.19, p< .001), a main effect of task phase (F(2,42) = 40.62, p< .001), and

an interaction effect (F(2,42) = 18.7, p< .001), indicating that performance was significantly
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worse for Cav1.2NesCre compared to Cav1.2fl/fl animals, in a task-phase-dependent manner, as

further confirmed by post hoc tests (Fig 2B; note that for these across-phase comparisons low-

and high-contrast trials were combined in phases II & III, as these were not present in phase I,

see Materials and methods and below).

Fig 1. Two-choice operant cue learning task. A square-shaped cue appears in either the top or bottom

position of a central field, indicating a correct left/right side response. A “stay trial,” as defined here, requires a

response to the same side as on the previous trial, while a “shift trial” requires a response to the opposite side

(given a correct previous response). The figure displays the different trial types added in successive task

phases (labeled I, II, and III). In phase I, only high-contrast (HC) cues were presented. In phases II and III,

low-contrast (LC) cues were added. Phase III further included completely ambiguous trials for which both

response options were rewarded.

https://doi.org/10.1371/journal.pbio.2000936.g001
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Next, we examined whether performance depended on whether the previous trial required

a response to the same side for obtaining reward as the current one (“stay trial”) or a response

to the opposite side (“shift trial”). For both shift and stay trials, we again observed a main effect

of group (shift trials: F(1,21) = 6.55, p = .018, stay trials: F(1,21) = 22.59, p< .001), a main effect

of task phase (shift trials: F(1.35,28.33) = 11.12, p = .001, stay trials: F(2,42) = 47.97, p< .001),

and a significant phase-by-group interaction (shift trials: F(1.35,28.33) = 11.01, p = .001, stay

trials: F(2,42) = 3.54, p = .038). While Cav1.2fl/fl mice essentially showed the same performance

pattern across task phases in both types of trials (i.e., an increase from phase I to phase II, both

post hoc tests p< .001, and no further increase in phase III, both p> .1), as they should if they

acted according to the cue rule, for Cav1.2NesCre, the response pattern strongly differed on shift

and stay trials: while, in fact, Cav1.2NesCre animals performed around chance level in stay trials

throughout the whole first task phase before jumping to higher performance levels in phases II

and III (post hoc tests phase I versus II: p = .033, phase II versus III: p = .003, see Fig 3A), they

demonstrated high performance on shift trials in phase I, which then, however, dramatically

declined across task phases (post hoc tests phases II versus III: p = .001, see Fig 3B). Indeed,

Cav1.2NesCre even outperformed Cav1.2fl/fl animals on shift trials during phase I (post hoc tests

Cav1.2fl/fl versus Cav1.2NesCre phase I: p = .044), while Cav1.2fl/fl outperformed Cav1.2NesCre in

all other conditions (all p< .05).

The fact that Cav1.2NesCre animals did not exceed chance level in terms of the cue rule

throughout stay trials in phase I and shift trials in phase III suggests that they may not have

gathered the experimentally intended cue-response association. This interpretation is further

supported by a separate analysis of trials with reduced stimulus contrast (Fig 3C): while

Cav1.2fl/fl animals were significantly influenced by this manipulation, as one would expect if

Fig 2. Cue-rule-consistent (i.e., correct) responses across task phases and days. A) Mean and SEM of the

percentage of correct responses by day for control (Cav1.2fl/fl; blue) and Cav1.2 knockout (Cav1.2NesCre; red) mice.

Different gray shadings indicate the 3 task phases. Note that Cav1.2fl/fl mice reached the experimenter-defined

performance criterion earlier than Cav1.2NesCre mice in phase I and therefore were recorded for fewer days.

Binomial tests revealed significant improvements above chance in 11/12 Cav1.2NesCre and 12/12 Cav1.2fl/fl

animals in phase I, 7/11 Cav1.2NesCre and 11/12 Cav1.2fl/fl in phase II, and 11/11 Cav1.2NesCre and 12/12 Cav1.2fl/fl

in phase III. This was further supported by group-level comparisons by t tests on the last day of each task phase

against chance: all p < .01, and last day against first day of phase I: p < .001 for both groups. B) Percentages of

correct responses averaged across each task phase (error bars = SEM). Asterisks mark significant differences

between groups as revealed by post hoc tests: Cav1.2fl/fl performed significantly better than Cav1.2NesCre mice in

phases II and III (p < .001) but only marginally better in phase I (p = .088). Data available at https://github.com/

GKoppe/BehavioralData_Ana.

https://doi.org/10.1371/journal.pbio.2000936.g002
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their behavior were controlled by the cue (low- versus high-contrast trials, phase II: t(11) =

1.82, p = .096; phase III: t(11) = 3.34, p = .007), reducing cue contrast did not affect the behav-

ior of the Cav1.2NesCre animals (low- versus high-contrast trials, phase II: t(10) = .33, p = .75;

phase III: t(10) = –.21, p = .836).

Cav1.2NesCre and Cav1.2fl/fl mice may follow different behavioral

strategies for increasing reward rate

The results above raise the question of how the Cav1.2NesCre mice did manage to improve task

performance, although they apparently did not issue their responses in accordance with the

presented cue. In novel environments, rodents quickly adopt and learn to adapt ecologically

prepared or previously acquired strategies like win-stay or win-shift [e.g. 7,10,11], which we

will denote as “outcome rules” in the following, rather than extracting the (cue-based) rules

experimentally imposed. To assess this, we first evaluated how consistent their pattern of

responses is with any of the 4 elementary outcome-based strategies: win-stay, win-shift, lose-

stay, and lose-shift. Fig 4A gives the relative frequency of responses across trials on each day

that are consistent with a win-shift and a lose-shift rule for Cav1.2NesCre and Cav1.2fl/fl animals

(note that by symmetry, p(win-shift) = 1–p(win-stay), and p(lose-shift) = 1–p(lose-stay)).

In general, there was a main effect of (outcome-based) strategy (F(1,21) = 78.03, p< .001)

and task phase (F(1,21) = 78.03, p< .001), but the strategy depended on phase (strategy x

Fig 3. Cue-consistent responses across task phases and days split for stay and shift trials as defined in Fig 1. Mean and SEM of

percentage of correct responses per day (left) and averaged across task phases (right) for Cav1.2fl/fl (blue) and Cav1.2NesCre (red) mice on A)

stay trials and B) shift trials. Different gray shadings indicate the three task phases. C) Percentage of correct responses on high contrast (solid

bars) and low contrast (empty bars) in phase II (top) and III (bottom), color-coded as in A. Error bars = SEM. Data available at https://github.

com/GKoppe/BehavioralData_Ana.

https://doi.org/10.1371/journal.pbio.2000936.g003
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phase: F(2,42) = 47.06, p< .001) and was further modulated by group (strategy x group:

F(1,21) = 32.16, p< .001 and strategy x group x phase: F(2,42) = 3.306, p = .046): on the one

hand, outcome-strategy-conforming responses appeared to change in both groups with task

phase and trial history, but on the other, this adaptation was clearly different for Cav1.2NesCre

and Cav1.2fl/fl animals. Specifically, both groups favored lose-shift over lose-stay, that is, tended

to shift to the other side after an unsuccessful response (binomial tests on lose-shift against

chance across all task phases: p�.001 for 23/24 animals). After successful trials, however,

Cav1.2NesCre mice considerably differed in their behavior from Cav1.2fl/fl: During phase I, they

shifted significantly more often after wins than Cav1.2fl/fl (post hoc test: p = .001) and even

marginally more so than after losses (post hoc test win-shift versus lose-shift for Cav1.2NesCre:

p = .079), thus basically increasing their overall probability for shifting (Fig 4A left). Cav1.2fl/fl

mice, in contrast, exhibited significantly more shifts after incorrect trials than after correct

ones (post hoc test win-shift versus lose-shift for Cav1.2fl/fl: p< .001), with no preference for

win-shift over win-stay (see Fig 4A right, p(shift | win)� .5, t(11) = –.02, p = .98). In phases II

and III, Cav1.2NesCre animals then reduced shifting after correct but not incorrect responses

Fig 4. Task performance and reward feedback according to outcome-based rules. A) Relative frequency of win-shift (magenta) and lose-

shift (cyan) responses per day for Cav1.2NesCre (left) and Cav1.2fl/fl (right) animals (error shadings = SEM). Different gray shadings indicate the

three task phases. Note that win- and lose-stay frequencies are symmetric to win- and lose-shift frequencies about the 0.5-axis and are thus not

shown. B) Relative frequency with which outcome-rule-consistent responses led to reward for Cav1.2NesCre (left) and Cav1.2fl/fl (right) animals.

