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A B S T R A C T   

This study investigated the accuracy of a machine learning algorithm for predicting mortality in 
patients receiving rapid response system (RRS) activation. This retrospective cohort study used 
data from the In-Hospital Emergency Registry in Japan, which collects nationwide data on pa-
tients receiving RRS activation. The missing values in the dataset were replaced using multiple 
imputations (mode imputation, BayseRidge sklearn. linear model, and K-nearest neighbor model), 
and the enrolled patients were randomly assigned to the training and test cohorts. We established 
prediction models for 30-day mortality using the following four types of machine learning clas-
sifiers: Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting, random forest, 
and neural network. Fifty-two variables (patient characteristics, details of RRS activation, reasons 
for RRS initiation, and hospital capacity) were used to construct the prediction algorithm. The 
primary outcome was the accuracy of the prediction model for 30-day mortality. Overall, the data 
from 4,997 patients across 34 hospitals were analyzed. The machine learning algorithms using 
LightGBM demonstrated the highest predictive value for 30-day mortality (area under the 
receiver operating characteristic curve, 0.860 [95 % confidence interval, 0.825–0.895]). The 
SHapley Additive exPlanations summary plot indicated that hospital capacity, site of incidence, 
code status, and abnormal vital signs within 24 h were important variables in the prediction 
model for 30-day mortality.   

Abbreviations: RRS, rapid response system; ICU, intensive care unit; GBM, Gradient Boosting Machine; XGBoost, eXtreme Gradient Boosting; 
GCS, Glasgow coma scale; SpO2, percutaneous oxygen saturation; NEWS, National Early Warning Score; ROC, receiver operating characteristics; 
AUC, area under the curve; CI, confidence interval; SHAP, SHapley Additive exPlanations; DNAR, do not attempt resuscitation. 
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1. Introduction 

Worldwide implementation of the rapid response system (RRS) has promoted early identification of and prompt intervention for 
clinically deteriorating patients, thereby reducing the rate of adverse events and improving outcomes [1]. Clinical decisions following 
RRS activation should be based on risk stratification, patient background, and the quality of end-of-life care to optimize the efferent 
functions of the RRS [2–5]. Therefore, accurate mortality prediction models are expected to provide healthcare providers with reliable 
justifications for selecting appropriate candidates for further interventions and influencing clinical policies, including withholding or 
withdrawing therapeutic interventions. 

With the development of artificial intelligence, machine learning algorithms allow the prediction of both clinical deterioration in 
hospitalized patients and clinical outcomes in patients following in-hospital cardiac arrest with more accuracy than before [6–9]. A 
previous study reported a machine learning model for predicting mortality in patients receiving RRS activation using registry data 
from the United States [10]. However, the model had unsatisfactory accuracy, with an area under the receiver operating characteristic 
curve (AUC) of 0.78, indicating the need for a more accurate prediction model. 

The code status and comorbidities, which were not included in the construction of the previous machine learning algorithm [10], 
may potentially refine the performance of the prediction model. Our previous studies also demonstrated that timing, location, and 
facility characteristics were associated with outcome severity in patients receiving RRS activation [11,12]. Therefore, these findings 
indicate that using patient demographics, including code status and comorbidities, detailed information on RRS activation, and 
hospital characteristics could improve the accuracy of the prediction model. However, reports on machine learning algorithms that use 
these variables are rare. 

We hypothesized that machine learning algorithms using a wide range of variables could predict mortality in patients receiving 
RRS activation with higher accuracy and identify important variables for the prediction model. Therefore, this study evaluated the 
accuracy of a machine-learning model for predicting 30-day mortality using data from an online registry of patients receiving RRS 
activation in Japan. 

2. Materials and methods 

2.1. Participants and study design 

This retrospective cohort study used a Japanese nationwide online registry of patients receiving RRS activation, specifically the In- 
Hospital Emergency Registry (IHER-J) [12–16]. IHER-J, which is supported by the Japanese Society of Intensive Care Medicine and the 
Japanese Society for Emergency Medicine, is registered in the 

University Hospital Medical Information Network Clinical Trial Registry (UMIN-CTR) (UMIN000012045, registered on October 16, 
2013). All patients registered in the IHER-J who received RRS activation in 35 hospitals between April 2014 and March 2018, 
including inpatients, outpatients, and individuals within hospital facilities were enrolled in this study. The exclusion criteria were data 
registration from hospitals without an intensive care unit (ICU) and missing 30-day mortality data. 

This study’s protocol was reviewed and approved by the Ethics Committees of all 35 participating institutions in Japan (Institu-
tional Review Board number: 2498) at the St. Marianna University School of Medicine, Japan, which is the representative of the IHER- 
J. The requirement for written informed consent was waived by the Institutional Review Board in accordance with the Ethical 
Guidelines for Medical and Health Research Involving Human Subjects in Japan. 

2.2. Data collection and definition 

Fifty-two input variables (Supplemental Table 1) were collected from the data registry. These variables included 1) baseline patient 
characteristics (age, sex, code status, department, existing comorbidity [malignancy, postoperative, sepsis, obstetric disease, and 
congenital heart disease], cardiac arrest, vital signs [body temperature, systolic blood pressure, diastolic blood pressure, heart rate, 
respiratory rate, percutaneous oxygen saturation (SpO2), and Glasgow coma scale (GCS)], abnormal vital signs within 24 h, and 
repeated activation); 2) details of RRS activation (month of RRS activation, weekend or holiday, time of day, period of RRS activation- 
arrival, period of RRS activation-end, activator [physician, nurse, and others], site of incidence [general ward, high care unit, 
outpatient department, emergency room, examination/treatment room, and public space]); 3) reasons for RRS activation (desatu-
ration, altered mental status, staff concern, hypotension, tachypnea, dyspnea, tachycardia, bradycardia, bradypnea, airway obstruc-
tion, cyanosis, seizure, inability to contact the attending physician, anaphylaxis, decreased urine output, uncontrollable pain, 
agitation, trauma, nausea, suicide attempt, or other reasons) and the number of reasons for RRS activation; and 4) hospital capacity, 
defined as the number of hospital beds for inpatients. Abnormal vital signs were defined as heart rate of ≥130 or <40 beats/min, 
respiratory rate of ≥28 or <8 times/min, systolic blood pressure of <90 mmHg, SpO2 of <90 %, and altered mental status. 

2.2.1. Imputation of missing values 
The missing values in the single dataset were replaced using the following multiple imputations: mode imputation for code status; 

BayseRidge sklearn. linear model for numerical data including age, respiratory rate, heart rate, blood pressure, and GCS; and K-nearest 
neighbor model for other numerical parameters, including SpO2, body temperature, period of RRS activation-arrival, and period of 
RRS activation-end. 
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2.3. Statistical analyses 

Four types of classifiers (Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), random forest, and 
neural network) were used to develop machine learning algorithms for predicting 30-day mortality. Logistic regression analysis with 
the National Early Warning Score (NEWS) was compared with the four machine learning models as a control. After imputing missing 
values, the dataset was randomly assigned into training (75 %) and test (25 %) cohorts using scikit-learn train_test_split in accordance 
with the common method of dividing machine learning data [17]. In the training cohort, four-fold cross-validation was used to conduct 
hyperparameter optimization and determine the algorithm with the highest predictive performance for each model. After developing 
the machine learning algorithms using the training cohort, the established algorithms were applied to the test cohort. We evaluated the 
importance of the features in the machine learning model based on the SHapley Additive exPlanations (SHAP) value. The SHAP values 
of the established prediction algorithm were calculated using 20 features (hospital capacity, site of incidence, code status, abnormal 
vital signs within 24 h, systolic blood pressure, SpO2, heart rate, department, age, GCS, malignancy, diastolic blood pressure, respi-
ratory rate, month of RRS activation, verbal response in the GCS, RRS activation-end period, motor response in the GCS, time of day, 
sex, and activator) (Fig. 1). 

Data are expressed as median (interquartile range) for continuous variables and absolute numbers and percentages for categorical 
variables. The performance of the model was evaluated using the AUC, sensitivity, accuracy, and specificity. Statistical significance 
was set at P < 0.05. All statistical analyses were conducted using Python 3.9.16 packages to construct the machine learning models on a 
computer (central processing unit; Intel (R) Xeon (R) CPU @ 2.20 GHz). 