Data available at https://github.com/GKoppe/BehavioralData_Ana.

https://doi.org/10.1371/journal.pbio.2000936.g004
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(post hoc tests win-shift in phase I versus II: p = .012, phase II versus III: p< .001). Although

this general trend is similar to that shown by Cav1.2fl/fl (phase I versus II and phase II versus

III: p< .001), Cav1.2NesCre animals still win-shifted significantly more often than Cav1.2fl/fl in

phase II (p = .001) and, by trend, in phase III (p = .069). Thus, in essence, Cav1.2NesCre animals

increased the overall probability for shifting during phase I and then selectively and progres-

sively decreased their win-shift tendency in the next 2 phases (see also S2 Fig).

Note that the larger proportion of stay-correct trials in task phases II and III by task design

(see above and Materials and methods) makes downregulating win-shift responses a sensible

strategy. This raises the question of whether the below-chance decrease in win-shift responses

observed also in Cav1.2fl/fl animals reflects (partial) adoption of a win-stay strategy or whether

this decrease could partly be related to other, confounding factors, like correlations among cue

and outcome rules (overlap between cue and win-stay (outcome) rule: phase I: ~47%, phase II:

~74%, and phase III: ~82%). The ambiguous trials introduced in phase III (with equal cue

intensities in the top and bottom positions) might help to dissociate cue- versus outcome-based

rules, since, on these trials, the cue is completely noninformative with respect to response side.

However, both Cav1.2NesCre and Cav1.2fl/fl animals kept on applying a win-stay strategy in these

trials (Cav1.2NesCre: 60% win-stay, t(10) = 2.80, p = .019 compared to chance; Cav1.2fl/fl: 59%,

t(11) = 2.84, p = .016), although Cav1.2fl/fl animals showed this behavior significantly less

often than in other phase III trials (t(11) = –6.16, p< .001), while Cav1.2NesCre animals did not

(t(10) = –1.39, p = .19). Cav1.2NesCre (but not Cav1.2fl/fl) animals also exhibited a highly signifi-

cant correlation between win-stay behavior on ambiguous and nonambiguous trials across days

(Cav1.2NesCre: t(10) = 6.59, p< .001, Cav1.2fl/fl: t(11) = .82, p = .43, and Cav1.2NesCre versus

Cav1.2fl/fl: t(21) = 2.12, p = .046), further supporting the idea that Cav1.2NesCre (in contrast to

Cav1.2fl/fl) animals more generally followed an outcome rule. These observations thus suggest

that, in truly ambiguous situations, Cav1.2fl/fl animals may also partly revert to a win-stay strat-

egy. In situations like phase I, however, where win-staying bears no advantage over win-shift-

ing, Cav1.2fl/fl (unlike Cav1.2NesCre) animals did not show any such preference but followed the

more rewarding cue rule (see above).

While decreasing win-shifting is sensible in phases II and III given the task design, it does

not explain why Cav1.2NesCre animals clearly adapted their outcome-based behavior over time

also in phase I or why, more generally, this might be a worthwhile approach in the present

task. Ultimately, one would expect animals to increase the likelihood for a certain strategy if it

turned out to be more rewarding than alternatives and, in particular, compared to random

responding. We therefore next examined the frequency of rewards the Cav1.2NesCre animals

had actually received on responses consistent with each of the 4 outcome-based response

options (Fig 4B). Different outcome strategies were indeed associated with significantly differ-

ent reward probabilities (main effect strategy: F(1,10) = 457.7, p< .001), and these were further

modulated by task phase (strategy x task phase interaction: F(1.29,12.86) = 545.06, p< .001).

While shifting after an incorrect trial was the most rewarding strategy (post hoc comparison of

lose-shift to all others in all phases: p< .001), reward probability for shifting versus staying

after a correct trial really depended on the experimental phase: a win-shift strategy was more

rewarding in phase I (win-shift versus win-stay: p< .001) and less rewarding in phases II and

III (post hoc tests both p< .001). Moreover, employing binomial tests, win-shift-consistent

responses in phase I were significantly more often associated with reward than would have

been expected by chance (for all Cav1.2NesCre animals: p< .001). Thus, based on the actual out-

comes the animals had experienced, a win-shift/lose-shift strategy should have been perceived

as more rewarding than either chance responding or any alternative combination of outcome-

based responses in phase I, while win-stay/lose-shift would have been the most effective
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combination in phases II and III, consistent with the pattern of responses Cav1.2NesCre animals

actually displayed (Fig 4A).

Cav1.2NesCre behavior is best explained in terms of outcome rules and

Cav1.2fl/fl behavior best in terms of the cue rule

The analyses in the previous sections showed that the actual response pattern in Cav1.2NesCre

mice is more consistent with outcome-based rules, while that of Cav1.2fl/fl mice is more consis-

tent with the cue rule, and that these strategies could have been perceived as rewarding by the

animals based on the actual experiences they have had. To conclusively statistically demon-

strate that outcome-based versus cue-based behavior indeed sufficiently explained the animal

choices both across and within task phases, we next examined the animals’ behavior in terms

of bootstrap distributions and formal reinforcement learning (RL) models generated from the

empirical data.

An outcome rule bootstrap distribution was generated by having an “artificial agent” mak-

ing choices purely based on the 4 outcome rules but with probabilities for the 4 response

options (win-stay, win-shift, lose-stay, and lose-shift) derived from the animals’ actual choice

frequencies on each day. Hence, this “agent” would choose to win-stay, win-shift, and so on

with the exact same probabilities on each day as the actual animals but would only act upon

these and ignore other behavioral options or task features, like the cue. This was contrasted

with an “agent” that acted purely based on the 4 cue-related response options (“top-cue/left-

response,” “top-cue/right-response,” “bottom-cue/left-response,” and “bottom-cue/right-

response”), again with the probabilities for showing this behavior on each day instantiated by

the animals’ actually displayed response frequencies. By running these agents for 1,000 itera-

tions of the same basic task design and phases as used for the animals, bootstrap distributions

were generated consistent with a pure outcome-based or pure cue-based strategy, applied with

the same probabilities actually exhibited by the animals.

While 11/12 Cav1.2fl/fl animals escaped the outcome rule bootstrap distributions (i.e., per-

formed significantly better) in both shift (Fig 5) and stay (S3 Fig) trials, this was only the case

for 4/12 Cav1.2NesCre animals. Indeed, Cav1.2fl/fl and Cav1.2NesCre animals significantly differed

with regards to their agreement with the outcome bootstraps (χ2 = 8.71, p = .003), indicating

that performance in the Cav1.2NesCre group is much better explained in terms of adaptation of

outcome-based strategies than is the case for Cav1.2fl/fl animals. Vice versa, when animal

behavior was evaluated in terms of the cue rule bootstrap distribution, only 3/12 Cav1.2fl/fl, but

10/12 Cav1.2NesCre, animals escaped the cue rule distributions on either shift or stay trials,

with, again, significant differences among the groups (χ2 = 8.22, p = .004, see S4 and S5 Figs).