3. Results 

3.1. Patient characteristics 

Of the 6,784 RRS events in the registry, patients from hospitals without an ICU (n = 900) and those with missing mortality data (n 
= 887) were excluded. The entire cohort of 4,997 patients was randomly assigned into the training [3,747 patients (75.0 %)] and test 
[1,250 patients (25.0 %)] cohorts (Fig. 2). The 30-day mortality of the entire cohort was 14.8 %. Furthermore, the baseline charac-
teristics, details of RRS activation, and reasons for RRS activation were comparable between the two cohorts (Tables 1 and 2, Sup-
plemental Table 2). 

3.2. Prediction of 30-day mortality in patients receiving RRS activation 

The prediction algorithm for 30-day mortality using LightGBM showed the highest predictive value in the test cohort, with an AUC 
of 0.860 (95 % confidence interval [CI], 0.825–0.895) (Fig. 3, Table 3). Additionally, the AUC of the logistic regression analysis using 
the NEWS was 0.627 (95 % CI, 0.581–0.673). 

Fig. 1. Flowchart of the analysis process. 
ML, machine learning; GBM: Gradient Boosting Machine, XGBoost, eXtreme Gradient Boosting, SHAP: SHapley Additive exPlanations. 
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3.3. Important prognostic variables 

Since the performance of the LightGBM model was superior to that of the other three machine learning models for predicting 30- 
day mortality, we used it to determine the importance of the variables. The SHAP summary plot showed that “hospital capacity,” “site 
of incidence,” “code status,” and “abnormal vital signs within 24 h” were the most important predictors of 30-day mortality in patients 
receiving RRS activation, followed by “systolic blood pressure” and “heart rate.” The association between the feature and SHAP values 
indicated a positive and negative impact on the predictors of 30-day mortality. The extent of the values is depicted as red (positive) and 
blue (negative) plots. “Hospital capacity” was the most important factor, although no unidirectional correlation was found between 
hospital capacity and 30-day mortality. Regarding the “site of incidence (as categorical variables: 1, general ward; 2, high care unit; 3, 
outpatient department; 4, emergency room; 5, examination/treatment room, and 6, public space/others),” the results showed that 
some groups with higher numbers in the classification tended to have a better prognosis than others. The results showed that some 
groups with higher numbers in “code status (as categorical variables: 1, do not attempt resuscitation (DNAR); 2, partial DNAR; and 3, 

Fig. 2. Flow diagram of participant selection 
ICU: intensive care unit. 

Table 1 
Baseline characteristics and outcome of the patients.   

Training cohort (n = 3747) Test cohort (n = 1250) 

Demographic data 
Age, years 72 (60–80) 72 (59–80) 
Male, n (%) 2259 (60.3) 707 (56.6) 

Code status, n (%)   
DNAR 297 (7.7) 105 (7.0) 
Partial DNAR 119 (3.0) 34 (3.4) 
Full code 2684 (73.7) 921 (72.3) 

Department, n (%) 
Medical 1850 (49.4) 665 (53.2) 
Surgical 1220 (32.6) 381 (30.5) 
Others 662 (17.7) 200 (16.0) 

Existing comorbidity, n (%) 
Malignancy 826 (22.0) 282 (22.6) 
Postoperative 494 (13.2) 152 (12.2) 
Sepsis 334 (8.9) 126 (10.1) 
Obstetric diseases 78 (2.1) 22 (1.8) 
Congenital heart diseases 22 (0.6) 11 (0.9) 

Vital signs 
Cardiac arrest 232 (6.2) 91 (7.3) 
Body temperature (◦C) 37.0 (36.5–37.7) 36.9 (36.5–37.6) 
Systolic blood pressure (mmHg) 113 (84–138) 111 (84–138) 
Diastolic blood pressure (mmHg) 65 (49–80) 65 (50–80) 
Heart rate (beats/min) 94 (71–119) 91 (71–115) 
Respiratory rate (times/min) 23 (16–30) 23 (16–30) 
Saturation of percutaneous oxygen (%) 95 (86–98) 95 (97–98) 
Glasgow coma scale 13 (7–15) 13 (7–15) 

Abnormal vital signs within 24 h, n (%) 1142 (30.5) 390 (31.2) 
Outcome 

30-day mortality, n (%) 555 (14.8) 185 (14.8) 

DNAR: do not attempt resuscitation. 
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Table 2 
Details of the rapid response system activation.   