Thus, Cav1.2fl/fl animal behavior tended to be consistent with the cue rule but inconsistent

with the outcome rules, while the reverse tended to be true for Cav1.2NesCre animals.

As a final step to prove that the observed performance progress across trials could indeed

entirely be explained by adapting outcome- versus cue-based strategies, RL models were esti-

mated from the behavioral data (see Materials and methods). In brief, these models consist of

linear update rules for the values of (situation, action)-pairs (Eq 1 in Materials and methods)

and a sigmoid-type choice probability function (Eq 3 in Materials and methods), which ren-

ders situation-dependent choices among response options, with probabilities based on the

learned relative values of the different actions in that situation. The learning process itself was

modeled by a Rescorla–Wagner (RW) rule [26], augmented by a Pearce–Hall (PH)-type

“associability” mechanism [27], which regulates the learning rate in accordance with the recent

history of reward prediction errors (see Materials and methods for details; a pure RW model

and a simplified hybrid RW+PH model with 1 rate parameter fixed were checked as well and
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yielded almost identical results). Hence, these models would progress from trial to trial,

sequentially gathering evidence for the different reward returns to be expected from the differ-

ent response options in each environmental situation and issuing choices on each trial based

on these learned values.

Two types of models were constructed, one equipped purely with the 4 elementary outcome

rules (see above; termed “outcome model” in the following), ignoring the cue or any other

potential strategy, and one with the 4 cue-based response options as given above (“cue model”),

basing its choices solely on these. Thus, both models are described by exactly the same number

of response options and parameters and differed solely in terms of what these response options

would refer to. The set of 5 parameters that characterizes each of these models is comprised of a

global learning rate κ, an additional time-dependent rate component regulated by a parameter

η in accordance with the recent history of reward prediction errors, and 3 individual explora-

tion parameters βk for each separate task phase k�{I,II,III}. While the 2 learning rate parameters

κ and η determine how values for (situation, action)-pairs are updated as the animals progress

through their individual trial sequences (see Eq 2 in Materials and methods), the 3 parameters

Fig 5. Outcome-rule-based bootstrap distributions for shift trials. A) Actual performance (blue curves) and bootstrapped performance distributions

(gray-shaded: 90% CI, black: mean) generated from the purely outcome-based response behavior that is most consistent with the animal’s actual

behavior, i.e., with day-specific outcome-rule choice probabilities inferred from the animal’s actual distribution of outcome-rule-consistent responses.

Curves and corresponding bootstrap distributions are shown for all Cav1.2fl/fl animals. B) Same for Cav1.2NesCre animals. Note that while most Cav1.2fl/fl

mice escape the bootstrap distributions as the task progresses (later in phase I or in phase II/III), most Cav1.2NesCre animals remain within the bootstrap

90%-confidence bounds. Data available at https://github.com/GKoppe/BehavioralData_Ana.

https://doi.org/10.1371/journal.pbio.2000936.g005
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βk control the steepness of the sigmoid choice function (Eq 3 in Materials and methods) and,

thus, how deterministically (β!1) or probabilistically (β!0) an animal would behave given

the learned values. All parameters were estimated from the animal data by maximum likeli-

hood, and models were compared via hierarchical Bayesian inference, yielding expected poste-

rior probabilities for the 2 types of models (cue-based versus outcome-based) given the

observed behavioral data (see Materials and methods for details).

Cav1.2NesCre animals were much better described by the RL model, which updates the 4 ele-

mentary outcome strategies, than by the cue RL model, with the expected posterior model prob-

abilities being �pðoutcome modeljdataÞ ¼ :71 versus �pðcue modeljdataÞ ¼ :29 (S6 Fig left) and

an exceedance probability (i.e., the likelihood with which the posterior model probability of the

outcome model exceeds that of the cue model; see Materials and methods) of p = .95 (S6 Fig

right). By contrast, the behavior of the Cav1.2fl/fl animals was much better captured by the RL

model updating cue-association strategies, with expected posteriors �pðcue modeljdataÞ ¼ :79

versus �pðoutcome modeljdataÞ ¼ :21 and an exceedance probability for the cue over the out-

come model of p = .99. This analysis confirms that an outcome model much more plausibly

describes the behavior of the Cav1.2NesCre animals than a cue model, while, vice versa, the cue

model agrees much better with the behavior of the Cav1.2fl/fl animals than the outcome model.

Specificity to Cacna1c knockout

In our study, the specific Cacna1c knockout was achieved via the Cre-lox system using a Nestin

promoter-driven Cre recombinase in mice double-transgenic for both Cav1.2fl/fl and Nestin-

Cre (i.e., Cav1.2NesCre). However, mice carrying the Nestin-Cre transgene alone (NesCre) have

previously been associated with metabolic issues [28] as well as with potential deficits in learn-

ing [29], although that same study found that the deficit was rather specific to fear condition-

ing (freezing responses) and did not carry over to other kinds of learning. Nevertheless, given

these previous indications, we conducted a further control study with 12 NesCre and 12 wild-

type (WT) mice using the exact same experimental protocol as employed before. These 2 addi-

tional controls were run on experimental phase I only, since only the first task stage is required

to assess whether the animals would pick up the cue rule in principle. As done above, we then

compared all groups based on percentage of correct responses, bootstrap distributions

designed to assess the deviation of actual performance from the one expected under a given

response rule, and RL models. All of these 3 analysis approaches consistently indicated that the

additional control groups are better described in terms of the cue-based response strategy:

both NesCre and WT mice show increased accuracy (according to the cue rule) at the end of

phase I compared to Cav1.2NesCre mice (ANOVA main effect on groups: F(3,44) = 15.04, p<
.001; both post hoc tests p< .001, see also S7 Fig) but were not different from the previous

Cav1.2fl/fl control group (both p> .99). Furthermore, only 1/12 NesCre and 0/12 WT mice left

the 90% confidence bands of the cue rule bootstrap distribution, i.e., most animals showed per-

formance levels as expected under the cue rule. Chi-square-based tests confirmed that signifi-

cantly more of the NesCre and WT animals adhered to the cue rule than Cav1.2NesCre

knockout animals (NesCre versus Cav1.2NesCre: χ2 = 16.67, p< .001, WT versus Cav1.2NesCre:

χ2 = 20.31, p< .001), with numbers comparable to those within the original control group

(NesCre versus Cav1.2fl/fl: χ2 = 1.2, p = .273, WT versus Cav1.2fl/fl: χ2 = 3.43, p = .064). Con-

versely, in terms of the outcome-based response rules, 11/12 NesCre and 10/12 WT mice went

beyond the confidence bands of the outcome rule bootstrap distribution, i.e., significantly

deviated from the performance expected under the outcome rule. Again, these numbers are

significantly different from those in the Cav1.2 knockout strain (NesCre versus Cav1.2NesCre:

χ2 = 8.71, p = .003, WT versus Cav1.2NesCre: χ2 = 6.17, p = .013) but not from those in the
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Cav1.2fl/fl group (NesCre versus Cav1.2fl/fl: χ2 = 0, p = 1, WT versus Cav1.2fl/fl: χ2 = .38, p = .537;

results were similar when only task phase I was considered for all animals, see Materials and

methods). Lastly, our RL-model-based analysis revealed that, similar to the Cav1.2fl/fl controls,

both NesCre and WT mice have a much higher posterior probability for the cue rule model

(NesCre: �p ¼ :929, WT: �p ¼ :929) than for the outcome rule model (NesCre: �p ¼ :071, WT:

�p ¼ :071). Thus, we conclude that the change in response strategy observed for the knockout

strain is indeed specific to this group, that is, can be attributed to the ablation of Cav1.2 calcium

channels and is not due to other confounding factors.

Discussion

In solving a specific cognitive task, animals may follow a variety of different behavioral strate-

gies or ecological heuristics. Here, we demonstrate, through a detailed analysis of response pat-

terns, reward returns, and computational models statistically estimated from the animals’

actual behavior [30], that both Cav1.2NesCre and Cav1.2fl/fl mice improve performance across

different phases of a cue discrimination task but do so by fundamentally different means.

While Cav1.2fl/fl mice seemed to infer the correct cue-response association, Cav1.2NesCre ani-

mals learned to increase their reward returns by conditioning their responses on previous out-

comes in an optimal manner. It is thus important to note that while “standard” behavioral

analysis would have inferred that both strains of animals, Cav1.2fl/fl and Cav1.2NesCre, could

basically learn the cue-discrimination rule, only with the Cav1.2NesCre animals being signifi-

cantly worse than the Cav1.2fl/fl, here we arrived at a quite different conclusion: in fact, our

results suggest that Cav1.2NesCre animals did not learn the cue rule at all but rather based their

behavior on adapting another reward-increasing strategy. We could also demonstrate that this

alteration in behavioral strategy is specific to the Cav1.2 ablation and cannot be attributed to

the expression of Nestin-promoter driven Cre per se. That Cav1.2NesCre mice were still able to

adapt their responses based on observed outcomes also demonstrates that Cav1.2NesCre mice

do not suffer from a general learning deficit but perhaps one that is domain-specific or more

closely tied to other cognitive capacities, like working memory [31].

Behavioral strategies, heuristics, and learning as active decision making

In a real ecological context, there is a multitude of different factors and contextual conditions

that will or could influence whether a behavioral plan will ultimately lead to success. When

an animal hits on a favorable outcome it had not expected, it is often difficult to discern

which of the many foregoing sensory inputs and actions were indeed crucial for predicting

and achieving this success and which are irrelevant and would better be ignored; also termed

the “credit assignment problem” [32]. To parse out the crucial and predictive factors from

limited experience, the small sample of reality an animal has access to in its lifetime, would

be difficult enough if the world were rather deterministic. But on top of that, the world is

highly uncertain and probabilistic, full of unforeseen events that complicate inference on

environmental structure. To deal with this, animals have evolved or acquired a larger reper-

toire of general strategies, heuristics, shortcuts, and response preferences [5,6] that could

guide them through novel situations by biasing probability distributions toward certain sub-

sets of situation/action/outcome triples and, potentially, are also designed to minimize an

animal’s cognitive effort [33].

All these different response strategies and biases almost certainly come into play in any

novel laboratory situation an animal faces. Animals are unlikely to behave completely ran-

domly but, according to recent evidence, might actually actively probe and test out different

such strategies and behavioral “hypotheses” whilst learning [12,13]. In rodents, common a
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priori strategies are win-stay, win-shift, lose-shift, or alternate [7,9,10], which all could make

sense in one environmental setting or another [8,11,34]. For instance, rats hoard food in their

underground burrows—once the food is gone from one of the chambers or, more generally, a

food source is depleted, it is certainly reasonable to win-shift. In other circumstances, food

sources may be expected to refill (perhaps in certain temporal intervals), such that a win-stay

strategy would be more appropriate. Hence, it seems reasonable that even the Cav1.2fl/fl ani-

mals in our task reverted to one of these more basic strategies, namely win-stay, when the cue

information became ambiguous on certain trials. In fact, some of the Cav1.2fl/fl animals that

did not show as high performance levels as their group mates appeared to have adopted an out-

come-based strategy as well, further illustrating that this is not a behavioral pattern “outside

the normal scope” but a sensible, although suboptimal, way to approach this task.

Often, from an experimenter’s point of view, it might in fact not be that easy to construct

experimental situations that clearly dissociate what the experimenter intended the animals to

do from one of these basic, a priori strategies animals bring into the task. For instance, to

probe working memory in rodents, delayed response or alternation tasks on a T-maze are

often used. However, some studies have suggested that, rather than using working or short-

term memory to encode correct responses as intended by the experimental design, rodents

may rely on subtle external bodily cues like head orientation maintained throughout the

delay phase of the task [14,15]. Such behavioral alternatives or confounds with other previ-

ously acquired or prepared strategies may easily be overlooked or, indeed, sometimes hard to

avoid. There could also be other hidden dependencies or predictable structure in a task

design (especially in learning tasks that evolve across trials) that are not immediately obvious

and that animals may attempt to exploit. Even if overall (given unlimited experience) every-

thing is well balanced and controlled by design, the individual history of trial drawings,

responses, and outcomes may be locally highly nonrandom and bias animals differentially

toward certain strategies rather than others [35, see also 36,37]. Thus, consideration of differ-

ent possibly rewarding behavioral strategies may not only provide a lot more mechanistic

insight by revealing the details of how an animal solves the task posed but may, in fact, prove

important for drawing the right conclusions with respect to the involved cognitive and

behavioral capacities.

For these reasons, it is also important that the behavioral analysis takes the animals’ per-

spective by taking into account the exact same set or sequence of trial types as encountered

by the animals in order to accurately infer what they could have possibly learned about differ-

ent behavioral policies given their individual choice and reward histories [35]. In fact, it is a

particular advantage of the bootstrap- and model-based analyses reported here that they

adopt the animal’s point of view, incorporating the exact same sequence of stimulus events,

behavioral responses, and reward returns as experienced by the animals, and thus yield day-

by-day (or even trial-to-trial) predictions on an individual animal basis (e.g., Fig 5). Further

note that the next trial type encountered by an animal is often a consequence of the animal’s

own behavior, as in the case of correction trials, hence a reflection of the animal’s own

choices that should be acknowledged in an analysis of behavioral strategies. With regards to

the specific experiments conducted here, we therefore would like to emphasize that none of

the analyses made any a priori assumptions about the distribution or occurrences of trial

types but went exactly with those trials as empirically observed and that, of course, the experi-

mental conditions for all animal strains were exactly the same (and hence all differences in

experienced trial sequences a consequence of differences in the animals’ behavior). It may

also be worth noting that the animals showed strategy-consistent responses across all 3 task

stages, although these considerably differed in the composition of trials and trial transitions

they harbored.
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RL rules

Our RL model analysis was based on a Rescorla–Wagner rule augmented by a Pearce–Hall-

type mechanism [27,38], in which the learning rate is regulated by the recent history of suc-

cessful outcome predictions, increasing as the mismatches between predicted and experi-

enced rewards become more numerous (and thus indicating to the animal that its current

response policies need to be altered). Although the results using this type of learning rule

were completely consistent with those obtained with a pure Rescorla–Wagner rule (as well as

with a simplified hybrid model; see Materials and methods), we adopted this learning mecha-

nism, as it turned out to yield the best description of the behavioral data based on Bayesian

model comparisons (see S8 Fig). Animal learning has also variously been described in terms

of stimulus-response versus action-outcome associations [39,40]. In light of this discussion,

it may therefore be important to emphasize again that all animal strains studied here did

indeed use the outcomes to regulate and advance their behavioral policies, i.e., were all able

to utilize the reward feedback in adjusting their behavior in a profitable manner. The specific

difference between the animal strains was that the Cav1.2NesCre mice did not base their

responses on the presented cue but on where the reward occurred on the previous trial (i.e.,

on the previous outcome), and the bootstrap- and model-based analyses, which specify the

assumptions about the behavioral process in formal detail, confirmed that this provided a

sufficient explanation for the animals’ behavior.