Training cohort (n ¼ 3747) Test cohort (n ¼ 1250) 

Weekend or holiday, n (%) 832 (22.2) 247 (19.8) 
Time of day, n (%) 

9:00–16:59 2044 (54.6) 676 (54.1) 
17:00–0:59 927 (24.7) 307 (24.60) 
1:00–8:59 776 (20.7) 267 (21.4) 

Period of RRS activation-arrival, min 5 (2–6) 5 (3–7) 
Period of RRS activation-end, min 37 (22–64) 37 (21–61) 
Activator, n (%) 

Physician 850 (22.7) 325 (26.0) 
Nurse 1790 (47.8) 569 (45.5) 
Others 185 (4.9) 50 (4.0) 

Site of incidence, n (%) 
General ward 2431 (64.9) 812 (65.0) 
High care units 376 (10.0) 121 (9.7) 
Outpatient department 321 (8.6) 103 (8.2) 
Emergency room 153 (4.1) 50 (4.0) 
Examination/treatment room 318 (8.5) 114 (9.1) 
Public space/others 148 (3.9) 50 (4.0) 

RRS: rapid response system. 

Fig. 3. Receiver operating characteristic curve of the prediction models for 30-day mortality in patients receiving RRS activation. 
The receiver operating characteristic (ROC) curve and area under the curve for 30-day mortality in patients receiving rapid response system (RRS) 
activation were obtained using machine learning models (LightGBM) and logistic regression. NEWS: National Early Warning Score. 

Table 3 
Performance of predictive model algorithms for 30-day mortality in patients with rapid response system activation.   

Model 
Training cohort Test cohort Time (s) 

AUC Cross-validation AUC (95 % CI) Sensitivity Accuracy Specificity 

Machine learning 
LightGBM 0.855 0.820 0.860 (0.825–0.895) 0.714 0.810 0.826 19.8 
XGBoost 0.816 0.784 0.842 (0.806–0.879) 0.665 0.782 0.802 19.6 
Random forest 1.000 0.809 0.838 (0.801–0.875) 0.757 0.757 0.757 334.1 
Neural network 0.792 0.727 0.815 (0.777–0.854) 0.654 0.771 0.792 131.7 
Ensemble NA NA 0.860 0.719 0.801 0.815 505.3 

Logistic regression 
NEWS NA NA 0.627 (0.581–0.673) NA NA NA NA 

AUC, area under the receiver operating characteristic curve; CI, confidence interval; GBM: Gradient Boosting Machine; XGBoost, eXtreme Gradient 
Boosting; NEWS: National Early Warning Score; NA, not applicable. 
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full code)” tended to have a better prognosis than others. For “abnormal vital signs within 24 h (as categorical variables: 0, absence and 
1, presence),” the results showed that some groups with a higher number in the classification tended to have a worse prognosis than 
others (Fig. 4). 

4. Discussion 

In this study, machine learning algorithms predicted 30-day mortality in patients receiving RRS activation with high accuracy using 
patient demographics, details of RRS activation, and hospital characteristics. Important variables for the prediction model included 
hospital capacity, site of incidence, code status, and abnormal vital signs within 24 h. 

The accuracy of the machine learning models in predicting mortality in patients receiving RRS activation has been reported in two 
separate studies [10,18]. A previous study using the National Get with the Guidelines Medical Emergency Team registry, which is a 
large database of patients receiving RRS activation in the United States, reported that the AUC of the prediction model for in-hospital 
mortality among 282,710 hospitalized adult patients across 274 institutions was 0.78 [10]. In this study, systolic blood pressure, time 
since admission, and respiratory rate were reportedly the most important variables. Another study of 2,061 adult patients who were 
hospitalized after RRS activation at two Canadian tertiary care hospitals revealed that the prediction model for in-hospital mortality 
had an AUC of 0.77, with important predictors including age, platelet count, temperature, creatinine level, and neutrophil count [18]. 
The prognostic algorithms used in the present study demonstrated a higher predictive value for mortality in patients receiving RRS 
activation than those of previous studies. This high accuracy can be attributed to a wide range of variables, including patient de-
mographics, details of RRS activation, and hospital characteristics. Furthermore, the population was expanded to include all clinically 
deteriorating patients, including inpatients, outpatients, and individuals within hospital facilities. Therefore, the higher predictive 
performance in this expanded population indicates that the algorithms used in the present study may be more useful in real-world 
situations than the previous ones. 