Calcium channels, learning, and clinical implications

Calcium (Ca2+) influx through N-methyl-D-aspartate (NMDA) and voltage-gated calcium

channels is crucial for synaptic plasticity [24] and nuclear gene expression associated with

plasticity [41] and cell survival [42]. Although there are several other sources of cellular Ca2+

influx, like NMDA or T- or N-type Ca2+ channels [43,44], a cortex-wide, functional ablation of

L-type Ca2+ channels through a knockout of the Cacna1c gene is therefore supposed to impair

plasticity, and thus learning, in a variety of settings. Indeed, this selective knockout has been

associated with deficits in spatial memory [45,46] and observational fear learning [47].

Although the cortex-wide lack of Cav1.2 in the present preparation prevents a more precise

localization of the effects reported here, a recent study employing a similar touchscreen-based,

two-choice stimulus discrimination task in mice revealed a specific dependence on dorsal stri-

atum [48], in line with earlier studies linking this region to the mediation of SR associations

[39,49,50]. Interestingly, this study also involved correction trials, which may facilitate out-

come-based strategies, and found that performance scores in the lesioned animals settled

around similar levels as observed for the Cav1.2NesCre mice here, about 60%–65%. Although

outcome-based strategies were not investigated by Delotterie and colleagues [48], these find-

ings could indicate that the present effects may be more specifically rooted in L-type Ca2+

channel dysfunction in dorsal striatum.

Findings like these may also open new perspectives on treatment options in psychiatry. Spe-

cifically, the CACNA1C gene has been associated with severe psychiatric illnesses such as

depression [51], bipolar disorder [52], autism [53], and schizophrenia [51,54], for which it has

been listed as a risk gene [51,55]. The present results suggest that for modifying a patient’s

behavior, certain avenues, potentially resting on biologically more elementary behavioral

options, may be fruitful to explore where other forms of behavioral therapy have failed. They

at least suggest that a detailed scrutiny of how a patient solves a specific set of cognitive or

emotional tasks, on top of standard clinical assessment, may provide valuable insights into

how to best address the “behavioral malfunctioning” of a patient in terms of the specific behav-

ioral interventions and rules the therapy should focus on (see also [56]). Hence, in future
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applications, the combination of standard cognitive test batteries with model-estimation tech-

niques, as used here, could lead into the design of more specifically targeted, individualized

behavioral therapies, on top of its potential use for diagnosis and prediction.

Materials and methods

Ethics statement

All experiments complied with regulations covering animal experimentation within the EU

(European Communities Council Directive 2010/63/EU), and were approved by German ani-

mal welfare authorities (Regierungspraesidium Karlsruhe: ethical approval no. 35-9185-81-G-

227-12).

Animals

All mice were bred in the animal facility of the Central Institute of Mental Health, Mannheim,

Germany, and maintained on a C57BL/6N background. CNS-specific ablation of the L-type

voltage gated calcium channel Cav1.2 was achieved by inactivation of the Cacna1c gene using

the cre-loxP system. More specifically, Cav1.2NesCre mice (genotype: Cav1.2 L2/L2, Nestin-

Cre -/+) were generated by crossbreeding mice carrying 2 loxP-flanked (“floxed”) Cav1.2

alleles [45] and mice with an additional heterozygous transgene expressing Cre recombinase

under the control of a Nestin promoter [57]. In these animals, the loss of Cav1.2 functionality

is accomplished by the excision of Cacna1c exons coding for the IIS5 and IIS6 transmembrane

segments of the pore-forming subunit α1C of the Cacna1c gene via Cre recombinase that is

expressed in all cell types of the CNS through embryonic development. Crossbred Cav1.2fl/fl

mice homozygous for the floxed Cav1.2 allele but lacking Cre recombinase expression (geno-

type: Cav1.2 L2/L2, Nestin-Cre -/-), and thus not suffering calcium channel loss, served as pri-

mary controls within the experiment. To rule out that observed learning differences between

these 2 groups were not attributable to metabolic [28] or other potential factors [29] associated

with the expression of Cre recombinase in the Cav1.2NesCre group, we assessed performance of

2 additional control groups: animals with a heterozygous transgene expressing Cre recombi-

nase under the control of a Nestin promoter without loxP-flanked Cav1.2 alleles (NesCre;

genotype: Cav1.2 +/+, Nestin-Cre +/-) and pure wild-type animals (WT; genotype: Cav1.2 +/+,

Nestin-Cre -/-).

In total, 12 male Cav1.2NesCre, 12 Cav1.2fl/fl, 12 NesCre, and 12 WT mice were single-housed

in conventional macrolon cages (Type II, 26 × 20 × 14 cm) with sawdust (RehofixMK-2000;

Rettenmaier & Söhne, Rosenberg, Germany), nesting material, and free access to water. Single

housing was chosen as it has been shown to be less stressful for male mice than group housing

under standard maintenance conditions (i.e., no enrichment) [58]. All animals were approxi-

mately 12 weeks old at experimental onset. Colony room settings included a temperature of 23

±2˚C, relative humidity 50%± 5%, and a reversed 12 hour light–dark schedule with the lights

off at 7:00 AM [58,59]. Experiments were conducted during the dark phase, which constitutes

the active phase of mice.

Mice were food restricted [60] to 85%–90% of their initial free-feeding body weight in

order to maintain a high degree of motivation during operant training. The mean initial body

weight was assessed on 5 consecutive days when animals had free access to food. Body weight

and health status were monitored daily prior to testing. At the start of food restriction, mice

were food deprived for 1 light phase and received 2.0 g to 3.3 g food in the subsequent dark

phase, depending on individual loss. Henceforth, the amount of food was adjusted in accor-

dance with the deviation from the intended 87.5% of initial body weight. Touchscreen-trained

mice additionally received 7 μl sweet condensed milk (SCM; Milchmaedchen, Nestle, diluted
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in 1:4 tap water) as a reward for correct responses during training. They were previously

acquainted to SCM in their home cages to avoid later refusal as a reward. In order to minimize

handling as a source of anxiety and to reduce stress, all mice were handled without physical

restraint following the cup handling protocol described in [61]. Mice were scooped up and

allowed to walk freely over the handler’s open hands.

Stimuli and apparatus

Mouse touchscreen chambers (Model 80614–20, Campden Instruments Ltd., Loughborough,

Leics., United Kingdom) included several infrared (IR) light beams for movement detection, a

3 W house light for controllable illumination, and a tone generator for auditory signaling. The

inner chamber consisted of black Perspex walls arranged in a trapezoid shape (height 19 cm,

width 24 respectively 6 cm, depth 17 cm) and a metal grid floor. The longer end of the chamber

was equipped with a touch-sensitive screen (IR-detector-based) partly covered by a 3-hole Per-

spex mask in order to separate the display into three equal response windows (7 x 7 cm). The

lateral fields were used to detect touches, while the central field was used to display the reward-

side-indicating cue. Reward cues consisted of bright gray 2.5 cm squares (brightness = 70%,

85%, or 96%, hue and saturation = 0 in HSB colors). Correct responses triggered the display of

a tone, illumination in the reward tray, and delivery of 7 μl sweet condensed milk. The reward

tray (2 x 2 x 2 cm) of an externally placed feeder for liquid suspensions positioned at the

touchscreen-opposed end of the chamber contained another light beam detector used to count

entries, start and stop latencies, and trigger initiation of the next trial. Hence, the subject was

required to initiate a trial at the narrow end of the chamber, subsequently traverse to the

opposed touchscreen side for response, and, finally, traverse back in order to retrieve the

reward. This ensured optimal prospect to the screen and constant start conditions on each

trial.

Experimental procedure

Preliminaries, familiarization, and habituation. The experimental paradigm followed a

fixed daily schedule in which mice were transported to the test room, acclimatized, and intro-

duced to the touchscreen chambers. Body weight was monitored and test chambers were

cleaned with desalinated water before entrance. Animals were first habituated and familiarized

with the experimental setup before transferal to 3 consecutive test phases (labeled I–III), which

varied in their composition of trial types (see below).

Habituation procedures were carried out as described in detail in Talpos and colleagues

[62]. Briefly, mice became acquainted to the setup, procedures, and the basic functions of the

chamber. Habituation included stepwise presentation of principal functions in the chamber:

SCM delivery associated with a signaling tone, touching the lateral fields of the screen in order

to receive a reward, triggering the next trial self-contained by head entries into the feeder after

a 5 s intertrial interval (ITI), and time out with house light illumination as a signal for incorrect

responses. Time spent in the chamber was increased stepwise from 10 to 40 min, and an initial

phase of free milk supply was added, which had to be triggered by nose poke responses on the

touchscreen.

Familiarization procedures were carried out as described in detail in Richter and colleagues

[63]. Mice were first familiarized with the fact that touching 1 of the 2 lateral touch fields on

which a cross was displayed would yield reward. After accomplishing 30 touches to the lateral

touch fields within 30 min, mice were introduced to the reward-indicating cue on the cue pre-

sentation field and were for the first time confronted with the basic cue rule, which requires

the animals to associate a cue position (top, bottom) with a response side (left, right). Correct
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responses were rewarded with delivery of SCM, but, different from the proper test phases,

touching the incorrect touch field did not result in a time-out. The session was terminated

after 60 min or when 40 trials were completed. Animals progressed to the experimental test

phases after completing 40 trials on 2 consecutive days.

Experimental task phases. The experiment consisted of 3 successive test phases. While

Cav1.2NesCre and Cav1.2fl/fl underwent this whole experimental protocol, the additional con-

trols, NesCre and WT mice, were tested only on phase I (see last Results section and below).

The 3 test phases varied in their composition of different trial types (see Fig 1), with additional

probe trials (see below) inserted in stages II and III. This was done only in consecutive task

stages and not all at once, as otherwise, it would have made the task too complicated for the

animals and impeded learning in general. The 3 test phases also varied in the relative frequen-

cies of stay and shift trials (see S1 Fig), allowing for a more thorough assessment of strategy

adaptations, wherein a stay (shift) trial was defined here as a trial in which, for obtaining a

reward, the response side would have to be maintained or switched, respectively, depending

on whether the previously rewarded (i.e., correct) response side was the same (stay) or the

opposite one (shift). Incorrect responses according to the experimenter-defined cue rule were

punished by a 5 s timeout and house light presentation.

Phase I consisted of high-contrast stay or shift trials in which only the reward-indicating

cue (bright gray square) was presented on the screen. After incorrect responses, correction tri-

als were inserted to facilitate learning, i.e., cues were repeatedly presented in the same position

until the correct response was performed (effectively making lose-shift reward probability 1 in

these trials). Following a correct response, stay and shift trials were drawn with equal probabil-

ity. In case the reward-indicating cue was presented on the same position 3 times in a row, a

shift of cue position was enforced (to discourage a pure side bias but thus slightly favoring shift

responses). A session (per day) was completed after 40 trials or 60 min. In order to progress to

phase II, animals had to achieve� 80% accuracy on 2 consecutive days. However, progression

into phase II was enforced for all remaining mice when the least-advanced animals had com-

pleted at least 70 sessions of phase I. Note that 1 Cav1.2NesCre animal died after 104 days of test-

ing and thus dropped out of analyses for phase II and III.

In phase II, shift trials with lowered stimulus contrast were introduced, in which a second,

less salient cue (with reduced brightness = 20%) was presented in the position opposite to the

target cue (brightness = 85%, i.e., top if the reward-indicating cue was presented at the bottom

and vice versa; see Fig 1II/1III). It was reasoned that such trials with reduced cue saliency

would make it harder to apply the cue rule and thus provide an additional test which should

affect cue- but not outcome-based responses. As in phase I, correction trials were presented to

facilitate cue rule learning. Also, shift trials were always followed by a minimum of 2 (high-

contrast) stay trials (encouraging outcome-based win-stay responses). Subsequently, stay trials

were drawn with probability .5, with high- and low-contrast shift trials with p = .25 each. A

session was completed after 50 trials or 60 min. Progression to phase III was again approved

after� 80% accuracy on 2 consecutive days. Animals which had not fulfilled phase I progres-

sion criteria were trained for 14 days before transiting into phase III.

In phase III, in addition to the trial types present in phase II, ambiguous trials with 2 equally

bright cues (brightness = 50%) were introduced. Again, these served as additional probes for

potential cognitive biases or strategies endorsed by the animals (including the tendency to

perseverate or alternate)—essentially, this type of manipulation should only influence cue- but

not outcome-based strategies. In contrast to the other test phases, however, errors did not trig-

ger a correction trial in phase III. Similar to phase II, a slightly higher probability for stay trials

remained due to the fact that a (high-contrast) stay trial was inserted after every other trial.

The subsequent probability for drawing a (high-contrast) stay trial was .5 and .125 for all other
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trial types. Phase III consisted of 20 consecutive days of testing with 100 trials per day. In total,

given differences in learning speed, Cav1.2NesCre mice were tested for an average of 114 +/- 28

days, and Cav1.2fl/fl for 78+/- 19.

Potential side biases were evaluated in the Cav1.2NesCre and the Cav1.2fl/fl mice on the first

day of experimental testing (in phase I), but neither did the proportion of left-side responses in

either group significantly depart from chance (Cav1.2NesCre: t(11) = –.748, p = .47; Cav1.2fl/fl:

t(11) = .647, p = .53) nor was there a significant difference between the two groups (indepen-

dent t test for Cav1.2NesCre versus Cav1.2fl/fl: t(22) = .981, p = .337). Additional tests with an

artificial agent (see below), acting according to different probabilities for left and right

responses throughout all experimental phases (varying probability for left responses from .1 to

.9), further revealed that any such side bias would not have significantly altered the perceived

reward for different outcome-based strategies. Hence, we conclude that even if a side bias had

been present, it would not have affected learning of particular strategies.

Data analysis

Cue and outcome rule performance. Performance according to the cue rule was quanti-

fied in terms of the (relative) number of correct (rewarded) responses on a given day or phase.

To assess whether performance deviated from chance individually for each subject and task

phase, the binomial distribution B(K,N,p), with parameters p = 0.5, N = total number of trials,

and K = number of correct cue rule response trials, was employed. At the group level, in addi-

tion, one-sample t tests were performed for each group on the last day of each phase, and on

the last versus first day of phase I, to test the relative number of correct responses against

chance and against performance at outset. For assessing overall group and task phase differ-

ences, 2 × 3-factorial ANOVAs were conducted with the between-subject factor “group”

(Cav1.2fl/fl versus Cav1.2NesCre) and repeated measurement factor “task phase” (I-III). Analyses

were run either across all trials or separately for stay and shift trials. As low-contrast trials were

introduced only in experimental phases II and III and could thus not be entered as separate

factors into the ANOVA, performance was collapsed over high- and low-contrast trials for this

type of analysis. Degrees of freedom were Greenhouse–Geisser-corrected in case of sphericity

violations. Post hoc pairwise comparisons were conducted based on the estimated marginal

means and Bonferroni-corrected for multiple comparisons. Low-contrast trials, which (unlike

high-contrast trials) only occurred in phases II and III, were separately analyzed via dependent

t tests for these 2 task phases for each group.