The algorithm used in the present study identified hospital capacity, site of incidence, code status, and abnormal vital signs within 
24 h as important variables, which may explain the high accuracy of these models. Although the characteristics of hospitalized patients 
vary according to hospital capacity, hospital capacity is correlated with the quality of patient care and treatment [19]. A previous study 
reported that facilities with more inpatients have a higher incidence of unexpected adverse events [12], possibly because of the higher 
severity status and complexity of patients [20]. Consistently, the present study showed that a larger facility size was associated with a 
higher 30-day mortality. Therefore, because hospital capacity is a non-modifiable factor, hospitals should establish RRSs that can cover 
the number of incidence and severity status of patients according to their hospital size. 

Previous studies reported that the site of incidence is associated with the severity status of patients receiving RRS activation. These 
studies documented a high number of patients with severe deterioration in examination/treatment areas such as angiography and 
dialysis rooms [21–23] and a low number of patients with severe deterioration in public areas [11]. In the present study, the site of 
incidence was one of the most important variables. The cluster with low 30-day mortality observed in the SHAP values included 
clinically deteriorating patients in public spaces, which is consistent with the findings of previous studies. These results suggest that the 
site of incidence is an important predictor of mortality, and efficient allocation of medical resources according to the location should be 
provided to achieve a more effective RRS. 

The code status was also identified as an important prognostic variable in the present study, which is expected since clinical 
outcomes change according to treatment limitations. Although RRS aims to improve the outcomes of deteriorating patients, end-of-life 
care has recently been recognized as an essential consideration in RRS [2–5]. The algorithm in the present study, which includes code 
status, is significant not only for predicting prognosis but also for reassigning code status after deterioration. 

Previous studies have reported that abnormal vital signs and other physiological parameters are observed in many deteriorating 
patients before RRS activation [24,25] and delays in RRS activation are associated with poor outcomes [26,27]. Accordingly, we 
identified abnormal vital signs within 24 h as an important prognostic variable for 30-day mortality. Therefore, our findings support 
the importance of recognizing signs in deteriorating patients and intervening in the RRS afferent limb without delay. 

Despite the strengths of this study, including the wide range of variables in patients receiving RRS activation and the use of large 
multicenter registry data from Japan, some limitations should be considered. First, this study was limited to Japan. Therefore, the 
predictive accuracy should be validated in an international study. Second, although we used a nationwide registry, the number of 
participating facilities was small. Consequently, further validation using data from a broad range of facilities is required. Finally, we 
did not consider the various RRS in each facility or RRS intervention. Additionally, the potential heterogeneity of the RRS interventions 
could have affected the results of this study. Therefore, further similar international multicenter studies involving several medical 
institutions are required to make the results of this study more meaningful. 

5. Conclusions 

Our study shows that machine learning algorithms accurately predicted 30-day mortality in patients receiving RRS activation using 
important variables, including hospital capacity, site of incidence, code status, and abnormal vital signs within 24 h. However, further 
validation of these results is required to improve the quality of the RRS. 

Trial registration: This multicenter RRS epidemiological study, using an online registry, was registered in the UMIN-CTR 
(UMIN000012045, registered on October 16, 2013). 
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Fig. 4. SHAP values of the prediction model for predicting 30-day mortality in patients receiving RRS activation 
The impacts of the 20 features on the model output for 30-day mortality in patients receiving RRS activation were expressed as SHAP values. The 
features are placed in descending order according to their importance. The association between the feature and SHAP values indicates a positive and 
negative impact on the predictors. The extent of this value is depicted in red (high) and blue (low). The categorical variables include site of incidence 
(1: general ward, 2: high care unit, 3: outpatient department, 4: emergency room, 5: examination/treatment room, and 6: public space/others); code 
status (1: do not attempt resuscitation [DNAR], 2: partial DNAR, and 3: full code); abnormal vital signs within 24 h (0: absence and 1: presence); 
department (1: medical, 2: surgical, and 3: others); malignancy (0: absence and 1: presence); time of day (1: 9:00–16:59, 2: 17:00–0:59, and 3: 
1:00–8:59); sex (0: female and 1: male); and activator (1: physician, 2: nurse, and 3: others). RRS: rapid response system, SHAP: SHapley Additive 
exPlanations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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