Win-stay, win-shift, lose-stay, and lose-shift responses, commonly denoted as “outcome

rules” here (as opposed to the experimentally defined operant “cue rule”), were quantified in

terms of the relative number of responses to the same (stay) or opposite (shift) side with

respect to that of the previous response on previously correct (win) or incorrect (lose) trials,

respectively, where “relative” means with respect to the total number of correct (win) or

incorrect (lose) responses. Evidence indicates that these 4 response components are updated

independently [7,64–66], potentially even mediated by different structures [66–68], such

that a separate analysis of these 4 rules was favored here. This also facilitated comparison

with the cue rule, which also comprises 4 elementary response options (“top cue–left

response,” “bottom cue–left response,” “top cue–right response,” “bottom cue–right

response”). Occurrence rates of these outcome rules were then compared via ANOVAs,

dependent t tests for ambiguous versus nonambiguous trials in phase III, and binomial tests,

which were used to test against chance for single subject analysis. Note that by symmetry, the

probability for win-stay responses will be exactly 1-win-shift (and lose-stay = 1-lose-shift),

such that only 2 outcome rules are independent and needed to be entered into the statistical
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design. Thus, a 2 (group) x 3 (task phase) x 2 (outcome rule: win-shift, lose-shift) ANOVA

was conducted, with Bonferroni-corrected post hoc pairwise tests. Win-stay occurrence rates

to ambiguous and nonambiguous trials were further correlated across days in phase III,

wherein the Fisher transformation was applied to the (Pearson) correlation coefficients to

make their distribution (approximately) normal and allow for comparisons via dependent

one-sample t tests and two-sample t tests.

Reward probabilities associated with outcome rules. Reward probabilities for each out-

come strategy per day were defined as the numbers of times a rule was reinforced divided by

the total numbers of times it was applied. Analyses of reward probabilities were conducted on

the Cav1.2NesCre animals via a 3 (phase) x 4 (outcome rules: win-stay, win-shift, lose-stay, lose-

shift) ANOVA. Note that in this case, all 4 outcome rules are entered into the analysis since,

different from the analysis of frequency of rule application described above, the reward proba-

bilities for contrasting response pairs (i.e., lose/win shift versus stay) are not complementary

(i.e., do not necessarily add up to 1) across the empirically encountered series of trials. This is

because, on any given trial, the reward probability for the response not chosen is not subjec-

tively available to the animal, i.e., shift versus stay probabilities are evaluated on different sets

of trials, since we were interested in how rewarding a given outcome rule could have been per-

ceived from the animal’s perspective. Where appropriate, group analyses were complemented

by single-subject binomial tests on number of rewards obtained against chance.

Outcome versus cue rule bootstrap distributions. To explicitly test the null hypothesis

that performance in each animal could be entirely accounted for by adaptation of the outcome

rules or the cue rule SR pairs, we constructed a bootstrap distribution generated by “artificial

agents” faced with the same experimental task structure, sampling actions on an equal number

of days and trials as each animal. The outcome rule agent sampled actions from win-stay, win-

shift, lose-stay, and lose-shift strategies with the same average frequencies observed for each

animal per day. For instance, if an animal showed 42% win-shift versus 58% win-stay behavior

on day 10, then after each correct (win) trial on day 10, the agent would sample its next

response with these same probabilities. The cue rule agent sampled actions based on “cue-

response” probabilities, namely “top-cue/left-response,” “top-cue/right-response,” “bottom-

cue/left response,” and “bottom-cue/right response,” with response probabilities for each of

these 4 pairs further split according to whether an animal faced a low- or a high-contrast trial.

This procedure ensures that the agent’s responses on each different trial type follow as closely

as possible the animal’s actual behavior, except—potentially—for the only 1 crucial aspect that

the choice probabilities otherwise depended only on either the cue but not the previous out-

come (cue rule) or vice versa (outcome rule).

Note that, in essence, for these types of bootstraps, responses are simply drawn from a set of

defined available options with the same day-, animal-, and trial-type-specific response proba-

bilities as empirically observed (inferred) (that is, this type of analysis does not refer to a true

RL agent as described further below). This bootstrap distribution thus captures the pure sce-

nario of solely outcome-based responses that is still most consistent with the animals’ actual

behavior. Hence, if the animal performance lies within the confidence limits of this distribu-

tion, one would have to accept the H0 that outcome-based response strategies suffice to pro-

duce the observed performance levels without applying the cue rule (and vice versa, for the

cue-rule-based bootstrap distribution).

For each animal, a total of 1,000 cue-/outcome-rule bootstrap replications were produced,

from which the bootstrapped 90% confidence intervals were determined [e.g. 69]. Based on

these, the number of days in which the animal’s performance lay outside this confidence

region on either shift or stay trials was obtained, and the overall probability for this event given

the total number of tests (days) performed was assessed via a binomial distribution with
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probability parameter α = .05. To yield an overall statistical assessment of whether Cav1.2NesCre

and Cav1.2fl/fl animals differed with respect to overall rule-consistent behavior, the numbers of

animals performing significantly better than the agent were then determined for each group

and compared using chi-square tests. Binomial tests were also conducted within each group to

determine whether the number of animals that escaped the bootstrap distributions may have

been expected by chance given the α = .05 significance level.

For completeness, in addition to the results reported in the last Results section, we here

note that similar differences between the Cav1.2NesCre and all other experimental groups were

obtained when only task phase I was entered into the analysis (consistency with outcome-rule

bootstrap distribution: Cav1.2NesCre versus NesCre: χ2 = 10.97, p< 0.001; Cav1.2NesCre versus

WT: χ2 = 8.22, p = 0.004; Cav1.2fl/fl versus NesCre: χ2 = 1.2, p = 0.273; Cav1.2fl/fl versus WT:

χ2 = 0.25, p = 0.615; consistency with cue rule bootstrap distribution: Cav1.2NesCre versus

NesCre: χ2 = 8.71, p = 0.003; Cav1.2NesCre versus WT: χ2 = 12, p< 0.001; Cav1.2fl/fl versus

NesCre: χ2 = 0, p = 1; Cav1.2fl/fl versus WT: χ2 = 1.04, p = 0.307).

Computational modeling

RL models. Two RL models were set up, one implementing cue-rule and the other out-

come-rule learning, to formally test hypotheses about the involved learning processes through

model comparison. RL models consist of updating rules for the values Vt of state-action pairs

(s,a), formalized here through a hybrid Rescorla–Wagner/ Pearce–Hall update mechanism

[27,70] given by

Vtþ1ðs; aÞ ¼ Vtðs; aÞ þ k � at � d; with d ¼ rt � Vtðs; aÞ ð1Þ

where δ is the reward prediction error, i.e., the difference between the actually obtained reward

rt and the expected reward value Vt(s,a) for action a in situation s, κ is a constant global learn-

ing rate parameter, and αt represents a time-dependent rate component which adjusts in

accordance with the average accuracy of recent predictions, specified through a stable autore-

gressive process with the prediction errors δ as deterministic (external) inputs [70]. Specifi-

cally, αt increases with the absolute size of the current prediction error and decays

exponentially in time otherwise (with the tradeoff between these 2 processes regulated by a

parameter η):

at ¼ ð1 � ZÞ � at� 1 þ Z � jdj; Z 2 f0; 1g ð2Þ

As parameters κ and ηmight be partly correlated (given that they multiply), reduced mod-

els with κ = 1 fixed were run as well, as were models with the learning process given by a pure

Rescorla–Wagner rule. While results using all 3 learning mechanisms were the same, the full

hybrid RW+PH learning model was adopted here for presentation in the main text since it

yielded the highest posterior probabilities in Bayesian model comparisons (see below; S8 Fig).

Learned values are then translated into action probabilities via a softmax function:

pðajsÞ ¼
ebk�Vtðs;aÞ

P
lebk�Vtðs;lÞ

; ð3Þ

where the βk are parameters governing the exploitation/exploration trade-off in the 3 experi-

mental phases indexed by k [71]. A high βmeans that the animal more strongly exploits the

most-rewarding actions, while a low β produces more random or explorative behavior.

The “cue model” describes learning in terms of the operant cue rule only, i.e., only values

for the 4 state-action pairs (“top-cue/left-response,” “top-cue/right-response,” “bottom-cue/

left-response,” and “bottom-cue/right-response”) were tracked. The “outcome model,” by
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contrast, describes learning in terms of the outcome rules only, i.e., only values for the 4 state-

action pairs “win-stay,” “win-shift,” “lose-stay,” and “lose-shift” were tracked.

Model estimation and selection. Given the action probabilities as defined by Eq 3, which

incorporates the history of previous situations, actions, and outcomes through the model’s

value function Vt(s,a) (Eq 1), the model log-likelihood can be expressed as l = Stlogp(at|st,Vt,θ).

Model parameters θ = {κ, η, βI, βII, βIII}, where κ � {0, 1} and βk >0, were estimated for each

animal by maximum likelihood using MATLAB’s active set algorithm (fmincon), which relies

on solving the Karush–Kuhn–Tucker equations by quasi-Newton methods, starting from 100

different initial conditions to avoid local minima. The maximized log-likelihood value was

later entered into a model comparison analysis (see below).

In order to determine which model best accounted for the observed behavior, we con-

ducted Bayesian model selection (BMS) for group studies [72] on both groups separately. BMS

is a hierarchical Bayesian framework which, at the top level, specifies a distribution across

model probabilities πm given the data, naturally expressed (since we are dealing with categori-

cally distinct models) as a Dirichlet distribution (which reduces to the beta distribution in our

two-model case). Based on this distribution, with parameters α estimated from the behavioral

data, one can compute exceedance probabilities as pðpm > pm0ja;XÞ ¼ pðpm > :5ja;XÞ given

the data X, i.e., the likelihood with which the probability for model m exceeds that of model m’

(or 0.5 for a two-model comparison), as shown in S6B Fig. Likewise, we can infer the expected

posterior model probabilities �pðmjXÞ :¼ E½pm� as depicted in S6A Fig. Thus, rather than

assuming each group to strictly follow one model (i.e., a fixed effect), this approach allows one

to take into account variability between subjects within each group (i.e., random effects), as

both Cav1.2NesCre and Cav1.2fl/fl animals may in principle follow either one or the other rule.

Log-model-evidences p(X | m) as needed for the computation of the posteriors were approxi-

mated by the Bayesian Information Criterion ([73]; note, however, that in our case, the num-

ber of parameters was exactly the same for both models). Thus, for both groups, this approach

evaluates whether the animals’ behavior is better described in terms of pure cue-rule versus

pure outcome-rule learning through estimation of the posterior probabilities for the respective

models given the animals’ actually observed sequence of behavioral choices.

All statistical analyses were conducted using IBM SPSS Statistics Version 22 (IBM Corp.,

2013, Armonk, NY) and self-written MATLAB (Mathworks Inc., Sherborn, MA) scripts.

Supporting information

S1 Fig. Transition probabilities for different trial types in the three experimental phases.

In phase I and II, green and red lines indicate transitions from correct and incorrect choices,

respectively. Blue outlines mark newly introduced trial types in phases II and III. HC = high

contrast; LC = low contrast.

(TIF)

S2 Fig. Correlation between propensity to show outcome-rule consistent behavior and

reward success. A) Overlaid overall percentage of shift-responses (red) and reward feedbacks

on shift trials (magenta) across days and task phases for Cav1.2NesCre animals. Error

shadings = SEM. B) Same for Cav1.2fl/fl animals. C) Mean percentage of shift-responses

against reward on shift-trials for Cav1.2NesCre (red) and Cav1.2fl/fl (blue) animals. While for

Cav1.2NesCre animals there is a highly significant correlation between the propensity to shift

and reward feedbacks received (r = .93, p< .001), this is not the case for Cav1.2fl/fl animals

(r = .08, p = .339). D) Same as A for stay responses and reward success on stay trials. E) Same

as B for stay responses and reward success on stay trials. F) Same as C for stay responses and

reward success on stay trials. Both groups exhibit a significant correlation between stay
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frequency and reward success on stay trials (Cav1.2NesCre: r = .63, p< .001, Cav1.2fl/fl: r = .33,

p = .001). The two distinct clusters apparent for Cav1.2NesCre animals reflect stay response–

reward correlations in different task phases. Data available at https://github.com/GKoppe/

BehavioralData_Ana.

(TIF)

S3 Fig. Outcome-rule bootstrap distributions for stay trials. A) Actual performance (blue

curves) and bootstrapped performance distributions (gray-shaded: 90% CI, black: mean) gen-

erated from the purely outcome-based response behavior that is most consistent with the ani-

mal’s actual behavior, i.e. with day-specific outcome-rule choice probabilities inferred from

the animal’s actual distribution of outcome-rule-consistent responses. Curves and correspond-

ing bootstrap distributions are shown for all Cav1.2fl/fl animals. B) Same for Cav1.2NesCre ani-

mals. Note that while most Cav1.2fl/fl mice escape the bootstrap distributions as the task

progresses (later in phase I, or in phase II/III), most Cav1.2NesCre animals remain within the

bootstrap 90%-confidence bounds. Data available at https://github.com/GKoppe/

BehavioralData_Ana.

(TIF)

S4 Fig. Cue-rule based bootstrap distributions for shift trials. A) Actual performance (blue

curves) and bootstrapped performance distributions (gray-shaded: 90% CI, black: mean) gen-

erated from the purely cue-based response behavior that is most consistent with the animal’s

actual behavior, i.e. with day-specific cue-rule choice probabilities inferred from the animal’s

actual distribution of cue-rule-consistent responses. Curves and corresponding bootstrap dis-

tributions are shown for all Cav1.2fl/fl animals. B) Cav1.2NesCre. Data available at https://github.

com/GKoppe/BehavioralData_Ana.

(TIF)

S5 Fig. Cue-rule bootstrap distribution for stay trials. A) Actual performance (blue curves)

and bootstrapped performance distributions (gray-shaded: 90% CI, black: mean) generated

from the purely cue-based response behavior that is most consistent with the animal’s actual

behavior, i.e. with day-specific cue-rule choice probabilities inferred from the animal’s actual

distribution of cue-rule-consistent responses. Curves and corresponding bootstrap distribu-

tions are shown for all Cav1.2fl/fl animals. B) Same for Cav1.2NesCre. Data available at https://

github.com/GKoppe/BehavioralData_Ana.

(TIF)

S6 Fig. Bayesian comparison of cue-rule vs. outcome-rule reinforcement learning (RL)

models inferred from the animals’ actual behavior. A) Expected posterior probabilities for

cue and outcome model given Cav1.2NesCre and Cav1.2fl/fl data. B) Exceedance probabilities

(i.e., the probabilities with which the posterior model probability of one model exceeds that of

the other).

(TIF)

S7 Fig. Cue-rule consistent (i.e., correct) responses across sessions for NesCre and WT ani-

mals. Mean and SEM of the percentage of correct responses by session for NesCre (yellow)

and wild-type (black) mice for (A) stay trials, and (B) shift trials. In contrast to Cav1.2NesCre

mice, both control groups exhibit a clear and significant improvement on stay trials during

experimental phase I. On average, WT animals required 39.6 (+/- 11.5) and NesCre animals

40.3 (+/- 13.3) sessions to reach criterion. Data available at https://github.com/GKoppe/

BehavioralData_Ana.

(TIF)
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S8 Fig. Bayesian comparison of models with different update rules estimated from the ani-

mals’ behavior. Expected posterior probabilities for a pure Rescorla-Wagner model, a hybrid

model with a fixed global learning constant, and a hybrid model with the global learning rate

parameter estimated from the data (see Materials and methods). Log model evidences that

went into the model comparison were computed by averaging the BIC values across the cue

and outcome models for each update rule.

(TIF)
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